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Abstract. In this paper we propose a new approach to the automated compo-
sition of distributed processes described as semantic web services. Current ap-
proaches, such as those based on OWL-S and WSMO, in spite of their expressive
power, are hard to use in practice. Indeed, they require comprehensive and usu-
ally large ontological descriptions of the processes, and rather complex (and often
inefficient) reasoning mechanisms. In our approach, we reduce to the minimum
the usage of ontological descriptions of processes, so that we can perform a lim-
ited, but efficient and useful, semantic reasoning for composing web services. The
key idea is to keep separate the procedural and the ontological descriptions, and
to link them through semantic annotations. We define the formal framework, and
propose a technique that can exploit simple reasoning mechanisms at the ontolog-
ical level, integrated with effective reasoning mechanisms devised for procedural
descriptions of web services.

1 Introduction

The importance of describing web services at the process-level is widely recognized,
a witness being the standard languages for describing business processes, like BPEL
[[L], and the most popular standards for semantic web services, like OWL-S [4] and
WSMO [22]. In a process-level description, a web service is not simply represented as
an “atomic” component that can be executed in a single step. Instead, the interface of
the service describes its behavior, i.e., a flow of interactions with other services struc-
tured according to different control constructs, e.g., sequentially, conditionally, and iter-
atively. Behavioral descriptions of web services can be published in standard languages,
e.g., as abstract BPEL specifications, OWL-S process models, and WSMO interfaces.
They constitute a key element for several application domains where web services are
proposed as the basis for interoperability and integration of (business) processes that are
distributed over the network. This is the case, for instance, of several e-Government, e-
Banking, and e-Commerce applications.
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Recent research is focusing on the key problem of the automated composition of web
services described at the process level [[1047,13,20L[151[13}/14]]. However, the research is
still at an early stage. From one side, some approaches do not deal with semantic web
services, and cannot thus exploit the ability to do reasoning about what services do.
This is the case of techniques for composing BPEL processes [[15,/13]] and of theoretical
frameworks for the composition of services represented as finite state automata [[7,/3]].
From the other side, the approaches that have been proposed so far to exploit semantic
descriptions (see, e.g., [10,20,114,122]]) are based on the idea that processes should be
described by means of comprehensive ontologies. They have the practical disadvantage
to require long descriptions that are time- and effort- consuming, and that are very hard
to propose in practice for industrial applications. Such semantic descriptions of web
services are based on expressive languages such as OWL [9] or WSMO [22]], and require
complex reasoning mechanisms. Indeed, for instance, the OWL family of languages are
based on the description logics SHZQ and SHZOQ, that have reasoning services that
are EXPTime and NEXPTime, respectively [19]].

In this paper, we propose a practical approach to the composition of semantic web
services. We aim at automated composition techniques that exploit a limited, but still
useful, amount of semantic reasoning. The key idea is to keep separate the procedural
and the ontological descriptions, and to use semantic annotations to link them. First, the
behavior of a web service is defined in languages that have been designed to describe
processes. Then, the semantics of data exchanged and of the operations performed by
the processes is described in a separate ontological language. Finally, the two descrip-
tions are linked by semantic annotations of the behavioral descriptions that map to the
ontological concepts. Annotations are necessary to give semantics to the exchanged data
(e.g., which relations exist between the data given in input to the service and the data
received as answers from the service), as well as to define the effects and outcomes of
the service executions (e.g., to identify the successful executions of the service and dis-
tinguish them from the failures, and to describe the effects associated to the successful
executions).

We apply this idea to the case of processes described in BPEL. More precisely, we
give semantics to abstract BPEL processes in terms of state transition systems, in such
a way that variables that are used in messages exchanged among BPEL processes con-
stitute the state variables of the associated state transition systems. The meaning of
these variables is defined by an annotation function that maps them to an ontological
language, which, in this paper, is based on the ALN description logic and a gener-
alized acyclic TBox [2]]. Given this formal framework, we can express composition
requirements as semantic goals, i.e., expressions in a language whose terms refer to
ontological descriptions. We define formally the automated composition problem with
semantic goals and propose an automated composition technique that translates seman-
tic goals into ground goals, i.e., goals that refer to the state variables of the process. We
can thus exploit efficient automated composition algorithms that have been devised for
non-annotated BPEL compositions [15,13].

