
Data Translation Between Taxonomies

Sérgio Luis Sardi Mergen and Carlos Alberto Heuser

Universidade Federal do Rio Grande do Sul, Av. Bento Gonalves,
9500 Porto Alegre - RS - Brasil
{mergen, heuser}@inf.ufrgs.br

Abstract. The task of translating data from one schema into another
is usually performed with the help of information stating how the ele-
ments between two schemas correspond. Translation mechanisms can use
this information in order to identify how instances of a source schema
must be translated. We claim that a uniform matching approach, where
instances of a source classes are always translated into the same target
classes, may not represent the reality, specially when the schemas in-
volved describe taxonomies. In this paper we demonstrate taxonomies
that support our idea, and propose the usage of a conditional matching
approach to improve the accuracy of taxonomical instances translation.

1 Introduction

Data translation plays a fundamental role in the information integration area.
It is up to a data translation process the task of converting data from its native
storage representation into another representation.

There are several applications where data translation mechanisms represent
a crucial task. In a mediated system[18, 3], when a user submits a query, a
usual approach would be to translate the results coming from the sources into
a format expected by the user. When migrating databases from an old version
to a new version, a commonly faced challenge involves data translation, where
the arising question is how to covert data stored in the old schema into the new
schema, specially when dealing with heterogeneous schemas, or even worse, when
the schemas are represented in different models. Even in data warehouses, the
incoming data must be processed in some way before storage; e.g. data may be
filtered, and relations may be joined or aggregated. As the data is copied from
the sources, it may need to be transformed in certain ways to make all data
conform to the schema at the data warehouse.

Independently of the underlying mechanism that performs the data trans-
lation, this processing relies on a general idea that is to identify the matches
between the schemas and apply transformation rules to translate instances of
the source into instances of the target[14, 1, 4, 5] . Figure 1(a) illustrates an ab-
stract example where two schemas are matched. The schemas are represented as
classes with properties. The match is represented by the bold line, which indi-
cates that instances of Person in the source should be translated into instances
of Student in the target.

E. Dubois and K. Pohl (Eds.): CAiSE 2006, LNCS 4001, pp. 111–124, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

112 S.L.S. Mergen and C.A. Heuser

(a) Non-taxonomical example (b) Taxonomical example

Fig. 1. Matching examples

At this time, there is no fully automatic semantic integration approach[10],
which means the user is still responsible for identifying the matches and creating
the translation rules. Nevertheless, this often laborious task can be aided with the
help of schema matching techniques that suggest to the user the most probable
ways to do the matching, and possibly, which transformations to apply on the
instances.

However, when it comes to translate data between two taxonomies, there is a
gap that neither schema matching techniques nor data translation mechanisms
seem to support. Take for instance the taxonomies depicted in figure 1(b). The
target schema presents the academic staff in a taxonomical model, where classes
are described in terms of specialization and generalization of other classes. In the
source schema, the Person class is used to store both Students and Professors
instances, undiscriminatingly. Observing the schema level alone it is not clear if
an instance of Person in the source is in fact a student or a professor.

On the other hand, the instance level may provide some relevant cues on
how to translate the instances. For instance, the studiesAt and title proper-
ties of the person class are disjoint by nature. Thus, it is expected that every
instance of Person contains at most one of these two properties. Taking this
reasoning one step further, we conclude that the presence (or absence) of some
particular property in an instance may be strong indicators of that instance
semantics.

Based on this reasoning, we present an approach to the translation of ta-
xonomies, based on the adoption of a simple mechanism, that we call translation
script. A translation script is generated based on pre-computed matches between
the schemas.

A translation script is composed of alternative matches for every source class.
Each alternative match is associated to a condition that indicates whether the
match can be used in the translation of a particular instance or not. During
translation, the script can be used to guide the translation process by determin-
ing which of the alternative matches should be used when translating a specific
instance.

Our contribution is twofold. Firstly, the translation script is a novel method
for data translation, that is specifically useful for translating data between ta-
xonomies. Secondly, we demonstrate that the generation of this translation script
is straightforward, once it simply requires that pre-computed matches between
the schemas involved in the translation are provided.

