
Turning the Mouse into a Semantic Device: The seMouse
Experience�

Jon Iturrioz, Sergio F. Anzuola, and Oscar Díaz

The Onekin Group
Department of Languages and Computer Systems

University of Basque Country
Po Manuel de Lardizabal, 1

20.018 San Sebastián (Spain)
{jon.iturrioz, jibfeans, oscar.diaz}@ehu.es

Abstract. The desktop is not foreign to the semantic way that is percolating
broad areas of computing. This work reports on the experiences on turning the
mouse into a semantic device. The mouse is configured with an ontology, and
from then on, this ontology is used to annotate the distinct desktop resources.
The ontology plays the role of a clipboard which can be transparently accessed
by the file editors to either export (i.e. annotation) or import (i.e. authoring) meta-
data. Traditional desktop operations are now re-interpreted and framed by this on-
tology: copy&paste becomes annotation&authoring, and folder digging becomes
property traversal. Being editor-independent, the mouse accounts for portability
and maintainability to face the myriad of formats and editors which characterizes
current desktops. This paper reports on the functionality, implementation, and
user evaluation of this “semantic mouse”.

Keywords: Semantic Annotation, Knowledge Management, Metadata and On-
tologies.

1 Introduction

Hard-disk drives enjoy an increasing storage capacity that, however, has not come along
with a similar improvement on mechanisms that harness this storage power. It is at
least dubious whether current desktops have scaled to handle a number of files that
doubles or triples the ones a layman held a few years ago. Scalability not only includes
fault-tolerance or performance stability, but also the availability of tools that permit the
end user to harness this power. The lack of appropriate tools for locating, navigating,
relating or sharing bulky file sets are preventing PC users from taking full benefit of
their storage power.

Current efforts on enhancing operating systems with automatic meta-data extrac-
tion support (e.g. Spotlight for MAC1 or WinFS for Windows2) strive to overcome this
� This paper is an extension of a demostration poster presented at the First Semantic Desktop

Workshop.
1 http://www.apple.com/macosx/features/spotlight/
2 http://msdn.microsoft.com/library/default.asp?url=/library/en-

us/dnwinfs/html/winfs03112004.asp

Y. Sure and J. Domingue (Eds.): ESWC 2006, LNCS 4011, pp. 457–471, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

458 J. Iturrioz, S.F. Anzuola, and O. Díaz

shortcoming. However, these proposals are format-oriented. That is, the extension of
the file (e.g. .doc .ppt .html) determines the meta-data to be extracted. If all files belong
to the same extension, identical meta-data is extracted from all of them. The extractor
does not consider the semantics of the content, but the format of the container. This
falls short in a desktop setting where the meta-data to be extracted is highly dependent
on the user’s mental model. The ontology should not be format-centric but user-centric.
But this can be cumbersome if appropriate tooling is missing.

Distinct works strive to provide sophisticated new environment or enhancing current
tools for achieving the semantic desktop[17, 18, 2]. However, most often this implies
for the user to move to a new editor when annotating (like in SMORE [12]), or to
learn a new “ontological interface” when files from different formats are edited (like in
SemanticWord [19]). This can pose important usability issues that refrain the adoption
of the semantic desktop.

Based on this observation, this work rather than providing separate tools for anno-
tation & authoring, enhances a popular tool for traditional copy&paste operations: the
mouse. This will certainly facilitate user adoption.

To this end, the semantic mouse (seMouse) is introduced. By clicking on its middle
button, seMouse exports/imports properties from the ontology, regardless of the editor
you are working with. It does not matter whether you are working with Word, Excel,
PowerPoint, Adobe Acrobat, Netscape, etc, the “semantic” button is available for anno-
tation/authoring.

The rest of the paper is organized as follows. Section 2 addresses related work. Sec-
tion 3 introduces seMouse through five scenarios, namely, file classification, annotation,
authoring, semantic navigation and ontology editing. As previously mentioned, usabil-
ity is one of the main objectives of our tool, so an evaluation is addressed in section 4.
The architecture of the implementation is introduced in section 5. Finally, conclusions
are given.