The paper is structured as follows. In Section 2] we describe a reference example
that is used all along the paper. In Section [3] we formally define semantic annota-
tions for state transition systems that describe BPEL processes, and the language for
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describing semantic goals. In Section ] we formally define the composition problem,
while in Section[3]we describe the automated composition technique. We conclude with
a description of some related work.

2 Overview of the Approach: An Example

We aim at the automated synthesis of a new composite service that interacts with a set
of existing component web services in order to satisfy a given composition require-
ment. More precisely, we assume that we have already identified the services that will
be combined into the composite servicdl, and that we are now facing the problem of
defining the executable process that can interact with these existing services in order to
achieve the composition requirement.

Example 1. Our running example consists in the composition of existing transport and
accommodation services in order to provide a Virtual Travel Agency (VTA) service. The
VTA is responsible for defining a suitable vacation package, according to the requests
of the user. The selection of the service providers may depend on the constraints given
by the end user and by domain knowledge: for instance, if the destination of the trip
is Paris and the duration is one week, we know that the trip can be done by flight or
by train (but not, e.g., by ship), and that suitable accommodations are in hotel and in
guest houses (but not in apartments). We can hence assume that we have selected four
suitable services (FlightReservation, TrainReservation, HotelReservation, Guesthouse-
Reservation).

According to our approach each web service exploited in the composition defines:

— an ontology defining the relevant terminology,

— an interface process defining the interactions necessary to execute the service, and

— an annotation of the choreography that defines (partial) correspondences between
the ontology and the process.

In the following, we assume that the ontologies provided by the different services have
been mapped into a global common ontology that defines all the relevant concepts of
the composition scenario. We will also assume that the interface processes are annotated
according to this global ontology.

Example 2. The common ontology for the VTA composition scenario discussed in Ex-
ample [1l is depicted in Figure [I| using the standard description logic notation. This
ontology contains a part that is general for the VTA domain (Date, Client, Location,
Trip, Accommodation), and that can be seen as part of the domain knowledge. It also
contains other concepts that are specific of the actual web services that we are going to
exploit in the composition (Flight, Train, Hotel, GuestHouse), and that can be obtained
by mapping the local ontology of each web service into the common ontology.

! This step is of course very complex. We will not further discuss these steps in the paper, since
our focus is different. We assume that any of the techniques for service discovery and selection
discussed in the literature are applied to these steps.
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Date = Vyear.Number M Vmonth.Number M Vday.Number
Client = Vname.String M Vgender.Gender
Gender C T
Status C T
Location = Vname.String
Trip = Vid.String M (< 1id) M (> 1id) M Vdate.Date N Vstart.Location M
Vdestination.Location M Vpax.Client M Vstatus.Status
Accomodation = Vid.String 1M (< 1id) M (> 1id) M Vdate.Date I
Vlocation.Location M Vpax.Client M Vstatus.Status
Flight C Trip M VseatNumber.String
Train C Trip M VseatNumber.String
Hotel C Accommodation M YroomNumber.String

GuestHouse T Accommodation M VYroomNumber.String

Fig. 1. The terminology of the running example

male : Gender, female : Gender,
available : Status, notAvailable : Status, booked : Status, cancelled : Status

Fig. 2. The common part of each ABox in the running example

Notice that, in the definition of Trip and Accommodation, we have the role status
whose values are restricted to be of the concept Status. This role captures what is the
current status of the client request. Indeed, when a trip (accommodation) is available,
the status assumes the value available; when a trip (accommodation) is not available,
the status assumes the value notAvailable; and finally, when a trip (accommodation) has
been booked (cancelled), the status assumes the value booked (cancelled). The possible
values (instances) for the concept Status are listed in the ABox in Figure[2

In our approach, the interface processes defining the interaction behaviors of the com-
ponent services are defined in abstract BPEL. BPEL [[1]] provides an operational descrip-
tion of the (stateful) behavior of web services on top of the service interfaces defined
in their WSDL specifications. An abstract BPEL description identifies the partners of a
service, its internal variables, and the operations that are triggered upon the invocation
of the service by some of the partners. Operations include assigning variables, invoking
other services and receiving responses, forking parallel threads of execution, and non-
deterministically picking one amongst different courses of actions. Standard imperative
constructs such as if-then-else, case choices, and loops, are also supported.