Data Translation Between Taxonomies 113

The rest of the paper is organized as follows: In section 2 we show approaches
related to the issue of matching taxonomies along with existing mechanisms
used for data translation. Section 3 presents motivating examples that illustrate
how alternative matches can be used to improve the translation accuracy. In
section 4 we define a translation script and describe the algorithm used to gener-
ate a translation script based on pre-computed matches. Section 5 demonstrates
a case study where we suggest the use of a translation script on real world on-
tologies. Section 6 briefly describes a different approach that is also based on a
translation script to perform data translation. Final conclusions are presented
in section 7.

2 Related Work

When studying translation of taxonomical data, related work can be classified
in two groups: Schema matching approaches and data translation approaches.

In general, matching taxonomies can be seen as a broader problem, which
is the matching of ontologies. Most of the integrated approaches for ontology
matching are based on the idea of combining different strategies and measures
of similarity. In the vast literature on ontology matching, we have found several
strategies to match taxonomies[6, 11, 12, 15, 9], but none of them seems to worry
about the existence of alterative matches to a source class(concept).

The S-Match system [9] takes the process of matching taxonomies one step fur-
ther by allowing matches with semantic operators other than equivalence. Given
two concepts, the algorithm assigns a semantic relation that can be of equiva-
lence (=), generalization(�),specialization(�), mismatch(⊥), or overlap(�). The
matches are computed by selecting the strongest semantic relation discovered
by the algorithm between two ontology concepts. This kind of matching bet-
ter describes the semantic of the correspondences between taxonomies, but still
presents the drawback of allowing one single match per concept.

In [13] the authors also use several semantic operators when matching
schemas. However, they claim that sometimes it is not possible to identify a
single match between each pair of concepts of two schemas. They present an
approach for schema integration that allows alternative matches for each pair of
concepts, where a match is given a level of belief. The matches, referred to as un-
certain matches, are computed in the schema matching process and propagated
to a schema merging process that is responsible for generating an integrated
schema. Similar work is presented in [8], with the limitation that matches can
only be done through the equivalence operator. The usage of uncertain matches
resembles the usage of the alternative matches suggested in our work, in a sense
that both kind of matches are used to dynamically resolve semantic matching
problems. However, uncertain matches are applicable for semantic reconciliation
of schemas, while our approach is applicable for data translation.

The usage of uncertainty is also present in [17], only this time the uncertainty
lies on the data level, instead of the schema level. Their approach, based on

114 S.L.S. Mergen and C.A. Heuser

the probability theory, allows the user to query for uncertain data in a data
integration environment.

As for data translation approaches, most of them [14, 1, 4, 5] rely on the usage of
matching rules to perform data translation. Despite some small variations among
the approaches, they all share the same idea on what the matching rules should ex-
press, which are the matches between the schemas, and the transformations that
must be performed when translating the instances. The instances can be trans-
formed either by value modification or by schema restructuring. In [2] the authors
introduce a middleware data model that supports the declaration of correspon-
dences between two different representations (schemas). They also describe some
practical cases where the correspondences are automatically turned into transla-
tion rules. One of the benefits of their approach is that the specification of corre-
spondences can be used to perform translation of data in both directions.

For the best of our knowledge, none of the translation approaches consider
the usage of alternative matches, where a match to a given source class may
vary during translation. As far as we know, the existing approaches can use the
absence of properties inside a given instance only to indicate that the instance
should not be translated. Using the presence/absence of properties values of a
source instance to decide whether one given class or another should be selected
as the target is an entirely new idea.

We claim that our approach to data translation could be incorporated in data
translation mechanisms, as a way to dynamically select one of the alternative
matches, based on the presence or absence of property values in a given instance.

3 Running Examples of Taxonomy Translation

In order to perform data translation, it is necessary to understand how the
source and target schema correspond to each other. Based on this understanding,
generally expressed in the form of matchings, it is possible to translate instances
of the source schema into instances of the target schema. In this context, we
argue that the usage of a uniform matching - where one single match suffices for
translating every instance of a source class - is questionable, specially when the
schemas describe taxonomies. In such cases, the translation of the instances can
vary, according to the values actually being translated.

Next, we show cases where the translation of taxonomical instances may result
in an erroneous classification if the translation uses a uniform mapping strategy
instead of a flexible one. We also demonstrate how the translation can be seman-
tically improved if the idea of a translation script is used to guide the translation
process.