2 Framing the Work

This work aligns with current efforts for desktops to become semantic-aware[9, 3, 17].
The endeavors target different goals, namely, semantic infrastructure (e.g. Gnowsis
[17]), resource organization (e.g. Fenfire [4], Haystack [13]), annotation/authoring of
resources (e.g. SemanticWord [19]).

For the purpose of this paper, approaches to inlaying semantics into desktops can
be classified in accordance with the coupling between editing concerns (e.g. spelling,
grammar checking, layout) and “ontological” concerns (e.g. authoring, annotation).
Some approaches to annotation detach the process of annotation from that of authoring
(e.g. Ont-O-Mat [6]). Others, like SMORE [12], do both (i.e. authoring and annotation)
but using ad-hoc editors.

By contrast, SemanticWord [19] integrates semantic capabilities into MS Word edi-
tor so that the text of the document can be analyzed and annotated as it is being typed,
appearing to the author as a service analogous to Word’s spelling and grammar check-
ing. Moreover, the MS Word GUI is augmented with toolbars that support the annota-
tion process. The use of a popular editor certainly facilitates the introduction of these

Turning the Mouse into a Semantic Device: The seMouse Experience 459

Table 1. Tool comparison table

Feature Ont-O-Mat Semantic
Word OntoOffice SMORE seMouse

coupling Proprietary editor Word plug-in
MS Office

plug-in

Proprietary

editor

Windows

plug-in

file-format support HTML
MS Word

documents

MS Office

Documents

HTML, mail

format
Any type

attachment availability Yes Yes No No No

GUI device for seman-

tic interactions
Drag & drop

Toolbars and

cascading

menus

MS SmartTags
Right mouse

button and forms

Center mouse

button and

pop-up menus

Annotation subject Text Text File Text File

Automatic metadata

extraction

Yes, using

Amilcare
Yes, using

AeroDAML
No No No

techniques into the desktop. Unfortunately, this only works for Word. Other editors
would require similar enhancements.

Table 1 compares distinct approaches along the following dimensions:

– coupling, which denotes how semantic tooling (i.e. annotation, authoring) is cou-
pled with either the resource format, the editor or the operating system. The editor
alternative admits two additional options depending on whether the editor has been
developed ad hoc for annotation purposes, or it is realized as a plug-in for an exist-
ing editor. According to this criterion, seMouse is the less coupled solution.

– file-format support, which indicates the type of formats the tool can handle. This is
somehow related with the previous criterion in the sense that the lesser the coupling,
the broader the file types handled by the tool. By working at the operating-system
level, seMouse can be integrated with any editor available for Windows.

– attachment availability, which refers to the possibility of attaching the metadata
to the file itself. Most formats permit to do so. This is an interesting option in case
a file needs to be shared with other users or environments. However, the vocabulary
and attaching mechanism used commonly depends on the format/editor used. For
instance, Adobe is promoting the Extensible Metadata Platform (XMP) initiative3

whereas OpenOffice4 has a different set of metadata which also overlaps (but does
not totally coincide) with Dublin Core5. To complicate things further, how metadata
is attached to the document can also vary. As a result of this heterogeneity and pro-
prietary formats, extracting the embedded metadata results in a high programming
and maintenance effort as it has been particularized for each format.

– GUI device for semantic interactions, which refers to the GUI device used for
annotation/authoring. Loose-coupling approaches complicate a seamless integra-
tion (if any) with the GUI of the chosen editor. For semantic-lite tooling, this can
pose no problem as the mouse can give enough support. This is the option taken by

3 http://www.adobe.com/products/xmp/main.html
4 http://www.openoffice.org
5 http://dublincore.org

460 J. Iturrioz, S.F. Anzuola, and O. Díaz

Fig. 1. A sample ontology

Fig. 2. SeMouse window to load the ontology

seMouse. However, more sophisticated tooling can make the mouse fall short, and
require a tighter integration with the editor’s GUI. SemanticWord is a nice example.

– annotation subject, which indicates the granularity of the element being annotated.
Alternatives include the file as a whole, or regions of text within a file.