Example 3. In Figure[Blwe report (the relevant parts of) the abstract BPEL specification
of the FlightReservation service in the scenario discussed in Example A

2 The specification contains some annotations in boldface: they are not part of the BPEL lan-
guage, and we will explain their meaning later on in this section.
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<process name="FlightReservation”>
<variables>
<variable name="req” messageType="flightRequest’/>
<!-- "req” contains parts "/reqg/start”, "/req/des”, and "/reg/date” -->
<variable name="pax” messageType="paxInformation”/>
<!--"pax” contains part "/offer/client” -->
<variable name="offer” messageType="flightOffer”/>
<!-- "offer” part "/offer/fl” -->
</variables>
<sequence name="main”>
<receive operation="request” variable="req”
semann="/reqg/start : Location, /reg/dest : Location, /req/date : Date”/>
<switch name="checkAvailability”>
< case name="isNotAvailable”>
<invoke operation="not avail’ semann="/offer/fl : Flight, /offer/fl.status = notAvailable”/>
</case>
<otherwise name="isAvailable”>
<assign name="prepareOffer’>
<copy><from opaque="yes” semann="/offer/fl : Flight, /offer/fl.start = /req/start,
loffer/fl.destination = /req/dest, /offer/fl.date = /req/date”/>
<to variable="offer” part="fl"/> </copy >
</assign>
<invoke operation="offer” inputVariable="offer” />
< pick name="waitAcknowledge”>
<onMessage operation="ack” variable="pax”
semann="/pax/client : Client, /offer/fl.pax = /client/pax, /offer/fl.status = booked”/>
<onMessage operation="nack” semann="/offer/flight.status = cancelled”/>
</pick>
</otherwise>
</switch>
</sequence>
</process>

Fig. 3. The annotated BPEL process of the FlightReservation service

The process starts with a declaration of the variables that are used in input/output
messages: req is the input variable that specifies the start and destination locations and
the date of the flight; pax specifies the details on the client booking the flight; offeris the
flight offered to the client, including flight identifier and seat number. The messageType
declaration specifies the structure of a variable used for sending/receiving messages.
Such structure is detailed in the WSDL specification associated to the BPEL code, which
we omit for lack of space.

The rest of the abstract BPEL specification describes the interaction flow. The
FlightReservation service is activated by a request from a client (receive instruction
corresponding to operation request). The information on desired flight submitted by the
client is stored in variable req. Depending on its internal availability (switch instruc-
tion named checkAvailability), the flight provider can either send an answer refusing the
request (invoke instruction corresponding to operation not avail), or prepare and send
the information regarding a specific flight. In the latter case, the flight and seat num-
ber are determined and assigned to variable offer within the assign statement named
prepareOffer. The way in which the information is obtained is not disclosed and pub-
lished by the abstract BPEL: the sources of the data, assigned to the variables by the
copy constructs, are “opaque”. The opaqueness mechanism allows for presenting the
external world with an abstract view of the business logic, which hides the portions
that the designer does not intend to disclose, and which is robust to changes with re-
spect to the actual way in which the internal business logic is defined (e.g., calls to
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specific data bases of the flight reservation company). Once the offer has been sent to
the client (invoke instruction corresponding to operation offer), the FlightReservation
service suspends (instruction pick), waiting for the customer either to acknowledge the
acceptance of the flight offer (onMessage specification corresponding to operation ack;
we remark that this message carries the information on the client booking the flight),
or to refuse the offer (onMessage specification corresponding to operation nack). Only
in the former case the interaction with the service is successful, and the flight has been
booked.

Notice that the process described in Figure[3lis only one of the possible interfaces.
Different flight providers could adopt different approaches, e.g., requiring that the in-
formation on the client is given at the beginning of the process rather than during the
acknowledgement, or providing to the user a second choice if the first flight offer is
refused.

A BPEL specification provides a very detailed description of the interactions that need
to be carried out with a web service in order to exploit it. However, this is still not suffi-
cient to allow for the purpose of automatically composing such web service with other
services. Indeed, it is necessary to describe also the “semantic” aspects of such interac-
tions. We do this by extending the BPEL specification with “semantic annotations” (the
semann attributes in Figure[3)).

