
Configuration Management
in a Method Engineering Context

Motoshi Saeki

Dept. of Computer Science, Tokyo Institute of Technology,
Ookayama 2-12-1, Meguro-ku, Tokyo 152, Japan

Tel.: +81-3-5734-2192; Fax: +81-3-5734-2917
saeki@se.cs.titech.ac.jp

Abstract. Method Engineering is the discipline for exploring techniques
to build project-specific methods for information system development
and Computer Aided Method Engineering (CAME) is a kind of comput-
erized tool for supporting the processes to build them. In such method
engineering environments, version control and change management for
both model descriptions and method descriptions should be seamlessly
combined. In addition, when the method being used is changed during a
project, we should check whether the current version of a model is still
consistent with the newer version of the adopted method. This paper
proposes a technique to solve the issues on version control and change
management in method engineering processes.

1 Introduction

Development methods for information systems (methods hereafter) and their
supporting tools are one of the most significant key factors to success in de-
velopment projects. To enhance the effect of methods used in a development
project, we need to adapt them or build new ones so that they can fit the project.
Method Engineering is the discipline for exploring techniques to build project-
specific methods for information system development, called situational
methods. Computer Aided Method Engineering (CAME) is a kind of computer-
ized tools for supporting the processes to build them [6].

Although we can have a powerful situational method, another difficulty origi-
nating from frequent changes of a product still remains. A product is frequently
changed due to various reasons, e.g. customer’s requirements change, even dur-
ing its development. Developers should have various versions of a product and
manage them in their project. In this situation, the techniques for version control
and change management, i.e. for configuration management, are significant to
support their tasks by using computerized tools. In [9], we have developed a ver-
sion control system for model descriptions that are represented in diagrammatic
form such as UML diagrams.

In method engineering environments, as well as changes of a model descrip-
tion, the description of the adopted methods may be changed. Therefore the
support for version control and change management of methods themselves is

E. Dubois and K. Pohl (Eds.): CAiSE 2006, LNCS 4001, pp. 384–398, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Configuration Management in a Method Engineering Context 385

necessary. In [10], the changes of methods were classified into a set of pat-
terns, but it did not mention any support for the version control of methods
themselves.

In change management, there exist the dependencies among the components
of an artifact, and a change of a component may be propagated to other compo-
nents dependent on it, in order to keep consistency. This kind of change manage-
ment should be done 1) on model descriptions (product hereafter), 2) on method
descriptions (methods or method fragments hereafter) and 3) on both of them.
The third case is as follows; when the adopted method is changed, the change is
propagated to the model description that was developed with the older version
of the method. Model management systems such as Coral [3] and UML reposi-
tory systems [7, 11] are only for meta models and only for products respectively.
They do not consider the support for version control and change management
sufficiently from method engineering context, i.e. from both side of products and
methods.

To solve above issues, this paper discusses a technique to implement a con-
figuration management mechanism in our CAME tool combined with Version
Control System for software diagrams, both of which have been developed be-
fore independently [9, 12]. We have two key techniques; the first one is a three-
dimensional model to conceptualize the difference between product and method
version control [13]. The second is “operation based approach”, where change
operations that were performed on an artifact1 are recorded and applied in order
to recover a current version of the artifact. The rest of the paper is organized
as follows. Our CAME tool and Version Control System is introductorily sum-
marized in the next section. In addition, we illustrate the details of the issues
on version control and change management in method engineering context. In
section 3, by using a simple example, we discuss the three-dimensional model
for conceptualizing version control, it is very useful for getting the solutions to
the issues mentioned above. Section 4 discusses how to achieve the change man-
agement to maintain consistency in artifacts and clarifies how our technique can
solve the issues mentioned in section 2.

2 CAME Tool and Version Control System

2.1 CAME Tool

Our CAME tool is based on a reuse technique similar to the other existing CAME
tools such as Decamerone [6], Mentor [14] and MetaEdit+ [8]. Reuse technique
is characterized by using reusable method portions, called method fragments or
method chunks, which can be extracted from several existing methods. Method
fragments are stored in a specific database called method base, and a special
engineer, called method, engineer obtains suitable fragments from the method
base and assembles them into a new project-specific method. The method engi-
neer, for building a project-specific method, uses a method editor to manipulate
1 We use the term “artifact” for products and methods.