To start, consider the academic staff taxonomies presented in figure 2. Con-
sider a taxonomy-aware matcher able to realize that Γ2.T enured is a better
match to Γ1.P rofessor, instead of its polysemous Γ2.P rofessor. Additionally,
the matcher was able to find the properties correspondences, where nationality
matches nationality, institutionmatches lecturesAt and tenuredSincematches
isT enuredSince.

Data Translation Between Taxonomies 115

This match solves the problem of translating the instances of professors in Γ1

without information losses - since all properties of the source are translated -
but it does not guarantee there will not be semantic losses. Suppose that some
professors stored in Γ1 are tenured, while others are not. During translation,
if the match between Γ1.P rofessor and Γ2.T enured is used, every instance of
professor in Γ1 ends up translated into instances of Γ2.T enured.

Fig. 2. Academic staff taxonomies Fig. 3. Bank account taxonomies

However, this is not the expected classification, given that not every professor
is tenured. One way to differentiate professors from tenured professors in Γ2 is
that professors lack the definition of properties that are exclusive to tenured
professors, such as the property isT enuredSince.

In this context, we propose a solution that does not hardwire a match to a
specific source class, but allows a range of alternative matches. During instance
translation, it is possible to choose one among several alternative matches, by
using some inference mechanism that analyzes the presence or absence of proper-
ties values in the instance being translated. For the example above, a Professor
instance in Γ1 is translated into a Tenured instance in Γ2, when the property
tenuredSince has a value assigned to it, and is translated into a Professor
instance in Γ2 otherwise. Note that the best that traditional translation mecha-
nisms could do in this case is to invalidate the translation if some of the properties
are missing.

We could go even further and say that a professor is a visitor, if we knew that
all Γ2 visitors come from abroad. This kind of information can be embedded in
the schema itself, in the form of constraints, if the taxonomy supports this kind
of constraint. Another way to obtain additional knowledge from the taxonomies
is by discovering data patterns in some sample instances. A data pattern could
state the fact that every visitor is actually a professor whose country of origin is
different from the country in which the university is located.

Despite the presumable benefits from using existing or computed constraints
to improve data translation, this kind of analysis is out of the scope of this paper.
Our commitment is on demonstrating that the semantics of the translation can
be improved by using an approach that is less sophisticated, but still effective,
based solely on the presence/absence of property values in the instances.

Figure 3 shows another example where the presence/absence of property val-
ues can eliminate translation ambiguity. In this case the taxonomies describe

116 S.L.S. Mergen and C.A. Heuser

bank accounts. Notice that the computation of a match for the Account class in
Γ3 is even more dubious that the prior example, since the properties declared in
the Account class in Γ3 are split across the classes in Γ4.

Again, exploiting the presence of properties values inside bank account in-
stances could improve the quality of the translation, whereas a traditional trans-
lation approach would fail. For instance, an account in Γ3 with no value for
interestRate and borrowingLimit fits the description of an Account in Γ4.

Moreover, accounts in Γ3 with all properties defined but borrowingLimit could
be translated into a SavingsAccount in Γ4. Likewise, accounts in Γ3 with all prop-
erties defined but interestRate could be translated into a CurrentAccount in Γ4.

4 The Translation Script Approach

In this section we present the definition of a translation script, along with exam-
ples that demonstrate how a translation script can be used during the translation
of taxonomies. We start this section with the definition of a taxonomy.

Definition 1 (Taxonomy). Let Γ =< C,P, Prop(ci), sup(ci) > be a taxon-
omy, where C is a set of classes {ci} and P is a set of properties {pi}.

Further, let Prop(ci) be a function that returns the set of properties of ci. Ad-
ditionally, let sup(ci) be a function that returns the immediate super-class of ci.

Having defined this, we have that iff ci = sup(cj), then Prop(ci) ⊆ Prop(cj).

A taxonomy is represented as a hierarchy of classes, where each class contains
a set of properties. A class shares its properties with each of its sub-classes.
For our purposes, it suffices to define properties merely as being part of a class.
Additional constraints of a class/property composition, such as the cardinality,
are not defined since they are not exploited by our translation mechanism.

