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Abstract. In this article we describe an efficient AES software imple-
mentation that is well suited for 8-bit smart cards and resistant against
power analysis attacks. Our implementation masks the intermediate re-
sults and randomizes the sequence of operations at the beginning and the
end of the AES execution. Because of the masking, it is secure against
simple power analysis attacks, template attacks and first-order DPA at-
tacks. Due to the combination of masking and randomization, it is re-
sistant against higher-order DPA attacks. Resistant means that a large
number of measurements is required for a successful attack. This ex-
pected number of measurements is tunable. The designer can choose the
amount of randomization and thereby increase the number of measure-
ments. This article also includes a practical evaluation of the counter-
measures. The results prove the theoretical assessment of the counter-
measures to be correct.
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1 Introduction

Embedded processors have a large share in the processor market. Especially 8-
bit processors are used in many smart cards. Smart cards play a crucial role
in a lot of security systems. Due to the lack of secure PCs, smart cards are
often used in order to store secret keys. In addition, smart cards are frequently
used as authentication devices. For instance, in many ATM systems, users are
authenticated not only via their PIN. In addition, the ATM card (the smart
card) of the user authenticates itself to the ATM machine. In both scenarios it
is imperative that the secret key never leaves the smart card. Consequently, the
smart card not only stores the secret key, it is also capable of doing cryptographic
operations with that key.

During the last six years, side-channel attacks in general, and power analysis
attacks in particular, have shaken the believe in the security of smart cards.
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Kocher showed in his pioneering article [KJJ99] that a smart card that is unpro-
tected against power analysis attacks, can be broken easily. In a power analysis
attack, the attacker records the power consumption of a smart card while it
performs cryptographic operations with a fixed secret key. This secret key can
subsequently be revealed based on the recorded data (the so called traces) and
the corresponding plaintexts or ciphertexts. In the best case, such an attack re-
quires no knowledge about the implementation details of the algorithm and no
more than 100 traces [K.JJ99].

The Advanced Encryption Standard (AES) [Nat01] is the most popular prim-
itive for encryption today. It is a symmetric cipher and can be implemented ef-
ficiently on all kinds of platforms. It can also be used for authentication. Hence,
it is an attractive algorithm for many security relevant applications. As we have
pointed out already, the secure implementation of cryptographic primitives on
smart cards is challenging. Nevertheless, implementations of the AES algorithm
on smart cards that are resistance against power analysis attacks, are a pri-
mary interest of the industry. In addition, they are a challenging task for the
research community: a smart card is a rather constraint device. It runs on a low
clock frequency and is supposed to have a low power consumption. Furthermore,
only a very limited amount of memory (program memory, RAM, ROM, etc.) is
available that needs to be shared with the operating system.

In this article, we present an AES implementation that is highly resistant
against power analysis attacks and that performs well on 8-bit processors (smart
cards). We use a combination of countermeasures (masking and randomization
of operations) to achieve resistance against power analysis attacks. A security
analysis that includes a theoretical assessment and a practical evaluation ac-
companies this paper. The innovation in this work is the efficient combination
of countermeasures, which is specifically tailored for AES implementations on
8-bit smart cards. This is the first work presenting an efficient implementation
that offers resistance against power analysis attacks.

This article is organized as follows. In Sect. Bl we explain how masking and
randomization work, how each of them can be attacked and how combining them
increases the resistance against power analysis attacks. In Sect.[3] we explain how
our masked and randomized AES implementation works. In Sect. [l we analyze
the security of our implementation and provide evidence on the soundness of
our analysis by showing results of practical power analysis attacks. We conclude
this article in Sect. Bl Throughout this article, we assume that the reader has a
basic understanding of the working principle of differential power analysis (DPA)
attacks.

2 Countermeasures Against DPA Attacks

In order to secure implementations of symmetric cryptographic algorithms against
power analysis attacks, there are two approaches that are suitable for software im-
plementations on smart cards. On the one hand, the intermediate values of the
algorithm can be masked. On the other hand, the sequence of operations in the al-
gorithm can be randomized. In this section, we briefly discuss these two methods.
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2.1 Masking

In a masked implementation all intermediate values a are concealed by a random
value m which is called mask. For every execution of the algorithm, new masks
are generated on the smart card. Hence, the attacker does not know the masks.
Most masking schemes use additive masking, i.e. the mask is exclusive-ored with
the intermediate value. Thus, the masked intermediate value is a,, = a & m.
For AES, also multiplicative masking as been suggested [AG01]. Multiplicative
masking means multiplying a mask value with an intermediate value: b,,, = bxm.
This multiplication is a modular multiplication. Hence, it is not suitable for most
smart card implementations because a modular multiplier is not available on all
smart cards. Consequently, we focus on additive masking schemes.