– automatic metadata extraction, where the availability of mechanisms for auto-
matic annotation is indicated.

This work strives to introduce ontological concerns as seamless as possible into cur-
rent desktops. Hence, our preferences align with those of SemanticWord. However, the
myriad of formats which can be found in current desktop (e.g .doc, .xml, .gif, .java,
.pdf to mention a few), and the corresponding editors, vindicate the use of an editor-
independent solution. Our bet is to use the mouse to attain this aim.

Rather than using the extensibility technology provided by each editor (e.g. Ac-
tiveX controls in the case of Word), we move down to the operating system so that the
solution can be available to no matter which editor. The result is seMouse (Semantic
MOUSE), an annotation/authoring tool that achieves editor-independence by work-
ing at the operating-system level. By clicking on its middle button, data can be ex-
ported/imported from the ontology regardless of the editor you are working with.

Turning the Mouse into a Semantic Device: The seMouse Experience 461

Fig. 3. Scenario 1: file classification

In this way, the user does not have to move to a new editor when annotating (like
in SMORE), nor has to learn a new “ontological interface” when files from different
formats are edited (like in SemanticWord).

The downside is usability. Enhancing current editors with “ontological concerns”
certainly leads to more appealing and sophisticated interfaces. SemanticWord is a case
in point. However, this advantage dilutes in a multi-editor scenario, where the seMouse
approach ensures the same annotation/authoring tool no matter which editor is being
used.

Another comparison of semantic annotation tools can be found in [14].

3 seMouse at Work

seMouse is an annotation/authoring extension of the mouse device that achieves editor-
independence by working at the operating-system level. This section introduces se-
Mouse with the help of an example.

Consider the heterogeneous documents that goes with a research project. This in-
cludes the project proposal (e.g. one Word file), bills payed with the project funding
(e.g. twenty Excel files), papers as deliverables of the project (e.g. twenty files in both
.pdf and .doc formats), participants (whose desktop counterpart can be either the home-
page, an .html resource, or a .pdf resource) and comments (being realized as either
emails or .doc resources).

Regardless of their format and folder location, it is likely that a high degree of con-
tent reuse as well as frequent contextual navigations within this “file space” happens.
Being in a participant -an html file-, you frequently need to locate her project proposals
-Word files-, or being in a project proposal, the associated papers -PDF files- are com-
monly accessed. This contextual navigation indicates the existence of a mental model.
This mental model is made explicit through an ontology. This ontology serves then to
configure seMouse. From then on, the mouse can be used to annotate & author file
documents.

462 J. Iturrioz, S.F. Anzuola, and O. Díaz

Fig. 4. Scenario 2: annotation. Some text is selected. Being a deliverable file, the menu displays
properties of this class. The text will become the value of the chosen property.

As an example consider the ontology depicted in figure 1. It includes four classes
which are characterized by a set of value-based properties (e.g. title, keyword, ab-
stract). Associations are defined between these classes (e.g. a project is supervisedBy a
participant).

However the tool is open to load any ontology stored in web ontology repositories6

using the window shown in the figure 2 . The user introduces the name of a required
class, and the system using the web services offered by the ontology repositories, shows
in a scrollable listbox all the ontologies that contains the input class. The user must
select the appropriate ontology clicking on the load button, and the ontology is uploaded
on the semantic desktop.

Once seMouse is configured with the ontology, interactions with the underlying on-
tology are achieved via mouse clicks. Specifically, pressing the middle button on the
mouse causes an interaction with the ontology manager (part of the seMouse installa-
tion). This interaction is context-schema sensitive, i.e. the button accomplishes distinct
operations depending on the place the pointer sits on. Next paragraphs introduce five
scenarios of the use of the semantic mouse.

Scenario 1: file classification (see figure 3). First of all, files need to be identified
as instances of any of the ontology’s classes. This is achieved by opening a file, and
pressing the middle button. A menu pops up for the user to indicate to which class this
file is a resource.

Scenario 2.1: property annotation (see figure 4). Annotation&authoring becomes the
counterpart of copy&paste in traditional desktops, with the difference that now these
operations are conducted along the ontology net. What is being exported(i.e. copy) is
no longer a string but a class property of the ontology.