For the rest of the paper, we use Γs to refer to a source taxonomy, while Γt

is used to denote a target taxonomy.
The translation script is generated based on an input matching that describes

how classes of a source taxonomy correspond to classes of a target taxonomy.
The computation of an input matching is out of the scope of this paper, but there
are several approaches in the literature that handle class to class matching, as
described in section 2. We define the input matching as follows:

Definition 2 (Input Matching). The input matching M is a set of matches
{mi}. Let mi be a tuple <cs, ct, Ψ>, where:

- cs ∈ Cs, having Cs ∈ Γs,
- ct ∈ Ct, having Ct ∈ Γt,
- Ψ is a set of property matchings ψ =<ps, pt>, where ps ∈ Prop(cs) and

pt ∈ Prop(ct). Further, if ∃ ψi =<psi, pti> ∈ Ψ , than 	 ∃ ψj =<psj, ptj> ∈ Ψ ,
such that ψi 	= ψj and (psi = psj or pti = ptj).

A match is composed by a source class, a target class and a set of correspondences
between the classes’ properties. Within a single class to class match, only one-to-
one property matches are allowed. This restriction is, in fact, an expression of the

Data Translation Between Taxonomies 117

local one-to-one match cardinality restriction[16], that prevents the occurrence of
matches where there is no direct correspondence between elements of the source
and target.

This kind of match, also referred to as indirect match[7], occurs, for instance
when a source property is actually a composition of two target properties (eg.
name in the source and a concatenation of firstName and lastName in the
target). Our translation script generation approach currently does not accept
indirect matches as part of the input matching. The inability to handle such
sort of match is a limitation that we expect to overcome in the near future.

The listing below shows an input matching used to match the taxonomies
described in figure 2. Observe that the input matching is valid according to
definition 2.

m1 = {Γ1.P erson, Γ2.Employee, [(nationality, nationality)]}
m2 = {Γ1.P rofessor, Γ2.T enured, [(nationality, nationality),

(institution, lecturesAt), (tenuredSince, isT enuredSince)]}

Listing 1.1. Input matching for the taxonomies of figure 2

The definition 3 describes a translation script. Notice that a translation script
is actually an extension of the input matching, where we have κ to express the
condition that must be satisfied so that one particular match can be considered
valid. A condition is expressed as a set of properties, where all properties belong
to the source class. Since the matches are associated to a condition, they are
referred to as conditional matches.

Definition 3 (Translation Script). A translation script M ′ is a list of condi-
tional matches [m′

1,m
′
2, ...,m

′
n], where m′

l is a tuple on the form m′
l =<m,κ>,

having κ as a set of properties {pi}, such that pi ⊆ Prop(m.cs) and ∃ <pi, pj>∈
m.Ψ .

When translating instances, a conditional match can be interpreted as follows:
if at least one of the properties within the match κ condition is present (has a
value) in an instance, then the κ condition is satisfied, and the match can be
used in the translation.

Inside a translation script, the conditional matches that refer to the same
source class must be ordered according to definition 4. The matches are sorted
with respect to the target class, and go from the more subsumed target class,
as the first element, to the less subsumed target class, as the last element. The
relation of subsumption between two classes is directly related to the hierarchical
relation between the classes. The deeper a target class is in the hierarchy, the
higher will be its sorting position.

Definition 4 (Property Presence Sorting). Having m′
i =<ml, κi> ∈ M ′

and m′
j =<mn, κj> ∈ M ′, and having ml.cs = mn.cs, then i < j if ml.ct is a

subsumption of mn.ct.

118 S.L.S. Mergen and C.A. Heuser

Furthermore, the conditional matches that refer to the same source class have
mutually exclusive κ conditions, as determined in definition 5. It is important
that both definitions 4 and 5 are respected so the execution of the translation
script may succeed.

Definition 5 (Mutually Exclusive Conditions). Having m′
i =<ml, κi> ∈

M ′ and m′
j =<mn, κj> ∈M ′, and having ml.cs = mn.cs, then κi ∩ κj = �.