386 M. Saeki

method fragments and assemble them into a new method. The method editor is
a kind of diagram editor which allows the method engineer to easily edit method
fragments. The method description is called meta model, and we use a Class
Diagram to describe it. Our CAME tool generates from a meta model, 1) a dia-
gram editor for supporting inputting and editing products, e.g. a Class Diagram
editor, and 2) the schema of a repository to which the generated editors store
the developed products. Software engineers may then develop a model of an in-
formation system following the project-specific method, by using the generated
editors. An example of a meta model of simplified version of Class Diagram is
shown in Figure 1. As shown in the figure, the method fragment “ClassDia-
gram” has the concepts “Class”, “Operation” and “Attribute” and all of them
are defined as classes on a meta model. These concepts (called method concepts)
have associations (called method associations) representing logical relationships
among them. For instance, the concept “Class” has “Feature” (a super class of
Attribute and Operation), so the association between “Class” and “Attribute”
denotes a has relationship. We simply call both method concepts and method
associations method elements.

In addition, we should consider constraints on the products. Suppose that we
define the method “ClassDiagram” as shown in Figure 1. In any class diagram
(any instance of “ClassDiagram”), we cannot have different classes having the
same name. In order to keep consistency of products, we specify this constraint
on the meta model, by using OCL (Object Constraint Language). The OCL
expression in the right bottom window “CAMEPackage” of Figure 1 represents
the constraint “different names must be attached to different classes”.

Fig. 1. An Example of Method Fragments

Configuration Management in a Method Engineering Context 387

A generated diagram editor deals with a product conceptually as a graph
consisting of nodes and edges. Thus we should provide information using which
the method concepts in a meta model can be represented with nodes or edges
of the graph. The method engineer provides two types of this information; one
is the correspondence of method concepts to the elements of the graph, i.e. nodes,
edges and text within the nodes or on the edges, and another is notational infor-
mation of the nodes and edges. Suppose that she or he tries to generate a class
diagram editor from “ClassDiagram”. The concept Class in the “ClassDiagram”
conceptually corresponds to nodes in a graph, while Generalization, Aggrega-
tion and Association correspond to edges. She or he provides this information as
stereotypes attached to the method concepts in our CAME tool. The right top
window “MetaCase” in Figure 1 includes the information for the generator. The
readers can find the stereotypes �entity� and �relationship�” attached to the
classes in the meta model of Figure 1. For example, the classes Generalization,
Aggregation and Association in the figure have the stereotype �relationship�.
The stereotype �entity� corresponds to a node and �relationship� corre-
sponds to an edge. In our example of the figure, an occurrence of Class in a class
diagram corresponds to a node from the viewpoint of the graph, while an occur-
rence of Generalization, Aggregation or Association between Classes corresponds
to an edge. Note that a generated editor automatically includes commands for
creating and deleting the method concepts corresponding to the nodes or the
edges.

In addition, the method engineer should specify which figures, e.g. rectangle,
circle, oval, dashed arrow etc. are to be used for expressing method elements on
the editor screen. Basic figures such as ones used in UML diagrams are built-in
and their drawing programs are embedded as Java classes into the generator. In
the example in Figure 1, the method engineer tries to use a rectangle (ClassShape)
as a figure for Class. Our generator produces a diagram editor by embedding the
above information and Java classes into a diagram editor framework.

2.2 Scenario Example

In this sub section, we have the following simple scenario of a development as an
example, which will be used throughout this paper. It is very useful to clarify the
issues of version control and change management in a method engineering context.

A method engineer constructs a new method by assembling Class Diagram
(CI#1) and Sequence Diagram (CI#2) of UML by adding a method association
“instance of” as shown in Figure 2. Each meta model can be considered as a unit
of configuration management, i.e. configuration item of method level. Following
this new method, a software engineer constructs a class diagram of the system to
be developed, and then develops the sequence diagrams, each of which defines a
scenario of the interactions among objects belonging to the classes appearing in
the class diagram. Figure 3 illustrates a part of Lift Control System developed
following this method. Each diagram is a configuration item of product level.