If a file has already been categorized, the annotation process may begin. If some
text is selected, the mouse is used to export this text as part of the value of a property
as it is shown in figure 4. Of course, the set of properties will depend on the class of

6 schemaweb.info or swoogle.umbc.edu.

Turning the Mouse into a Semantic Device: The seMouse Experience 463

Fig. 5. Scenario 2: annotation. No text is selected. The menu shows associations of the file class.

the resource. In the example, title, keyword and abstract correspond to properties of the
deliverable class.

Scenario 2.2: association annotation (see figure 5). Once a file has been categorized,
if no text is selected, the middle button is used to establish associations with other files.
This situation is exemplified in figure 5. In this case, the CORDIS project template 7

for EEC projects has been used. This Word document has been classified as Project
class instance, and when the middle button is pressed, a menu pops up for the user to
link the current resource with other target resources. The menu is customized for the
current resource, that is, the associations are restricted to those available for the current
resource, whereas the target of all the associations are also limited to those files of
the appropriated class. In the example, if the user selects the delivers association, the
association can only be established with Deliverable files, since this is the destination
class of the delivers association. The upper part of the delivers menu shows all the
associations already annotated.

Scenario 3: authoring (see figure 6). Associations being set during annotation can now
be exploited. For instance, the project resource can import the title of its associated
deliverable resources. In the example, the article “Authoring and Annotation of Web
Pages in CREAM” appears as a deliverable of the current file. By selecting this article,
the menu is extended right wise to show up its properties. The user can select one of
these properties, and its value is inserted at the cursor place.

Scenario 4: semantic navigation (see figures 7 and 8). File location in current desktops
frequently implies folder digging. By contrast, semantic navigation strives to exploit
the associative behavior of the human memory. A resource can be located from the
resources it is related to. That is, the ontology provides the context to facilitate resource
location.

7 http://dbs.cordis.lu/cordis-cgi/autoftp?FTP=/documents_r5/natdir0000035/
s_2064005_20050316_104351_2064en.wd9.doc&ORFN=2064en.wd9.doc

464 J. Iturrioz, S.F. Anzuola, and O. Díaz

Fig. 6. Scenario 3: authoring. The title of a deliverable is imported into a project resource.

Once a file has been selected, semantically-related files can be located by pressing
the middle button, regardless of the folders where these files are physically located,
providing a resource-centric navigation. This facilitates location of neighbor resources,
but it may be cumbersome whenever browsing is required. In this case, a graph-based
RDF visualizer can be a better option (see [5] for an overview of RDF visualizers).

In this work, the Welkin8 editor has been extended for our purposes. Figure 8 de-
picts the graph for our sample problem. Some of the nodes stand for resources (i.e.
documents). Welkin has been extended so that clicking on one of these nodes makes
the corresponding resource to be edited. In this way, Welkin becomes a “resource
explorer”.

If the user does not want to use external applications, another available way to nav-
igate through the associations of the resource is shown in the figure 7. The user clicks
the middle button on a resource, and selecting one of its associations, all the resources
related with chosen association are displayed in a search window.

Scenario 5: ontology editing. Back to the desktop, the ontology can be edited by press-
ing the middle button of the mouse with no file selected. In this case, the associated
action calls an ontology editor like Protégé [8].

Nevertheless, some authors argue that current tools for ontology creation are too
difficult for ordinary users [15, 14]. The authors empirically found that “the effort to
select a class before typing in an annotation discouraged use of the tool” (Protégé in
this case)”. This observation is pertinent in the context of this work as we care for
usability.

So far, seMouse is a tool for authoring and annotation, and we take the ontology
for granted. However, the semantic desktop should provide for seamless ontology cre-
ation as well. In [15] the authors discuss an extreme approach to authoring whereby
users immediately created metadata without defining the ontology first: “it is our belief

8 http://simile.mit.edu/welkin/index.html

Turning the Mouse into a Semantic Device: The seMouse Experience 465

Fig. 7. Scenario 4: semantic navigation. The user can navigate along the associations: from a
project resource to its deliverables.

that ontologies can be created later in a bottom-up fashion, as the by-product of cre-
ating and using data, rather than a straightjacket that inhibits the evolution of domain
vocabularies”.