In our example, it is necessary first of all to associate concepts in the ontology to
the (parts of the) input and output messages exchanged by the process. This is the
role, for instance of the semantic annotations “/req/start : Location, /reqg/dest : Loca-
tion, /req/date : Date” of the receive activity for operation request, at the beginning of
the BPEL process. Moreover, it is necessary to express “semantic” relations among the
input and output data values exchanged during the interaction with the web service,
e.g., between the start and destination locations and dates requested by the client and
the flight returned by the reservation service. This is done in annotation “/offer/fl.start =
/req/start, /offer/fl.destination = /req/dest, /offer/fl.date = /req/date” of the opaque assign-
ment. A further usage of semantic annotations is to define the outcome of an interaction
with a web service. In our example it is clear that a flight has been booked only if a
flight is available, the reservation service sends an offer, and the user acknowledges the
acceptance of the offer. To express this in the BPEL specification, we add annotation
“/offer/status = booked” to the activity corresponding to the reception of the acknowl-
edgement.

The semantic annotations are necessary to compensate the specificities of the inter-
face at hand, and to put it in relation with the common ontology. We remark, however,
that the semantic annotations that have to be added to this purpose are very limited if
compared to processes defined in languages such as OWL-S or WSMO. As we will see,
they are sufficient for the automated composition task we are interested in.

3 BPEL Processes as Annotated STSs

We encode BPEL processes (extended with semantic annotations) as annotated state
transition systems which describe dynamic systems that can be in one of their possible
states (some of which are marked as initial states) and can evolve to new states as a
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result of performing some actions. We distinguish actions in input actions, output ac-
tions, and 7. Input actions represent the reception of messages, output actions represent
messages sent to external services, and 7 is a special action, called internal action, that
represents internal evolutions that are not visible to external services. In other words, 7
represents the fact that the state of the system can evolve without producing any out-
put, and without consuming any inputs. A transition relation describes how the state
can evolve on the basis of inputs, outputs, or of the internal action 7. Concerning the
states, we associate to each state a set of concept assertions and role assertions. This
configures a state as the assertional component (or ABox) of a knowledge representa-
tion system based on a given description logic where the ontology plays the role of the
terminological component (or TBox). Therefore, concept assertions are formulas of the
form a : C (or C'(a)) and state that a given individual a belongs to (the interpretation)
of the concept C. Role assertions are formulas of the form a.R = b (or R(a, b)) and
state that a given individual b is a value of the role R for a. As a consequence, each
action can be viewed as a transition from a state consisting in an ABox to a different
state consisting in a different ABox.

Definition 1 (State transition system [16]). A state transition system X' is a tuple
(8,8°,Z,0,R) where:

— S is the finite set of states;

— 89 C S is the set of initial states;

— 1 is the finite set of input actions;

— O is the finite set of output actions;

- RCS X (ZUOU{r}) x S is the transition relation.

Definition 2 (Annotated state transition system). An annotated state transition sys-
tem is a tuple (X, T, A) where:

2] is the state transition system,

(T, A) is the annotation,

T is the terminology (TBox) of the annotation,

A+ 8 — 247 s the annotation function, where A is the set of all the concept
assertions and role assertions defined over T .

Example 4. Figureldshows a textual description of the annotated STS corresponding to
the annotated BPEL code of Figure[3| The set of states S (the section STATE in Figure[d)
models the steps of the process and the evolution of the concept and the role assertions.
pcis a variable that ranges over the set of states S and thus holds the current execution
step of the service (e.g., pc = checkAvailabilitywhen it is ready to check whether the flight
is available). The set of initial states S is represented by the section INIT in Figured

The concepts used in the annotated STS are listed in the section CONCEPT of Fig-
ureldl They must be defined in the terminology 7.