The engineer completes the diagram shown in the left part of Figure 3, and
commits it to the repository as version 0. After that, the engineer adds the

388 M. Saeki

CI#1

CI#2

Class Diagram

Sequence Diagram

���������	

���������

������	

�����

�����

��������	
�

�������

����

������

����

Fig. 2. Assembling Method Fragments

object “Door” to the sequence diagram as shown in the right part of Figure 3, and
commits it as version 1. When the engineer adds an object to a sequence diagram,
its class should exist in the class diagram in method M0. In this example, since
“Door” class does not appear in version 0 of the class diagram, the engineer adds
it manually for version 1, as shown in Figure 3. The supporting tool hopefully
guides the engineer for this kind of change propagation, and change propagations
depend on methods and method assembly.

We continue the example. See Figure 4. The engineer finds that Lift Con-
trol System has real-time property, and extends the current method so that the
engineer can model timing constraints in sequence diagrams. The engineer mod-
ifies the meta model of the Sequence Diagram (M0 : version 0 of the method)
by adding the method concept “Timing Constraint”, and gets a new version
1 (M1). Although we need the version control of meta models, it is the same
as the version control of products, because our meta model is represented with
Class Diagram as mentioned in section 2.1. The version control of meta models
is called “method version control” to distinguish it from usual version control
of products (called “product version control”). Now, the engineer continues her
or his activities following the new method M1. Since this change to M1 was
adding a new method concept only, it has not impacted the current version of
the product, version 1. We continue our example further. As shown in the top
part of Figure 4, the engineer adds a timing constraint “b-a< 2 min.” (the lift
should arrive within 2 minutes after pushing the request button). Suppose that
the engineer returns back to the older method M0 after that. Since M0 does
not include “Timing Constraint”, the existence of “b-a<2min.” in the current
product causes inconsistency. Thus whenever a current method is changed, we
need to check if the new version of the method is consistent with the current
version of the product that was made following the older method.

Suppose another change on the method M0 in Figure 2 is applied. What is
going to happen in case the engineer deletes the method association “instance of”
and tries to commit it as a new version of the method? As a result, the engineer
will get the two isolated methods each of which is the same as the already
existing method, i.e. Class Diagram and Sequence Diagram, and this result is
not meaningful. We should avoid constructing such meaningless versions of the

Configuration Management in a Method Engineering Context 389

method, and by applying method assembly rules we can check if the resulting
method is meaningless or not [5].

To summarize the above discussions, we can categorize our issues on change
management into three; 1) for products, 2) for method fragments and 3) for
both. How to solve these three issues will be discussed in section 4.

����
�������	

���

��	��

�
���	

�
����

����

���

�
���	 ����

��� ����
����	

����
�	��	������
������
�����������	

�	���

����������	��	���

������
���
��� �!�

"��#���!#�

$���
�	����������

Configuration Item #1

Configuration Item #2

����
�������	

���

��	��

�
���	

�
����

����

���

Configuration Item #1 Ver.1

%���

Version Up

Configuration Item #2 Ver.1

�
���	 ����

��� ����
����	

����
�	��	������
������
�����������	
�	���

����������	��	���

������
���
��� �!�

"��#���!#�

$���
�	����������

%���

$�����	

Version #0
Version #1

����
�������	

���

��	��

�
���	

�
����

����

���

�
���	 ����

��� ����
����	

����
�	��	������
������
�����������	

�	���

����������	��	���

������
���
��� �!�

"��#���!#�

$���
�	����������

�
���	 ����

��� ����
����	

����
�	��	������
������
�����������	

�	���

����������	��	���

������
���
��� �!�

"��#���!#�

$���
�	����������

Configuration Item #1

Configuration Item #2

����
�������	

���

��	��

�
���	

�
����

����

���

Configuration Item #1 Ver.1

%���%���

Version Up

Configuration Item #2 Ver.1

�
���	 ����

��� ����
����	

����
�	��	������
������
�����������	
�	���

����������	��	���

������
���
��� �!�

"��#���!#�

$���
�	����������

%���

$�����	

Version #0
Version #1

Fig. 3. Lift Control System

2.3 Version Control System

In our version control system, we adopt a technique to store differences between
two versions in a repository like CVS [1] and Subversion [2], etc. so that we can
recover the older versions that were previously produced. The state of the artifact
at a certain time is considered as a baseline, and the version control system stores
to the repository the difference between this baseline and each version. To extract
a difference between two adjacent versions efficiently, we focus on the developer’s
activities of editing a product by using an editor. In other words, we generate
an element of the difference from an execution of an editor operation such as
“create” and “delete” a component. The sequence of such editing operations
that developer is performing is captured in real-time during her or his editing
activity using the editor. The acquired operation sequence can be considered as
the difference between versions, and is stored in the repository. Our CAME tool,
which automatically generates a diagram editor from the meta model descrip-
tion, should automatically embed the functions for acquiring performed editing