In listing 1.2 we show an example of a translation script that is based on part of
the input matching presented in listing 1.1. The translation script is composed
by some conditional matches that can be used for translating instances of the
source class Γ1.P rofessor. For clarity reasons, we omit the value of Ψ , whose
content is [(tenuredSince, isTenuredSince), (lecturesAt, lecturesAt), (nationality,
nationality)].

m′
1 = {{Γ1.P rofessor, Γ2.T enured, Ψ}, [tenuredSince]}

m′
2 = {{Γ1.P rofessor, Γ2.P rofessor, Ψ}, [lecturesAt]}

m′
3 = {{Γ1.P rofessor, Γ2.Employee, Ψ}, []}

Listing 1.2. Translation script for instances of Γ1.P rofessor

On the data translation phase, the decision on how to translate an instance
can be performed using a rather simple approach. The algorithm starts from the
first conditional match to the last and chooses the first match whose κ condition
is satisfied.

For instance, the κ conditions expressed in the translation script of listing
1.2 can be used to decide whether a professor in Γ1 should turn into a tenured
professor, a regular professor or an employee in Γ2. If the source instance has
a value for the property tenuredSince, then this instance is translated into a
Γ2.T enured instance. Otherwise, if the property lecturesAt has a value, than this
instance is translated into a Γ2.P rofessor instance. If the previous alternatives
fail, the instance is translated into a Γ2.Employee instance, instead.

Note that the matches agree with definitions 4 and 5. If that was not the case,
the processing of the translation script could lead to a misplaced translation,
given situations where more than one κ condition can be satisfied regarding a
given instance. As an example, if the matches position of listing 1.2 were inverted,
tenured professors would be translated into a Γ2.Employee instance.

4.1 Translation Script Generation

In this section we present an algorithm that generates conditional matches based
on an input matching. Recall that a translation script is actually the list of
conditional matches derived from the matches used as input. This algorithm can
be used, for instance, to transform the match for the source class Γ1.P rofessor
specified in listing 1.1 into the translation script presented in listing 1.2.

The algorithm responsible for generating the translation script processes each
original match at a time (processMatches()). To every original match, the

Data Translation Between Taxonomies 119

processMatches()
for mi ∈M do

conditionBuilder(mi.cs, mi.ct, mi.ct, mi.Ψ)
end for

conditionBuilder(cs, ct, cχ, Ψ)

c′χ ← sup(cχ)
if c′χ �= NULL and |MatchedProp(ct)| > 0 then

κ←MatchedProp(cχ)−MatchedProp(c′χ)
if |κ| > 0 then

createMatch(cs, ct, Ψ, κ)
conditionBuilder(cs, c

′
χ, c′χ, Ψ)

else
conditionBuilder(cs, ct, c

′
χ, Ψ)

end if
end if
createMatch(cs, ct, Ψ, ∅)

Algorithm 4.1. Translation script generation algorithm

recursive algorithm conditionBuilder() is called. As a result of this processing,
each original match (m = {cs, ct, Ψ}) generates at least one conditional match
in the output. More details about the algorithm conditionBuilder() are given
below:

The first and the second parameters represent respectively the source (cs) and
the target class (ct) of the original match. The third parameter initially repre-
sents the target class (ct), but its value is changed throughout the execution of
the recursive calls. This parameter is used to help in identifying the properties
of a condition. The fourth parameter is the set of property matches of the source
and target class(Ψ). This parameter remains constant throughout the execution
of the recursive calls. The function MatchedProp(c) returns all properties of the
class c that were matched (are part of Ψ). Observe that the generation of the con-
ditional matches are represented by symbolic calls to the createMatch function.

Given a target class, two kinds of conditional matches can be generated:

Match with an empty condition. A conditional match with an empty κ
condition is generated when the target class has no properties, or when
it has the same properties as its root class in the taxonomy.

Match with a non empty condition. If the target class has more properties
than its top-most parent, a conditional match is generated, where the κ
condition is the difference of the properties between the target class and
its closest predecessor that has fewer properties. Afterward, the processing
starts over using this predecessor as the target class.

The algorithm finishes when the target class is one of the taxonomy roots.
The algorithm assures that at least one conditional match is generated for every
original match, which will be the match between the source and target class of
the original match itself.

120 S.L.S. Mergen and C.A. Heuser

All target classes of the generated conditional matches belong to the same
branch of the target class of the original match (they are super-classes of the
original target class). The match derivation process is performed by climbing
the nodes from the target class of the original match until a root is found. Since
the algorithm assumes each target class has at most one direct parent, there is
currently no support for taxonomies with multiple inheritance.