According to the formal model, we distinguish among three different kinds of actions
(see the sections INPUT and OUTPUT of Figure ). The input actions T model all the
incoming requests to the process and the information they bring (e.g., requestis used for
the receiving of the flight reservation request). The output actions O represent outgoing
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PROCESS FlightReservation;
STATE pc : { START, receive request, checkAvailability, isNotAvailable, isAvailable, invoke not available,
prepareOffer, invoke offer, waitAcknowledge, END NA, END ACK, END NACK };
INIT pc = {START};
CONCEPT Flight; Location; Date; Client; Status;
INPUT request(Location, Location, Date); ack(Client); nack();
OUTPUT flightOffer(Flight); not avail();
TRANS
pc = START -[TAU]-> pc = receive request;
pc = receive request -[INPUT request(req start,req dest,req dat)]-> pc = checkAvailability
pc = checkAvailability -[TAU]-> pc = isNotAvailable;
pc = checkAvailability -[TAU]-> pc = isAvailable;
pc = isNotAvailable -[TAU]-> pc = invoke not available;
pc = invoke not available -JOUTPUT not avail()]-> pc = END NA;
pc = isAvailable -[TAU]-> pc = prepareOffer;
pc = prepareOffer -[TAU]-> pc = invoke offer,
pc = invoke offer -[OUTPUT offer(offer fl)]-> pc = waitAcknowledge;
pc = waitAcknowledge -[INPUT ack(pax client)]-> pc = END ACK;
pc = waitAcknowledge -[INPUT nack()]-> pc = END NACK;
ANNOTATION FUNCTION
LAMBDA( checkAvailability) = { req start : Location, req dest : Location, req date : Date };
LAMBDA( END NA) = { offer fl : Flight, offer fl.status = notAvailable } U LAMBDA( checkAvailability);
LAMBDA( invoke offer) = { offer fl : Flight, offer fl.date = req date, offer fl.start = req start,
offer fl.destination = req dest } U LAMBDA( checkAvailability);
LAMBDA( END ACK) = { pax client : Client, offer fl.pax = pax client, offer fl.status = booked}
U LAMBDA( invoke offer);
LAMBDA( END NACK) = {offer fl.status = cancelled} U LAMBDA( invoke offer);

Fig. 4. The annotated STS corresponding to the FlightReservation process

messages (e.g., flightOfferis used to bid a flight). The action T is used to model internal
evolutions of the process, such as assignments and decision making.

The evolution of the process is modelled through a set of possible transitions (the
section TRANS in Figurel). Each transition defines its applicability conditions on the
source state, its firing action, and the destination state. For instance, pc = checkAvail-
ability -[TAU]-> pc = isNotAvailable states that an action T can be executed in state
checkAvailability and leads to the state isNotAvailable; this transition models the deci-
sion of the reservation service that no flight is available.

The annotation function A (see the section ANNOTATION FUNCTION in Fig-
ure ) models how the assertions vary depending on the states. For instance,
LAMBDAEND NACK) = {req start : Location, req dest : Location, req date : Date,
offer fl : Flight, offer fl.start = req start, offer fl.destination = req dest, offer fl.date =
req date, offer fl.status = cancelled} represents the fact that state END NACK contains,
among others, the concept assertions fl : Flight(i.e., flis an individual that belongs to the
concept Flight) and the role assertions offer fl.start = req start and offer fl.status = can-
celled (the roles start and destination of the individual fl are filled with the individuals
req start and cancelled).

We remark that each TRANS clause and each LAMBDA clause of Figure 4 corre-
sponds to different elements in the transition relation R and in the annotation func-
tion A, respectively. For example, the transition and the LAMBDA clause described
above generate different elements of R and A depending on which individuals req date,
req start, req dest we have in the destination state. Concerning cancel, it has been de-
fined in Figure[2 and, thus, it denotes the same individual in all the states (i.e., all the
ABoxes).
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The definition of the state transition system provided in Figured\is parametric w.r.t.
the individuals that can be associated to concepts Flight, Location, Date, Client. In order
to obtain a concrete state transition system (a set of concrete ABoxes) and to apply the
automated synthesis techniques described in this paper, finite set of individuals have to
be assigned concepts Flight, Location, Date, Client. A possible approach to assign these
individuals consists in defining appropriate concept assertions in the common part of
the ABoxes (e.g., the part of ABoxes depicted in Figurel2). Another, better technique is to
use knowledge level techniques such as the ones in [13] to avoid an explicit enumeration
of the individuals of Flight, Location, Date, Client.

We have formally defined a translation that associates an annotated state transition sys-
tem to each component service, starting from its annotated BPEL specification. In Fig-
ure[ we have reported the translation for the specific case of the flight booking service,
with minor changes (e.g., in the order of the clauses and in some automatically gener-
ated names) to improve the readability. We omit the formal definition of the translation,
which can be found at http://www.astroproject.org/.

According to the above definitions, when we have to check if a given assertion p is
true in a given state s € S we have to apply instance checking denoted as (7, A(s)) =
p. On the other hand, ABoxes play no active role when checking subsumption [17],
therefore subsumption can be checked without considering what is the current state (i.e.,
the current ABox). For example, when we have to check (7, A(s)) = C C D, we only
need to check (7, 0)) = C' C D. Furthermore, let us assume to use ALN  as description
logic and a generalized acyclic TBox as 7 [2]]. This language is expressive enough
to describe non-trivial examples as the VTA domain. The computational complexity
of subsumption w.r.t. an acyclic terminology is NP-complete, while the computational
complexity of instance checking is P [6], which makes the reasoning problems tractable,
and, e.g., less complex than those of OWL-S.