Masking prevents DPA attacks because the randomly masked intermediate
values cause a power consumption that is not predictable by the attacker. The
masks are added at the very beginning of the algorithm to the plaintext. During
the execution of the algorithm, one needs to take care that every intermediate
value stays masked. In addition, one needs to keep track how the masks are
modified by the operations in the algorithm. For AES operations like ShiftRows
and AddRoundKey this can be done with almost no effort. MixColumns requires
some effort because it mixes bytes of different columns of the AES state. For
the non-linear SubBytes operation, a more elaborated approach is required. In a
typical software implementation the SubBytes operation is implemented as table
look-up: out = S(in) (S denotes the SubBytes table). The AES state consists of
16 bytes. Thus, we have to perform 16 table look-up operations. When we mask
the SubBytes operation, we have to compute a masked SubBytes table S’ such
that S'(a,) = S’(a @ m) = S(a) ® m’. At the very end of the algorithm, the
masks are removed from the intermediate values.

Provably secure masking schemes for AES have recently been published in
[BGK05] and [OMPROS]. Yet, these schemes have been mainly designed for
hardware implementations. Nevertheless, also a first proposal for a software im-
plementation of the scheme proposed in [OMPRO05] has recently been published
in [OS06]. This proposal is faster than the usual look-up table based scheme,
if just one AES block needs to be encrypted using a fresh mask of 16 bytes. If
several blocks are encrypted, the classical masking approach for AES (i.e. pre-
computing and storing masked S-Boxes in RAM) is more efficient. However, in
an ideal masking scheme, where each intermediate value is masked with a differ-
ent random value, one needs to keep track of 16 different masks. This leads to
a serious decrease in performance and is unacceptable for most applications. In
order to get a masked AES implementation with acceptable performance, trade-
offs between security and speed have to be made. Using fewer masks improves
the performance but decreases the security against higher-order DPA attacks.
Using only one mask leads to problems with MixColumns. If MixColumns needs
to be computed efficiently, different masks for each row of the AES state have to
be used. In most practical implementations, a small set of masks is used for all
AES rounds. It is imperative for the security of a masked implementation that
all intermediate values remain masked at all times.
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Attacks on Masking Schemes. Masking schemes protect against fist-order
DPA attacks. It is well known that, depending on the implementations, higher-
order DPA attacks may succeed. In a higher-order DPA attack, several points
of a power trace that correspond to several intermediate results, are combined
in the statistical analysis. In particular, in a second-order DPA attack, one uses
two intermediate points p; and ps of a trace that correspond to the processing
of two values a,, and b,,. Typically the points are chosen such that they are
concealed with the same mask m. Then, it holds that |p1 — pa| ~ HW (a,, ®
bm). Because a,, @ by, = a ® b it is possible to predict the Hamming weight
HW (am @ by,).

Only recently, the research community has picked up the topic of higher-order
DPA attacks again, see [WWO04], [SPQO5] and [JPS05]. The paper [OMHT06],
that has been published only recently, provides theoretical discussions and prac-
tical results for second-order attacks on masked smart card implementation of
AES. A conclusion from this paper is that second-order DPA attacks can be per-
formed efficiently in practice with a low number of measurements. This means
that masking alone does not lead to practically secure implementations if the
masking scheme is supposed to be efficient. However, simply using more masks
might not be the solution to the problem. This is because second-order DPA at-
tacks work whenever two intermediate values are concealed by the same masks,
or whenever the mask and the masked value occur at two moments in time. At
some point in time, the masks have to be created, and at some point later, they
are applied to some intermediate value. Hence, there are always two points in
time that allow a second-order DPA attack.

As a consequence, it is better to combine a simple and efficient masking scheme
with another countermeasure to achieve resistance against higher-order DPA
attacks. For instance, the execution of the algorithm can be randomized.

2.2 Randomizing the Execution of the Algorithm

Randomizing the execution of the sequence of operations in an algorithm pro-
vides additional resistance against power analysis attacks. The goal of the ran-
domization is to distribute the intermediate cipher operations (and thereby the
intermediate values) over a given period of time. The distribution should neither
be predictable nor be observable by the attacker.