The set of property matches of a conditional match is equal to the set of
property matches of the original match. If the source class of an original match
has unmatched properties, such properties are not included in the derived con-
ditional matches. During translation, these properties are ignored.

When more than one conditional match is generated for the same source class,
the matches are sorted according to definition 4, except from one special case,
when the input matching contains more than one match for the same source
class. Take for instance, the listing below, that shows an input match for the
taxonomies of figure 3. For clarity reasons, we omit the property matches, whose
content is Ψα = [(balance, balance), (interestRate, interestRate)], for m1, and Ψβ

= [(balance, balance), (borrowingLimit, borrowingLimit)], for m2. Notice that
the input match presents two matches to the source class Account.

m1 = {Γ3.Account, Γ4.SavingsAccount, Ψα}
m2 = {Γ3.Account, Γ4.CurrentAccount, Ψβ}

Listing 1.3. Input matching for the source class Γ3.Account

When applying the algorithm to this input matching, we obtain the transla-
tion script showed in listing 1.4. Notice that two conditional matches (m′

2 and
m′

4) match with the same target class (Γ4.Account).

m′
1 = {{Γ3.Account, Γ4.SavingsAccount, Ψα}, [interestRate]}

m′
2 = {{Γ3.Account, Γ4.Account, [(balance, balance)]}, []}

m′
3 = {{Γ3.Account, Γ4.CurrentAccount, Ψβ}, [borrowingLimit]}

m′
4 = {{Γ3.Account, Γ4.Account, [(balance, balance)]}, []}

Listing 1.4. Translation script for instances of Γ3.Account

For this kind of situation, it is necessary to remove redundant matches. In
order to preserve the correct match ordering, it suffices to remove all redundant
matches whose position within the translation script is higher. In the case of
listing 1.4, it would mean to remove the m′

2 conditional match.
An interesting remark about this translation script comes from using it to

perform data translation between taxonomies whose instances are inconsistent
with respect to each other. For instance, account instances in Γ3 with all prop-
erties defined are not consistent with respect to Γ4, since in the latter taxonomy
the properties interestRate and borrowingLimit are disjoint. In this case both
conditional matches m′

1 and m′
3 are valid. Since there is no deterministic way

Data Translation Between Taxonomies 121

Fig. 4. Ontologies of a research community domain

of sorting these two matches (at least not by our sorting strategy), the instance
are always translated into the valid match that is processed first, which is the
Γ4.SavingsAccount for the case in question.

5 Case Study

During the explanation of our proposal, we have presented some examples in
which conditional matches can be use to improve translation accuracy. In this
section, we demonstrate how a translation script behaves when dealing with a
translation situation where it is not clear how the instances of a source taxonomy
should be translated.

This case study was held using parts of real ontologies we have extracted
from the Web. The source ontology(Γs) and the target ontology (Γt) model a re-
search community, including persons, organizations, and bibliographic metadata.
Figure 4 describes the part of the ontologies that were actually used in the ex-
periment. This part represents a taxonomical description of academic people.

Since the ontologies were modelled independently from each other, there is
no common agreement on how the classes should match. Given this, we have
conducted an exercise with the purpose of establishing a common sense on
this subject. In this exercise we asked a group of students from a database re-
search community to identify which classes of the source ontology correspond to
which classes of the target ontology. We also asked them to identify the property
matches inside each class to class match.

An interesting remark about this exercise is the divergence on the matching
of Γs.PG. A significant amount of students (43%) relied more heavily on the
semantics of the class names to deduce that Γs.PG matches Γt.Gradute. The
intuition behind the term ”graduate” tells that it is a word used to designate
students that are beyond the bachelors degree, which is indeed the case of a PG
(Post-Graduate) student.

The most significant amount of students (53%) gave more attention to the
classes properties to deduce the matches. The students observed that some of the
properties of Γs.PG(hasSupervisor, inProject) are similar to some properties of

122 S.L.S. Mergen and C.A. Heuser

Γs.PhdStudent(supervisor, worksAtProject). This led them to the conclusion
that Γs.PG should match Γt.phdStudent.

One of the conclusions of this exercise was that the instance matching can be
a rather subjective task. In the case of Γs.PG there were two potential ways to
translate instances of the source class PG. Given this subjectivity, the translation
script approach can be used as an attempt to satisfy both groups.