4 Web Process Composition Problem

According to our approach, the inputs of the composition problem are (1) a global
ontology (7', .A), (2) a set of annotated BPEL processes, or, equivalently, of annotated
STSs (X;, T, A;), defining the component services, and (3) a composition requirement
p, that formalizes these desired properties of the composite service to be synthesized.
Inputs (1) and (2) have been already described. We now focus on the definition of the
composition requirement.

Example 5. We want the VTA to define and book a vacation package according to the
request of a client. This means we want the VTA to reach the situation where a trip
has been booked from the start location to the destination specified by the user, and
for the dates specified by the user; moreover, an accommodation has been booked for
the same destination and dates. However, this goal of the VTA may be impossible to
achieve. It might be impossible to book the trip or the accommodation for the given
destination or, in more realistic descriptions of the VTA, the package defined by the
VTA may be too expensive. We cannot avoid these situations, and we therefore cannot
ask the composite service to guarantee that a vacation package is always defined and
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booked. Nevertheless, we would like the VTA to try (do whatever is possible) to satisfy
it. Moreover; in the case the “define and book a vacation package” requirement is not
satisfied, we do not want to book the trip only or the accommodation only. That is,
either trip and accommodation are both booked, or none of them has to be booked. Let
us call this requirement “no booking is pending”. Our global composition requirement
would therefore be something like:

try to define and book a vacation package;
upon failure, guarantee that no booking is pending.

We remark that, when composing web services, it is often the case that composition
requirements have the structure described in the previous example, i.e., they define a
“primary condition” to be achieved whenever possible, and a “recovery condition” that
has to be achieved in all the cases the main condition fails ]

Besides the principal and the recovery conditions, a composition requirement also
defines two sets of concept assertions. The first one, that we call input concept as-
sertions, can be seen as input parameters for the composition requirements, such as
desired trip destination and dates, which can be assumed to exist in the ABox of the
global ontology. The second set, called output concept assertions, describes the ele-
ments that have to be defined by the web service composition, in our case the trip and the
accommodation.

We now give the formal definition of composition requirement.

Definition 3 (Composition requirement). Let 7 be the terminology for the composi-
tion problem. A composition requirement is a tuple p = (i, 0, p, ), where:

1 is a set of input concept assertions for 7 ;

o0 is a set of output concept assertions for 7 ;

p is a goal condition on (7,4 U o) specifying the primary condition;
7 is a goal condition on (7,7 U o) specifying the recovery condition.

Goal conditions p and r are expressions in the following grammar:
pi=a:C|a.R=b|pORp|p&p| NOTp
where a : C'is a concept assertion and a.R = b is a role assertion defined w.rt. T.

Example 6. The composition requirement of the VTA scenario is based on the following
input concept assertions: start : Location (the starting location for the travel), dest :
Location (the destination of the travel), date : Date (the dates of the travel), and client :
Client (the client who is booking the travel). The output concept assertions are: tr: Trip
(the trip returned by the VTA) and ac : Accommodation (the accommodation returned
by the VTA).

As discussed in Example[d the principal goal requires to book a suitable trip and a
suitable accommodation:

3 In [T5l[16] we consider a more general language for specifying composition requirements.
Composition requirements consisting of a main and of a recovery condition are enough for the
purposes of the paper.
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tr.date = date & tr.start = start & tr.destination = dest & tr.pax = client
& ac.date = date & ac.location = dest & ac.pax = client &
& tr.status = booked & ac.status = booked

The recovery condition of the composition requirement specifies that neither the trip
not the accommodation has to be booked, and can be represented as follows:

tr.status # booked & ac.status # booked

In the composition requirements, the semantic annotations introduced in the BPEL pro-
cesses play a fundamental role for defining conditions on the outcomes of web service
executions. For instance, the semantic annotations defining correspondences between
the input and output messages of the flight reservation service make it clear which val-
ues have to be passed to that service in order to book the flight. Moreover, the value
assigned to offer fl.status in the final activities of the different branches of the process
make it possible to distinguish successful executions (with the flight booked) from fail-
ures (due to non-available flights or to a reservation cancellation).