390 M. Saeki

��������		
��

����

�����	�

��
�

�
�
������	��

��	

�
������
��
������

��		
��

����

�����	�

��
�

�
������
��

�
���� �����
��� ����

�����

����
�����������
������
�	����	�����

�����

 ����	�����������

!�����
�	�
���"�#�

$��
���#
�

%���
������������

&���

%������

�
���� �����
��� ����
�����

����
�����������
������
�	����	�����

�����

 ����	�����������

!�����
�	�
���"�#�

$��
���#
�

%���
������������

&���

%������

a

b
b-a < 2min.

...

Ver.0 (M0) Ver.1 (M1)

��������		
��

����

�����	�

��
�

�
�
������	��

��	

�
������
��
������

��		
��

����

�����	�

��
�

�
������
��

������
��		
��

����

�����	�

��
�

�
������
��

�
���� �����
��� ����

�����

����
�����������
������
�	����	�����

�����

 ����	�����������

!�����
�	�
���"�#�

$��
���#
�

%���
������������

&���

%������

�
���� �����
��� ����

�����

����
�����������
������
�	����	�����

�����

 ����	�����������

!�����
�	�
���"�#�

$��
���#
�

%���
������������

&���

%������

�
���� �����
��� ����
�����

����
�����������
������
�	����	�����

�����

 ����	�����������

!�����
�	�
���"�#�

$��
���#
�

%���
������������

&���

%������

�
���� �����
��� ����
�����

����
�����������
������
�	����	�����

�����

 ����	�����������

!�����
�	�
���"�#�

$��
���#
�

%���
������������

&���

%������

a

b
b-a < 2min.

...

Ver.0 (M0) Ver.1 (M1)

Fig. 4. Version Up of A Method

operations in real-time and for transforming them to difference data, when it
generates the editor. The details of this mechanism were discussed in [9].

Our CAME tool can export the XML document that represents logical infor-
mation of a diagram in XMI-compliant format [4]2. For simplicity, the represen-
tation of differences is based on XMI, and we use XMI.update operations. They
are used for informing about the differences of XMI-compliant documents when
the documents are exchanged. We have three operations; XMI.add for adding
a component to the older document, XMI.delete for deleting an existing com-
ponent, and XMI.replace for replacing an existing component element with a
new one. Figure 5 illustrates how to represent differences with XMI. A software
engineer adds a “Door” class and then an aggregation from “Lift” to it. These
change operations performed in the editor are transformed into two XMI.add oc-
currences and the occurrences are stored as a difference from Version 0 to Version
1. To check-out Version 1 from Version 0, our version control system applies the
XMI.add occurrences successively to the XMI document of Version 0.

Our version control system supports version branching and merging branched
versions. Suppose that our software engineer produces a new version Ver. 2 by
adding a subclass of “Door” to Ver.1 in Figure 3, at the same time the engineer
also creates a branched version Ver.1.1 by deleting the class “Door” from Ver.1.
When he tries to merge Ver. 2 to Ver. 1.1, a conflict occurs. Since Ver. 1.1
does not have “Door” class any longer, adding automatically the subclass of

2 For comprehensiveness, the XML documents in this paper are made simpler than
the real XMI-compliant format.

Configuration Management in a Method Engineering Context 391

Fig. 5. Representing with XML

“Door” by applying the difference from Ver.1 to Ver. 2, is impossible. In this
case, our system asks the engineer to take the alternative of adding “Door” by
hand to continue this merge operation, or cancel it. To detect this conflict, each
recorded change operation has the pre condition that should be checked before
applying it. In XMI.delete, its pre condition is that the object to be deleted
should exist in the product. In the above example, the operation “<XMI.add>
<Association xmi.id =...> <name> Generalization </name>...</XMI.add>”
(adding a Generalization from Door class to a subclass) requires a source object
and a destination of the association as a pre condition, i.e. “Door” is required to
execute this operation. Pre conditions are automatically generated and attached
to change operations to be stored as a difference. Pre conditions maintain con-
sistency not only for merging branched version but also for change propagation,
as will be mentioned later in sections 4.2 and 4.3.