Before building a translation script for the Γs.PG class, we need to stipulate
an input match for this class. The input match was not computed by a matcher,
though. Instead, we took the most frequent answer of the exercise as the correct
match. Additionally, we relied on the students opinion to stipulate the following
property matches Ψ : [(hasEmail, email), (hasName, name), (studiesAt, stud-
iesAt), (inProject, worksAtProject), (hasSupervisor, supervisor)]. Listing 1.5
shows the resulting input matching.

m1 = {Γs.PG, Γt.PhdStudent, Ψ}

Listing 1.5. Input matching for source class Γs.PG

Given this input match, our translation script generation algorithm produces
the following output:

m′
1 = {{Γs.PG, Γt.PhdStudent, Ψ}, [inProject, hasSupervisor]}

m′
2 = {{Γs.PG, Γt.Graduate, Ψ}, [studiesAt]}

m′
3 = {{Γs.PG, Γt.P erson, Ψ}, []}

Listing 1.6. Translation script for instances of Γs.PG

Using this translation script, we have three translation possibilities: i) if the
properties Γs.PG.hasSupervisor or Γs.PG.inProject have a value, the instance
is translated into Γt.PhDStudent; ii) if the property Γs.PG.studiesAt has a
value, the instance is translated into Γt.Graduate; iii) the instance is translated
into Γt.P erson otherwise.

6 Alternative for the Translation Script

We have devised two alternatives when using conditions for the translation of
taxonomical data. So far we have presented the alternative that verifies whether
at least one condition property is present in an instance. The second alternative
does the opposite, and verifies whether all condition properties are absent. In this
case, a match is considered valid only if all its condition properties are absent
in a given instance. The listing below shows an example of how the translation
script would look like, if the conditions expressed the absence of properties. This
translation script regards conditional matches for the source class Γ1.P rofessor,
from figure 2.

Data Translation Between Taxonomies 123

m′
1 = {{Γ1.P rofessor, Γ2.Employee, Ψ}, [lecturesAt, tenuredSince]}

m′
2 = {{Γ1.P rofessor, Γ2.P rofessor, Ψ}, [tenuredSince]}

m′
3 = {{Γ1.P rofessor, Γ2.T enured, Ψ}, []}

Listing 1.7. Translation script for instances of Γ1.P rofessor

Again, during the translation phase, the matches must be analyzed in the
correct order to prevent the wrong match from being chosen. As opposed to
the approach where a condition tests the properties presence, in this alternative
the matches are ordered from the less subsumed target class to the more sub-
sumed target class, as indicated by definition 6.

Definition 6 (Property Absence Sorting). Having m′
i =<ml, κi> ∈ M ′

and m′
j =<mn, κj> ∈ M ′, and having ml.cs = mn.cs, then j < i if ml.ct is

subsumed by mn.ct.

We believe that testing conditions as property presence is faster than testing
the opposite. Our conviction is based on the fact that taxonomy instances are
expected to have all its properties (or the majority of them) defined. Hence,
testing if all properties of a condition are absent may take longer than testing if
at least one property of a condition is present.

7 Conclusions

In this paper we address the problem of translating instances between taxonom-
ies. Our approach encompasses a rule-base translation mechanism, that analyzes
the presence of properties in the instances to identify the best translation.

Unlike most translations mechanisms, we are not concerned on designing a
complete architecture that supports a broad range of translation needs, such as
the specification of the transformation rules that must be applied when trans-
lating the instances. Instead, we focus our efforts on a simple rule specification,
called translation script, that was conceived as a solution for the translating of
taxonomical instances.

Since taxonomical instances are becoming increasingly popular with the ad-
vent of ontology models, we claim that the general idea hereby presented could be
incorporated into more general/complete translation mechanisms, so the over-
all translation accuracy could be improved when the schemas involved in the
translation describe taxonomies.

As future work, we intend to improve our translation mechanism in order to
support indirect matches and taxonomies with multiple inheritance. Addition-
ally, we intend to further explore the heuristic that perform data translation
based on the absence of properties, and provide a comprehensive comparison
between this heuristic and the one based on the presence of properties.

Acknowledgements. This paper was partially supported by projects
FAPERGS PRONEX - 0408933, PETROGRAPHER - 360707 and CAPES.