Now that we have defined all the inputs of the composition, we are ready to provide
a formal definition of composition problem. In the following, we re-use the definitions
already proposed in [15,/16]], adapted to the case of annotated STSs.

The first step in the definition of composition problem consists in merging the an-
notated STSs I; = (X;, 7, A;) corresponding to the different component services into
a single STS Iy = (X,7,4)) defining the combined behavior of the component
services. More precisely, X = Xy || Xy || --- || X is the STS defining the paral-
lel product of the X';, where each component evolves independently from the others,
that is, each transition of 2/ corresponds to a transition of one of the components (see
[15,116] for a formal definition). Moreover, AH associates to each state of ZH all the
annotations of the corresponding states of X'y, Xo,..., X),.

The automated synthesis of the composite service consists in generating a new state
transition system X, that, once connected to ZH, satisfies the composition requirement.
We now define formally the state transition system describing the behaviors of 2’ when
connected to X..

Definition 4 (Controlled system [16]). Let ¥ = (S,S°,Z,0,R) and Y. =
(8¢,8%, T, 0., R.) be two state transition systems such that T = O, and O = T..
The state transition system 3. > X, describing the behaviors of system X when con-
trolled by 3., is defined as follows:

b X =(S: x85,8x8°7,0,R.>R)
where:

= (8¢, 8),7,(5.,8)) € (Re>R) if (S, T, 8L) € Res
- <(SC7 S)7T7 <SC7 Sl)) € (RC DR) l.f<877'7 $/> € R’.
- {(8¢,8),a,(s.,8")) € (Re>R), witha # 7, if ($¢,a,5.) € Reand (s,a,s’) € R.

This definition can be easily extended to the case of an annotated STS. Indeed, the
composite service X, has no annotations, and hence the annotations of a state of Y. > I"
are those of the corresponding state in I
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In a web service composition problem, we need to generate a 3/, that guarantees the
satisfaction of a composition requirement p. This is formalized by requiring that the
controlled system X > I} must satisfy p, written X, > I} |= p.

Definition 5 (goal satisfaction). Let I' = Y. > I}, and let p = (i, 0,p, ) be a compo-
sition requirement.

— We say that I" strongly satisfies p, written I' |=, p if all final states s of I are such
that (T, A(s) Ui Uo) = p.
— We say that I" weakly satisfies p, written I" |=,, p if all final states s of I' are such
that (T, A(s)UiUo) E=por(T,A(s)UilUo) =r.
— We say that I satisfies p, written I" |= p if:
o I'=sp or
o I' =y p andthereisno I'" = X! > I' such that I |=; p.

According to this definition, a controlled system satisfies a composition goal if: either
(1) all the states reached at the end of the computation satisfy the principal condition (in
this case we say that the goal is satisfied in a strong way), or (2) all the states reached at
the end of the computation satisfy either the principal or the recovery condition (in this
case we say that the goal is satisfied in a weak way) and no strong satisfying controller
can be defined (i.e., a weak satisfaction is the best we can achieve).

Definition 6 (Composition problem [16]). Let I}, ..., I, be a set of annotated state
transition systems on the same terminology T, and let p be a composition requirement.
The composition problem for I'y, ..., I, and p is the problem of finding a state transi-
tion system X such thaﬂ

Zeo (]l | L) E e

5 Automated Synthesis of the Process Composition

In [[15,[16], an algorithm is described that automatically generates the composite ser-
vice X, starting from the component services X,..., 2, and the composition require-
ment p. Moreover, the algorithm has been implemented within the ASTRO toolset (see
http://www.astroproject.org/) and applied to different domains, showing that it is able to
compose complex services in a very small amount of time, much smaller than the time
required for a manual implementation of the composite process.

However, in [15/16] the component STSs did not exploit semantic annotations, and
the composition requirement was based on propositional logic instead of description
logic and ontologies. Our goal is to extend the approach of [[15,[16] to the case of pro-
cess composition with semantic annotations. There are different ways to achieve this.

* The definition of composition problem in [I5[I6] takes into account a further requirement for
the composite process, that is, it should be deadlock free. Intuitively, this means that the system
should never reach a state where both the component services and the composite services are
blocked waiting for inputs. For simplicity, we omitted this property from the definition reported
in this paper.
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Here, we adopt a very simple approach, consisting in transforming the constraints in
the composition requirement into propositional formulas through a grounding process.
Once this has been done, the semantic annotations of the component STSs can be inter-
preted as “syntactic” annotations, that are not subject to subsumption, and the algorithm
of [[15[16] can be reused. We now describe in detail the grounding process.