We plan to extend seMouse for ontology creation. Rather than creating classes and
properties out of the blue, seMouse will facilitate dynamic definition of classes and
properties, as resources are being annotated and investigate on how much meta-data
can be automatically inferred from the type and context of the resource.

4 Evaluating seMouse Usability

We adopt ISO’s broad definition of usability [1] as consisting of three distinct aspects:

– Effectiveness, which is the accuracy and completeness with which users achieve
certain goals. Indicators of effectiveness include quality of solution and error rates.
In this study, we use quality of solution as the primary indicator of effectiveness,
i.e. a measure of the outcome of the user’s interaction with the system.

– Efficiency, which is the relation between (1) the accuracy and completeness with
which users achieve certain goals and (2) the resources expended in achieving
them. Indicators of efficiency include task completion time and learning time. In
this study, we use task completion time as the primary indicator of efficiency.

– Satisfaction, which is the users’ comfort with and positive attitudes toward the use
of the system. Users’ satisfaction can be measured by attitude rating scales such as
SUMI [10]. In this study, we use preference as the primary indicator of satisfaction.

Subjects. The experiment was conducted among 6 PhD students. They have a good
background on computing but they have never been exposed to semantic issues. Hence,
a ten-minute talk was given introducing the purpose and functionality of seMouse.

Given material. Two documents were prepared. First, a UML diagram of the figure 1
describing the ontology and second, a document describing the set of 16 files of distinct

466 J. Iturrioz, S.F. Anzuola, and O. Díaz

Fig. 8. Graphical representation of our sample domain using Welkin

types (PDF, DOC, PPT and HTML) and of different semantic concepts (Projects, De-
liverables and Participants). Table 2 indicates for each file its class and its associations
corresponding to a fictitious project. Students were familiar with the UML notation so
they quickly caught the main classes and associations of the ontology.

Tasks. In the experiment each subject has to complete the task of creating a knowledge
folder. This includes:

1. file classification. Each file should be classified according to its class (scenario 1).
The 16 files correspond to 2 projects, 10 deliverables, and 4 participants.

2. annotation. The key property of each resource (i.e. title, fullname, etc) is annotated
and the associations between the resources are now established (scenario 2).

3. authoring. Once a project document is open, take advantage of the relationships to
fill in the tables of participants and deliverables as shown in scenario 3.

4.1 Results

Effectiveness. All the students complete their tasks without any additional help. This
makes us think that the GUI is intuitive enough. It should be noted that the number of
resources to be annotated, sixteen, was rather small, although there are not yet experi-
ences on the average size of resources handled by a layman on his daily tasks. If the
number of resources is too large, the solution is not within the scope of desktop tooling
but content management frameworks. Nevertheless, the notion of knowledge folder also
helps to split the resource bulk into meaningful clusters so that seMouse does not have
to cope with too numerous resources.

Efficiency. The classification and “key attribute” annotation took on average, 30”. On
the other hand, the students spent 10” on average to establish an association between

Turning the Mouse into a Semantic Device: The seMouse Experience 467

Table 2. Resources and their associations to be established by the participants during the test

Key attribute File type Class Relation

1 Semantic Web .doc Project delivers:[3][4][5][6]

[7][8][9][10]

formedBy:[13][14][15]

2 Personal Information Management .doc Project delivers:[3][4][5][6]

[11][12]

formedBy:[13][14][16]

3 Authoring and Annotation of Web Pages in CREAM .pdf Deliverable fundingBy:[1][2]

4 Incremental Formalization of Document Annotations .pdf Deliverable fundingBy:[1][2]

5 Trends in Database Development: XML, .NET, WinFS .ppt Deliverable fundingBy:[1][2]

6 Semantic Annotation of Web Services (SAWS) .doc Deliverable fundingBy:[1][2]

7 Semantic (Web) Technology in Action: Ontology Driven

Information Systems for Search, Integration and Analysis

.doc Deliverable fundingBy:[1]