3 Conceptual Model for Version Control

In this section, we show a three-dimensional model to conceptualize our version
control technique [13] and how to use it. We have “products” and “method
fragments” as targets of version control, and each target consists of configuration
items. Thus, we can consider version space to have three axes; product, method

392 M. Saeki

(fragment) and configuration item as shown in Figure 6. Each lattice point in
the figure represents a version of a product to be managed.

In our version control system, an engineer has a local working space, and per-
forms check-out and check-in operations between her or his working space and
the repository. When the engineer checks out from the repository version n of a
product which has been developed by method M, a working space for version n+1
is allocated locally and an editor for M is invoked. The version n of a product is
loaded into the working space. The engineer uses the editor to modify version n,
and after completing the modification, stores it as version n+1 into the repository
(check-in). A working space is generated and allocated for each adopted method.
In the case that the engineer uses methods M0 and M1, both the working space
for M0 and the working space for M1 are generated. Note that our repository
has two levels: one is for storing products and the other is for meta models.

Following the scenario of Figures 3 and 4, consider what operations our en-
gineer performs on our version control system. The engineer’s activities are il-
lustrated in Figure 7. The engineer selects method M0 and generates an empty
working space by using the “new” command at first. As shown in Figure 3,
method M is the result of assembling Class Diagram and Sequence Diagram, de-
veloped using two types of diagrams, each created with its own diagram editor
(2:input & edit). Let the two diagrams be C0 and S0 respectively. The engineer
checks them in to the repository (3:check-in), so they are stored as version 0
(P0). Consequently, the engineer adds the “Door” object to the sequence dia-
gram S0 (4: edit) and gets version 1 (S1). If the engineer tries to check it in to
the repository, she or he fails because the current P0 is not satisfied with the
constraint “for each object in the sequence diagram, its class must be included
in the class diagram”. To get consistency, the engineer adds the Door class to
the class diagram C0 and successfully checks it in (5: check-in). The new product
comes in the repository as version 1 (P1).

Furthermore, the engineer tries to extend the method M0 to M1 as shown in
Figure 4, and checks out M0 from the meta-level part of the repository (6: check-
out). The engineer can have a working space for constructing M1, and M0 is loaded
in to the space. By using a method editor, as shown in Figure 4, the engineer adds
the method concept “Timing Constraint” to M0 (7:edit) and then checks it in as
version 1 (M1) to the repository (8:check in). To continue the task by using the
new version M1, he or she creates an empty working space for P2 on M1 (9: new),
and checks out P1 to this space (10: check-out). After that, the engineer adds a
timing constraint “b-a< 2 min.” (11: edit) and checks in the resulting product (12:
check-in). This product is registered into the repository as version 2 (P2).

Next, suppose that for some reason, the engineer wants to return the used
method back to the older version M0. The engineer tries to import M0 into
the current working space (13: import). When importing M0, the system checks
consistency of the current product with M0 and the import operation succeeds if
the consistency check is passed. In our example, since the difference between M0
and M1 includes <XMI.delete> ... “Timing Constraint” ... </XMI.delete> and
the current product has its instance “b-a<2 min.”, the engineer is notified of the

Configuration Management in a Method Engineering Context 393

P
ro

du
ct

 V
er

si
on

C
on

fi
gu

ra
ti

on
It

em

M
et

ho
d

V
er

si
on

do
or

7:
op

en

do
or

7:
op

en

do
or

7:
op

en

b-
a

<
 2

 m
in

.

do
or

7:
op

en

P
ro

du
ct

 V
er

si
on

M
et

ho
d

V
er

si
on

V
er

.0
 (P

0)
V

er
.1

 (P
1)

V
er

.3
 (P

3)
V

er
.4

 (P
4)

V
er

.2
 (

P2
)

V
er

.0
 (M

0)

V
er

.1
 (M

1)

di
ff

er
en

ce
 =

 {
 }

di
ff

er
en

ce
 =

{
de

le
te

b-
a

<
2m

in
.}

�
�
��
�
�

�
�
	
	

�
�

�
�
�
�

��
�
�
�	
�

�
�

��

�

�
�
��
�
�
	
��

�
�	

�

��
��
��

��

�
�
��
�
�

�
�
	
	