124 S.L.S. Mergen and C.A. Heuser

References

1. Serge Abiteboul, Sophie Cluet, and Tova Milo. Correspondence and translation
for heterogeneous data. In Proceedings of the 6th International Conference on
Database Theory, Delphi, Greece, 1997. Springer, Berlin.

2. Serge Abiteboul, Sophie Cluet, and Tova Milo. Correspondence and translation for
heterogeneous data. Theor. Comput. Sci., 275(1-2):179–213, 2002.

3. Michael Boyd, Sasivimol Kittivoravitkul, Charalambos Lazanitis, Peter McBrien,
and Nikos Rizopoulos. Automed: A bav data integration system for heterogeneous
data sources. In CAiSE, pages 82–97, 2004.

4. Chen-Chuan K. Chang and Héctor Garćıa-Molina. Conjunctive constraint mapping
for data translation. In Proceedings of the Third ACM International Conference
on Digital Libraries, Pittsburgh, Pa., 1998. ACM Press, New York.

5. Sophie Cluet, Claude Delobel, Jérôme Siméon, and Katarzyna Smaga. Your me-
diators need data conversion! pages 177–188, 1998.

6. M. Ehrig and Y. Sure. Ontology mapping - an integrated approach.
7. David W. Embley, Li Xu, and Yihong Ding. Automatic direct and indirect schema

mapping: experiences and lessons learned. SIGMOD Rec., 33(4):14–19, 2004.
8. Avigdor Gal, Ateret Anaby-Tavor, Alberto Trombetta, and Danilo Montesi. A

framework for modeling and evaluating automatic semantic reconciliation. The
VLDB Journal, 14(1):50–67, 2005.

9. Fausto Giunchiglia, Pavel Shvaiko, and Mikalai Yatskevich. S-match: an algo-
rithm and an implementation of semantic matching. In Y. Kalfoglou, M. Schor-
lemmer, A. Sheth, S. Staab, and M. Uschold, editors, Semantic Interoperability
and Integration, number 04391 in Dagstuhl Seminar Proceedings, Dagstuhl, Ger-
many, 2005. Internationales Begegnungs- und Forschungszentrum (IBFI), Schloss
Dagstuhl, Germany.

10. Sandra Heiler. Semantic interoperability. ACM Comput. Surv., 27(2):271–273,
1995.

11. Y. Kalfoglou and M. Schorlemmer. If-map: An ontology-mapping method based
on information-flow theory, 2003.

12. Alexander Maedche, Boris Motik, Nuno Silva, and Raphael Volz. Mafra - a mapping
framework for distributed ontologies. In EKAW ’02: Proceedings of the 13th Interna-
tional Conference on Knowledge Engineering and Knowledge Management. Ontolo-
gies and the Semantic Web, pages 235–250, London, UK, 2002. Springer-Verlag.

13. M. Magnani, N. Rizopoulos, P.J. McBrien, and D. Montesi. Schema integration
based on uncertain semantic mappings. In ER’05, LNCS, pages XX–XX. Springer,
2005.

14. Yannis Papakonstantinou, Héctor Garćıa-Molina, and Jeffrey Ullman. Medmaker:
A mediation system based on declarative specifications. In Proceedings of the 12th
International Conference on Data Engineering, New Orleans, La., 1996.

15. Sushama Prasad, Yun Peng, and Tim Finin. A Tool For Mapping Between Two
Ontologies Using Explicit Information. In AAMAS 2002 Workshop on Ontologies
and Agent Systems, Bologna, Italy, July 2002.

16. Erhard Rahm and Philip A. Bernstein. A survey of approaches to automatic schema
matching. VLDB Journal: Very Large Data Bases, 10(4):334–350, ???? 2001.

17. Maurice van Keulen, Ander de Keijzer, and Wouter Alink. A probabilistic xml
approach to data integration. In ICDE, pages 459–470, 2005.

18. Gio Wiederhold. Mediators in the architecture of future information systems. In
Michael N. Huhns and Munindar P. Singh, editors, Readings in Agents, pages
185–196. Morgan Kaufmann, San Francisco, CA, USA, 1997.

	Introduction
	Related Work
	Running Examples of Taxonomy Translation
	The Translation Script Approach
	Translation Script Generation

	Case Study
	Alternative for the Translation Script
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