Due to this distribution, the intermediate value that is used in the attack
occurs only with a certain probability at a particular moment in time. Therefore,
the correlation between this intermediate value and the power consumption is
significantly reduced.

For this randomization approach, the insertion of random dummy operations
or wait states has been proposed in the literature. The problem with wait states
is that they can be easily identified and removed by analyzing a single power
trace. When using random dummy operations, the programmer has to take care
that dummy operations can not be distinguished from real operations of the
algorithm.
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We think that there are two efficient ways to introduce randomness in the
execution of an algorithm. Either, one adds additional rounds (or parts of a
round) to the encryption algorithm at the beginning and the end, or one ran-
domly chooses the sequence of operations within the algorithm. The first method
makes it impossible for the attacker to know when the real first round and the
real last round takes place. The latter method provides an additional random-
ization within each round.

The statistical effects of randomization have been studied in [CCDO00] and
[Man04] in detail. Both papers come to the same conclusion. If the probability
that the intermediate value occurs at a certain time is p, then the correlation
coefficient decreases by a factor of p and the number of measurements needed
for a successful attack increases by a factor of p2.

3 A Power Analysis Resistant AES Smart Card
Implementation

In our AES software implementation, we apply a combination of the countermea-
sures that we discussed in Sect. 2l The implementation is optimized for simple
8-bit smart cards. We make the common assumption that a random number
generator is available.

All rounds of our implementation are masked. The first round and the last
round are embedded in so-called randomization zones. Within a randomiza-
tion zone, the sequence of masked AES operations is randomized and repeated
a certain number of times. The number of repetitions in the first randomiza-
tion zone defines the number of repetitions in the second randomization zone.
The total number of repetitions is specified by the designer and is constant
over multiple runs of the algorithm. The overall execution time stays therefore
constant.

In principle, the masking scheme and the randomization scheme are designed
independently from each other. However, we have changed the sequence of Mix-
Columns and Shiftrows in order to facilitate the randomization. In the following
subsections we first describe our masking scheme and afterwards the random-
ization of this scheme.

3.1 Efficiently Masking AES

In our masking scheme we use six different mask bytes. The first two bytes, M
and M’ are the input and output masks for the masked SubBytes operation.
The remaining four bytes M1, M2, M3, and M4 are the input masks of the
MixColumns operation. We take care that all intermediate values stay masked
at all times.

Masking an AES round. At the start of each AES encryption, two pre-
computations take place. First we compute a masked SubBytes table S’ such
that S'(x@®M) = S(z)®M'. Then we pre-compute the output masks for the Mix-
Columns operation (M1', M2', M3', M4") = MixColumns(M1, M2, M3, M4).
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At the beginning of each round, the plaintext is masked with M1’, M2', M3/,
and M4’. Then, the AddRoundKey operation is performed. The round key is also
masked (a detailed description is given in the subsequent section). Therefore, the
masks change from M1', M2', M3' and M4’ to the input mask M of the masked
Subbytes table S’. Then, the table look-up with the table S’ is performed. This
changes the mask to M’. Before MixColumns, we change the mask from M’
to M1 in the first row, to M2 in the second row, to M3 in the third row and
to M4 in the fourth row. At the end of the round, MixColumns is performed
which changes the masks M4 to Mi’. ShiftRows has no influence on the masks.
At the end of the last encryption round, the masks are removed by the final
AddRoundKey operation.

Masking the Key Schedule in Practice. Due to security reasons [Man03)
the key schedule is also masked. In order to reuse the masked SubBytes table
S’, we decided to use the mask bytes M and M’ also during calculation of the
round keys. Furthermore, by applying the mask values M4’ to the round key
bytes, we can save some remasking operations during the encryption round.

In the first step of the key schedule, the original cipherkey is masked. A byte
of a word of the round key is masked with a value Mi’ @ M. Figure [Il shows
the masking scheme for all AES round keys, except for the one of the last round
key. The masking scheme for the last round key is shown in Fig. @ It differs
because we want the last round key to remove the masks in order to obtain the
ciphertext.

3.2 Randomizing the Masked AES

As explained in Sect. 22 there are two efficient possibilities to randomize the
sequence of operations. Either, one adds additional rounds (or parts of a round)
to the encryption algorithm at the beginning and the end, or one randomly
chooses the sequence of operations within the algorithm.