�
�

�
�
�
�

��
�
�
�	
�

�
�

�

�

��
��
��

��

V
er

.0
 (

M
0)

V
er

.1
 (

M
1)

1)
2)

ve
rs

io
n

up

C
on

fi
gu

ra
ti

on
 I

te
m

 (
C

I)

Pr
od

uc
t V

er
si

on

do
or

7:
op

en

V
er

.1
 (

P1
)

V
er

.0
(P

0)

C
I#

1

C
I#

2

do
or

do
or

7:
op

en
di

ff
er

en
ce

=
 {

 ,

}

do
or

1)
2)

P
ro

du
ct

 V
er

si
on

C
on

fi
gu

ra
ti

on
It

em

M
et

ho
d

V
er

si
on

do
or

7:
op

en

do
or

7:
op

en

do
or

7:
op

en

b-
a

<
 2

 m
in

.

do
or

7:
op

en

P
ro

du
ct

 V
er

si
on

M
et

ho
d

V
er

si
on

V
er

.0
 (P

0)
V

er
.1

 (P
1)

V
er

.3
 (P

3)
V

er
.4

 (P
4)

V
er

.2
 (

P2
)

V
er

.0
 (M

0)

V
er

.1
 (M

1)

di
ff

er
en

ce
 =

 {
 }

di
ff

er
en

ce
 =

{
de

le
te

b-
a

<
2m

in
.}

�
�
��
�
�

�
�
	
	

�
�

�
�
�
�

��
�
�
�	
�

�
�

��

�

�
�
��
�
�
	
��

�
�	

�

��
��
��

��

�
�
��
�
�

�
�
	
	

�
�

�
�
�
�

��
�
�
�	
�

�
�

�

�

��
��
��

��

V
er

.0
 (

M
0)

V
er

.1
 (

M
1)

1)
2)

ve
rs

io
n

up

C
on

fi
gu

ra
ti

on
 I

te
m

 (
C

I)

Pr
od

uc
t V

er
si

on

do
or

7:
op

en

V
er

.1
 (

P1
)

V
er

.0
(P

0)

C
I#

1

C
I#

2

do
or

do
or

7:
op

en
di

ff
er

en
ce

=
 {

 ,

}

do
or

1)
2)

Fig. 6. Three Dimensional Model

394 M. Saeki

inconsistency. The engineer deletes “b-a<2 min.” according to the notification
and then imports M0 again. Now, the engineer succeeds in importing M0 and
checks in the current product as version 3 (P3) to the repository (14: check-in).
Figure 6 includes projections of this simple scenario in the 3 dimensional cube,
and the readers can trace a trajectory of the engineer’s activities in the cube.

4 Solving Issues on Change Management

4.1 Change Propagation on Products

Consider again the example scenario in section 2.2. Our software engineer added
the “Door” object to the sequence diagram and checked it in to the repository,
as shown in Figure 3. However, this adopted method consisting of Class Diagram
and Sequence Diagram requires the addition of “Door” class to the class dia-
gram in order to maintain consistency in the product. This is a typical change
propagation on configuration items in product level. The supporting tool hope-
fully guides the engineer for this kind of change propagation, and it depends on
methods and method assembly. In our CAME tool, we can specify the constraints
with OCL as shown in the right bottom window of Figure 1. In fact, we put the
constraint “for each object in the sequence diagram, its class must be included in
the class diagram” with OCL when assembling Class Diagram and Sequence Di-
agram into the example method. We can realize this type of change management
on configuration items by means of consistency checking using an OCL evaluator.

4.2 Change Propagation on Methods

As for change management on method fragments, we can consider two categories.
The first one is quite similar to the consistency checking on configuration items
of product level, which was mentioned in the section 4.1. Since our method frag-
ments are defined as class diagrams and activity diagrams, consistency checking
on them is possible by using constraints written with OCL in the same way as
consistency checking on products. The constraints are not defined by method
engineers, unlike the product level, but defined as method assembly rules in
advance. For example, we have a method assembly rule “at least one method
concept and/or method association that connects the method fragments to be
assembled should be newly added”, which says that when we assemble method
fragments, we should logically connect them by using newly added method ele-
ments [5]. Suppose that our method engineer deletes a method association “in-
stance of” between “Class” of method fragment “Class Diagram” and “Object”
of “Sequence Diagram” in Figure 2, as illustrated in section 2.2. This deletion
operation violates the above method assembly rule and causes logical isolation
of these two method fragments in the resulting method. Checking consistency is
performed by using the method assembly rules represented with OCL, and it is
the same technique in the section 4.1.