The aim of the composition process is to define in a suitable way the output individ-
uals of the composition goal, so that the principal or recovery conditions are satisfied.
The grounding process consists in looking in the ontology for all the concepts that are
subsumed by the concepts of the output concept assertions in the goal, and to refor-
mulate the conditions in the goal using the union of all these concepts for the output
individuals, as shown in the following example.

Example 7. The goal in Example[6 defines two output concept assertions, tr: Trip and
ac: Accommodation. In the terminology of Figurelll there are two concepts subsumed by
Trip, namely Flight and Train, and two concepts subsumed by Accommodation, namely
Hotel and GuestHouse. Taking this into account, the principal goal can be grounded as
follows:

tr: (Trip L Flight U Train) & tr.status = booked
& tr.date = date & tr.start = start & tr.destination = dest & tr.pax = client
& ac: (Accommodation LI Hotel LI GuestHouse) & ac.status = booked
& ac.date = date & ac.location = dest & ac.pax = client

Similarly, the recovery condition can be grounded as:

tr: (Trip L Flight U Train) & tr.status # booked
& ac: (Accommodation U Hotel LI GuestHouse) & ac.status # booked

The following result shows the correctness of re-using the existing algorithms of
[L5L[16] on the ground requirement.

Theorem 1 (Soundness and completeness w.r.t. composition). Let p be a composi-

tion requirement and py be the corresponding grounded requirement w.r.t. terminology
T. Then

ol ) e i Zeo (X0 ] 20) =g pg

where |= is satisfiability with goal conditions interpreted as propositional formulas.

6 Related Work and Conclusions

In this paper we propose a practical approach to the composition of semantic web ser-
vices. We keep separated the procedural and the ontological description of services, and
link them through semantic annotations. We then integrate reasoning mechanisms at the
ontological and at the process level.

This approach is novel with respect to existing literature. Form the one side, several
works propose approaches to process-level composition that do not address explicitly
the need for (reasoning about) semantic descriptions of web services [[7,3L15,13]]. From



A Minimalist Approach to Semantic Annotations for Web Processes Compositions 633

the other side, most of the work on automated composition of semantic web services has
focused so far on the problem of composition at the functional level, i.e., composition of
atomic services that can be executed in a single request-response step (see, e.g. [L1L15]).

The work on WSDL-S and METEOR-S [18[12,21]] provides semantic annotations
for WSDL. It is close in spirit to ours, but does not deal with semantically annotated
(BPEL) process-level descriptions of web services. The work in [§] is also close in
spirit to our general objective to bridge the gap between the semantic web framework
and languages proposed by industrial coalitions. However, [8] focuses on a different
problem, i.e., that of extending BPEL with semantic web technology to facilitate web
service interoperation, while the problem of automated composition is not addressed.

Recently, an increasing amount of work is dealing with the problem of com-
posing semantic web services taking into account their behavioral descriptions
[10L123,120,1144122]. In this context, the research community is following two related
but different main approaches: OWL-S [4] and WSMO [22]]. Approaches based on OWL-
S [10L123/[20,/14]] are different from the one proposed in this paper, since, in OWL-S,
even processes are described as ontologies, and therefore there is no way to separate
reasoning about processes and reasoning about ontologies. The approach undertaken in
WSMO is closer in spirit to ours: processes are represented as Abstract State Machines,
a well known and general formalism to represent dynamic behaviors. The idea under-
lying WSMO is that the variables of Abstract State Machines are all defined with terms
of the WSMO ontological language. Our processes work instead on their own state vari-
ables, some of which can be mapped to a separated ontological language, allowing for
a minimalist and practical approach to semantic annotations and for effective reasoning
to compose services automatically. Indeed, the aim of the work on WSMO is to propose
a general language and representation mechanism for semantic web services, while we
focus on the problem of providing effective techniques for composing automatically
semantic web services.

It would be interesting to investigate how our approach can be applied to WSMO
Abstract State Machines rather than BPEL processes, and how the idea of minimal-
ist semantic annotations can be extended to work with WSMO orchestration languages
and mechanisms, such that we could exploit our automated composition techniques ef-
fectively in this framework. In this context, we plan also to integrate our proposal for
automated composition with techniques for web service discovery, a problem that we
do not address in this paper.
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