In AES, several operations can be randomized. For instance, the AddRound-
Key operation allows randomization. AddRoundKey adds each byte of the
(masked) plaintext to the corresponding byte of the (masked) round key. The
sequence of the processing can be randomized, because the 16 bytes of the state
are processed independently. The same argument holds for the SubBytes op-
eration. During MixColumns, the sequence of the processing of the columns
can be randomized. Within each column, the processing of the rows can be
randomized.

We also add parts of a round at the beginning and the end of each AES execu-
tion. The so-called dummy rounds work on a dummy state that lies in a different
memory area in the smart card. In order to minimize information leakage about
which state is used, we use base addresses for the dummy state and the real state
that have the same Hamming weight. In Fig. Bl we depict the program flow of
a randomized and masked AES encryption. The two randomization areas are
called Randomization Zone 1 and Randomization Zone 2. Only in these zones,
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the two randomization approaches are applied. In between the two zones, the
implementation of AES is protected by masking only.

Randomization Zone 1. Randomization Zone 1 includes the three transforma-
tions AddRoundKey, SubBytes and MixColumns. Note that the sequence of
ShiftRows and MixColumns is changed. Therefore, we have to change the defi-
nition of one column of the state, see Fig. [

As discussed before, every operation that is included in Randomization Zone 1
allows some randomization. The idea of the randomization that we use is simple.
We choose a block of operations that processes a single column of the AES state,
see Fig. Bl This block of operations needs to be executed four times to process
the complete AES state. We can choose the sequence of the columns randomly.
Within each column, we can also choose the sequence of rows. Hence, in total
there are 4 x4 different ways of processing one AES state. In addition to this inner
randomization we can add a certain number of dummy blocks of instructions,
see Fig. Bl A variable called Max Ops defines the amount of additional blocks
added. If n blocks are added, then there are 1644 x n different ways of computing
Randomization Zone 1.
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Randomization Zone 2. Randomization Zone 2 includes the MixColumns oper-
ation of round nine, two AddRoundKey transformations, and a SubBytes trans-
formation. In this randomized zone, the order of the final key addition and
ShiftRows are changed. To compensate for this change, an InverseShiftRows
transformation is applied to the last round key.

3.3 Performance Analysis

The implementation of countermeasures against power analysis attacks does not
come for free. Additional memory and additional operations are necessary for
masking and randomization. In Tab. [Il we compare the execution time in clock
cycles (cc) of our implementation against several other protected and unpro-
tected AES smart card implementations. We focus on implementations for AVR
and 8051-based 8-bit microcontrollers. Compared are clock cycles for full 128-bit
AES encryptions that include the key schedule. The first part of Tab. Il compares
different unprotected AES implementations and serves as a reference. There is
a notable difference between the amount of clock cycles between the AVR-based
and the 8051-based implementations. Implementations that use masking only

Table 1. Comparison of AES implementations for 8-bit smart card processors

Implementation Type AVR 8051
AES 7498¢c |RO3] 90500cc [AGOI]
4427cc [Ins06]  46860cc [Ins06]
38016cc [DRIS)
masked AES 8420cc 293500cc [AGOT]
masked & randomized AES 11845 + n x 240cc
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are compared in the second part of the table. Our implementation takes around
8420 clock cycles, which is roughly two times slower than the best unmasked im-
plementation. In contrast, the multiplicative masking scheme [AGOQ1], which was
implemented for 8051-based smart cards, requires roughly 7 times more clock
cycles than the best unmasked 8051-based implementation. The third part of the
table shows the performance figure for our masked and randomized implemen-
tation. It takes 11845 clock cycles when no additional blocks are added. This
increases the running time by a factor of 3 compared to the unmasked AVR-
based implementation. When n blocks are added 11845 + n x 240 clock cycles
are needed.

4 Security Analysis

The countermeasures that we have implemented are both well known and sev-
eral papers on their effectiveness have been published. In this section we provide
arguments why a combination of them provides resistance against power analy-
sis attacks. First, we provide a theoretical assessment. Then, we report on the
practical results that we have obtained.