The second one is the propagation to the other methods that use the changed
method fragments. See Figure 8 and suppose that we have two methods M#1

Configuration Management in a Method Engineering Context 395

M0

1:new Working Space for P1 on M0

P0

C0

S0

3:check-in

2: input & edit

S1

4: edit

5: check-in

P1

M0

6:check-out

Working Space
for P2 on M0

P0 C1

S1

P1

M0

Working Space for M1

7:edit

M1

8:check-in

M1

Repository

C1

M0

1:new Working Space for P1 on M0

P0

C0

S0

3:check-in

2: input & edit

S1

4: edit

5: check-in

P1

M0

6:check-out

Working Space
for P2 on M0

P0 C1

S1

P1

M0

Working Space for M1

7:edit

M1

8:check-in

M1

Repository

C1

M0

9:new

Working Space
for P2 on M0

P0 C1

S1

P1

Working Space for P2 on M1

10:check-outM1
C1

S1

S2
11:edit

p2 12:check-in

M0 Working Space
for P2 on M0

P0 C1

S1

P1

M1
C3

S3

P2

Working Space for P3 on M0
13:import

P3
14:check-in

: Direction of Version Up

M0

9:new

Working Space
for P2 on M0

P0 C1

S1

P1

Working Space for P2 on M1

10:check-outM1
C1

S1

S2
11:edit

p2 12:check-in

M0 Working Space
for P2 on M0

P0 C1

S1

P1

M1
C3

S3

P2

Working Space for P3 on M0
13:import

P3
14:check-in

: Direction of Version Up

Fig. 7. Version Control System

396 M. Saeki

and M#2; M#1 is composed from Class Diagram and Sequence Diagram, and
M#2 is from State Diagram and Sequence Diagram. The method engineer up-
dates the fragment MF#3 (Sequence Diagram) by adding “Timing Constraint”
concept as shown in Figure 4. After this version-up, what happens to the exist-
ing methods M#1 and M#2 of version 1? It is desirable that M#1 and M#2
are automatically updated to their newer versions having the new Sequence Di-
agram fragment Ver.1. The difference from Ver.0 to Ver.1 of Sequence Diagram
is automatically applied to Ver.0 of M#1 and M#2 so as to get their newer
versions Ver.1. As a result, the method engineer gets the newer versions that
have “Timing Constraints” concept in the Sequence Diagram part in M#1 and
M#2. During the application, the pre conditions of the change operations in-
cluded in the difference are verified so as to avoid inconsistency, same as in
merging branched versions mentioned in section 2.3. After finishing the appli-
cation, the generated newer versions, i.e. Ver.1 of M#1 and M#2, are verified
whether method assembly rules are satisfied or not.

M#1 M#2

MF#1

(Class Diagram)

MF#2

(State Diagram)

MF#3

(Sequence Diagram)

MF#3

(Sequence Diagram

for Real-time Systems)

Ver.1

M#1 M#2

Ver.1
Ver.1

Ver.0 Ver.0 Ver.0

Ver.0

Ver.0

automatically

updated

Fig. 8. Change Propagation on Methods

4.3 Change Propagation Between Products and Methods

Consider again the example scenarios in section 2.3 and what we should do to
maintain consistency, when the method is changed back from M1 to M0, i.e.
deleting “Timing Constraints” concept, as shown in Figures 6 and 7. By using
the forward difference for the version-up from M0 to M1, we can get the backward
difference from M1 to M0 as follows.

<XMI.delete>
<Class xmi.id="102">

<name> Timing_Constraints </name>
</Class>

</XMI.delete>
<XMI.delete>
<Association xmi.id="103">

<name> aggregation </name>
...