4.1 Theoretical Analysis

We use a combination of masking and randomization to counteract various
types of power analysis attacks. Our implementation is secure against simple
power analysis attacks and template attacks because all intermediate values are
masked. For the same reason, our implementation is secure against (first-order)
DPA attacks. We are also resistant against second-order DPA attacks for the
following reasons. Remember that in our implementation, the execution of AES
starts and ends with a randomization zone. Within that zone, an operation
occurs at a certain position only with probability p = 1/(16 + 4 x n), where
n denotes the number of blocks and is defined by the designer. Consequently,
a second-order DPA attack on operations within the randomization zone will
produce a peak with height reduced by a factor of p = 1/(16 + 4 x n) and
require (16 + 4 x n)? more measurements than a standard second-order DPA
attack. Consequently, n can be chosen such that an attack gets impractical.
A second-order DPA attack outside the randomization zone requires either to
predict two intermediate value that occurs after the MixColumns operation,
or to predict one value that occurs after MixColumns and one that is in the
randomization zone. Any intermediate value that occurs after MixColumns de-
pends on 32 bits of the round key. Consequently, in order to make a second-
order DPA attack on two bytes after MixColumns, the attacker has to guess
at least 32 bits of the round key. This leads to a huge number guesses that
need to be tested; we consider this to be impractical. For an attack on one
value after MixColumns and one value in the randomization zone, the attacker
needs to guess 32 bits of the key and needs (16 + 4 x n)? times more traces
than in a standard second-order DPA attack. We consider this to be impractical
as well.
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4.2 Practical Analysis

We have applied first-order and second-order DPA attacks to a practical im-
plementation of our secured AES. No first-order DPA attack has succeeded. In
this section we report on one of the second-order DPA attacks that we have
used to verify the theoretical estimates for the increase of the number of sam-
ples for a second-order DPA attack. Therefore, we have limited the amount of
randomness that we introduce in the randomization zones to a factor of 4: no
additional rounds are executed and there is no randomization of columns, only
of rows.

Figure [0l shows the power consumption that we have acquired during the
calculation of such an AES encryption. Each point in the trace represents one
clock cycle. In the trace, several steps of the computation can be located. Between
clock cycle 1000 and 3800 the pre-processing of the masked SubBytes table takes
place. This calculation is followed by the masked key scheduling part of the
algorithm which lasts approximately until clock cycle number 4900. Thereafter,
until clock cycle 6100, Randomization Zone 1 is processed. We zoom into this
part of the trace in Fig.[ll One can locate the four inner loops that correspond to
the processing of the four columns. The first column is processed between clock
cycle 5000 and 5200. Therefore, we have attacked this part of the trace with a
second-order DPA attack.

Our attacked followed the scenario that has been described in Sect. 3.3 of
[OMHTO6]. In this scenario, one attacks two SubByte outputs. In [OMHTO6],
a theoretical estimate for the height of the correlation coefficient was given.
The reported correlation coefficient was 0.24. This value can only be achieved
under the assumption that the device leaks the Hamming weight of the pro-
cessed data. Our smart card does not leak the Hamming weight. It leaks the
Hamming distance of the data and the value that was manipulated before. Typ-
ically, the attacker does not know that value. Hence, the maximum correla-
tion coefficient for our device is lower. We have assessed this height based on
another unprotected AES implementation on the same device. It turned out,
that the height is 0.7. We use this factor to scale the correlation coefficient
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that was reported in [OMHTO6]; the expected height of a second-order DPA
on our implementation is therefore 0.24 x 0.7 = 0.168. In the experiment that
we performed, where only one column is randomized and no additional blocks
are added, we expect a further decrease of the height by a factor of 4. Conse-
quently, we expected to produce a peak of height 0.04 in a second-order DPA
attack on the randomized AES. Figure [8 shows the result of the attack. It
can be seen that for one of the segments ( see [OMHTO06] for a detailed ex-
planation of the attack and the notation) we indeed produce a peak with a
height that is roughly 0.04 for the correct key guess. Figure @ shows the run
of the correlation coefficient for an increasing number of samples. In both fig-
ures, the graphs for the incorrect key guesses are plotted in gray color and the
graph for the correct key guess is plotted in black color. The results of this
experiments confirm the theoretical estimates that we took from [CCDO00] and
[Man04].

5 Conclusion

In this article we have described an AES software implementation that is suited
for 8-bit smart cards and that is resistant against power analysis attacks. Our
implementation masks the intermediate results and introduces randomization at
the beginning and the end of the execution. It is secure against simple power
analysis attacks, template attacks and first-order DPA attacks because of mask-
ing. Due to the combination of masking and randomization, it is resistant against
higher-order DPA attacks. Resistance means that a large amount of measure-
ments has to be acquired for a successful attack. Our implementation compares
well with other protected and unprotected AES software implementations for
smart cards. The practical attacks that we have performed support our theoret-
ical estimates about the security of the countermeasures.
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