</XMI.delete>

Configuration Management in a Method Engineering Context 397

It is easy to automatically obtain the above difference, by replacing the occur-
rences of “add” with “delete” and vice versa in the recorded difference from M0
to M1. In the case that the method engineer deletes a method concept or associa-
tion from a method fragment and commits it as a new version, we get a difference
including “XMI.delete”. All that we should do for consistency check of the cur-
rent method is to look for “XMI.delete” in the difference from the last version to
the current one, and extract the method elements included in XMI.delete. And
then, in a product we detect the instances whose types are the extracted method
elements. In our example, we extract the method element “Timing Constraints”
appearing in the above XMI.delete fragment, and then look for those instances,
e.g. “b-a<2 min.” of the type “Timing Constraints” in the sequence diagram.
If the components detected are in the current version of the product, our tool
informs the engineer that inconsistency has occurred on account of changing the
method. The technique for detecting this kind of inconsistency focuses on the
occurrences of XMI.delete in the difference of a method change.

5 Conclusion and Future Work

This paper discussed the problems of configuration management, especially ver-
sion control and change management in method engineering environments, and
proposed an integrated technique to solve them. In particular, in section 4, we
clarified various types of change propagations in the method engineering context,
and showed that we could solve their issues by our proposed technique.

Although we have implemented basic commands mentioned in section 4 so
that our CAME can generate diagram editors having these commands, we need
more functions, in particular browsing the repository, displaying the status of
products (consistent or not, the newest version or not, etc.), and retrieving a
specific version not only by version number but also other, more practical means
e.g. tags. And more case studies are necessary to assess our technique and the
CAME tool together with version control functions. The support for cooperative
tasks by a team is also considered as future work.

Acknowledgements

The author would like to thank Rodion Moiseeiv for his valuable comments to
the earlier version of this paper.

References

1. Concurrent Versions System. http://www.cvshome.org/.
2. Subversion. http://subversion.tigiris.org/.
3. The Coral Metamodeling Toolkit. http://mde.abo.fi/tools/Coral/.
4. XML Metadata Interchange. http://www.omg.org/.

398 M. Saeki

5. S. Brinkkemper, M. Saeki, and F. Harmsen. Meta-Modelling Based Assembly
Techniques for Situational Method Engineering. Information Systems, 24(3):
209–228, 1999.

6. F. Harmsen. Situational Method Engineering. Moret Ernst & Young Management
Consultants, 1997.

7. R. Keller, J.-F. Bedard, and G Saint-Denis. Design and Implementation of a UML-
Based Design Repository. In Lecture Notes in Computer Science (CAiSE2001),
volume 2068, pages 448–464, 2001.

8. S. Kelly, K. Lyytinen, and M. Rossi. MetaEdit+ : A Fully Configurable Multi-User
and Multi-Tool CASE and CAME Environment. In Lecture Notes in Computer
Science (CAiSE’96), volume 1080, pages 1–21, 1996.

9. T. Oda and M. Saeki. Generative Technique of Version Control Systems for Soft-
ware Diagrams. In Proc. of the 21st IEEE Conference on Software Maintenance
(ICSM’05), pages 515–524, 2005.

10. J. Ralyte, C. Rolland, and R. Deneckere. Towards a Meta-tool for Change-Centric
Method Engineering: A Typology of Generic Operators. In Lecture Notes in Com-
puter Science (Proc. of CAiSE’2004), pages 202–218, 2004.

11. N. Ritter and H.-P. Steiert. Enforcing Modeling Guidelines in an ORDBMS-based
UML-Repository. In Proc. of International Resource Management Association
Conference (IRMA2000), pages 269–273, 2000.

12. M. Saeki. Toward Automated Method Engineering: Supporting Method Assembly
in CAME. In Engineering Methods to Support Information Systems Evolution
(EMSISE’03 in OOIS’03). http://cui.unige.ch/db-research/EMSISE03/, 2003.

13. M. Saeki and T. Oda. A Conceptual Model of Version Control in Method Engi-
neering Environment. In Proc. of CAiSE Short Paper 2005, pages 89–94, 2005.

14. S. Si-Said, Rolland C., and G. Grosz. MENTOR : A Computer Aided Requirements
Engineering Environment. In Lecture Notes in Comupter Science (CAiSE’96),
volume 1080, pages 22–43, 1996.

	Introduction
	CAME Tool and Version Control System
	CAME Tool
	Scenario Example
	Version Control System

	Conceptual Model for Version Control
	Solving Issues on Change Management
	Change Propagation on Products
	Change Propagation on Methods
	Change Propagation Between Products and Methods

	Conclusion and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