8 OWL: An Ontology Language for the Semantic Web .ppt Deliverable fundingBy:[1]

9 The Semantic Desktop: an architecture to leverage docu-

ment processing with metadata

.pdf Deliverable fundingBy:[1]

10 Towards the Self Annotating Web .pdf Deliverable fundingBy:[1]

11 Mining the Semantic Web .doc Deliverable fundingBy:[2]

12 Semantic Word Processing for Content Authors .pdf Deliverable fundingBy:[2]

13 Steffen Staab .html Participant participatesIn:[1][2]

14 Siegfried Handschuh .html Participant participatesIn:[1][2]

15 Yolanda Gil .html Participant participatesIn:[1]

16 Tim Berners-Lee .html Participant participatesIn: [2]

Table 3. Questionnaire to assess seMouse usability

two resources. The last task, authoring, i.e. obtaining the participants’ name and deliv-
erables’ title took on average, 15” per resource.

Satisfaction. To measure this property a questionnaire was provided to the subjects.
Table 3 summarizes the result of the test along the Likert scale: Strongly agree (5),
Agree (4), Neutral (3), Disagree (2), Strongly disagree (1). All the students agree on the
usefulness of semantic annotation for improving location and navigation in the resource

468 J. Iturrioz, S.F. Anzuola, and O. Díaz

space. As for seMouse, questions 3 and 4 show that the students were neutral about its
GUI. More interesting is the deviations on the opinion about overloading the mouse
with semantic operations: 2 strongly agree, 2 agree and 2 disagree. Although they all
appreciate the format-independence provided by seMouse, some of them were not ac-
customed to use the middle button that they found counter-intuitive. This situation can
however improve as the users get more practice on using this gadget. Finally, classifi-
cation and annotation was found intuitive to be achieved through seMouse. Association
establishment was found more complicated.

5 The seMouse Architecture

The DOGMA initiative [11] is promoting a formal-ontology engineering framework
that basically consists of a three-layer architecture, namely, the layer of the heteroge-
neous data sources, the ontology layer, and the consumers’ layer. Mappings between
these layers are established with the help of wrappers that lift these data sources onto
a common ontology model and of integration modules (mediators in the dynamic case)
that reconcile the varying semantics of the different data sources.

Basically, we follow this architecture where both sources and consumers are re-
stricted to be resource handlers (either readers or editors); the ontology model is OWL;
and the flow between resource handlers and the ontology is achieved through the mouse.
The issue of semantic heterogeneity is not addressed in this work.

The seMouse architecture comprises three components (see figure 9), namely, the
OntologyManager component, which is realized using Joseki 9, the SemanticDesk-
top component, which is supported as a specialization of WindowsXP, and the Re-
sourceHandler whose interfaces are supported by editors or readers of documents (see
figure 9).

The IOntologyManager interface comprises methods to add/remove/update OWL
triples as well as to query and check the existence of a given resource. All these methods
find their realizations in the Joseki implementation where OWL triples are stored in the
Jena DBMS10.

The resourceHandler component holds two interfaces, IReader and IEditor, which
permit to extract or paste data from/to a file, respectively. Readers such as Acrobat
Reader only support IReader, whereas editors such as Word support both IReader and
IEditor. Implementation wise, these interfaces are supported through the WndProc func-
tion of Windows. Whenever anything happens to a window, the operating system will
call this function informing what has occurred. The message parameter contains the
message sent. The resource handler can then trap any message. In this case, however,
only two messages need to be caught: copy and paste.

The ISemanticDesktop interface describes those operations that mediate between
the resource handlers and the ontology manager. Its functionality resembles a kind of
clipboard, exporting and importing metadata among files (operations getText() and set-
Text()). Interactions with the semantic desktop are accomplished by pressing the middle
button of the mouse (e.g. the sendMessage(WM_MBUTTONDOWN) operation).

9 http://www.joseki.org
10 http://www.hpl.hp.com/semweb/jena.htm

Turning the Mouse into a Semantic Device: The seMouse Experience 469

Fig. 9. The seMouse architecture

Figure 10 depicts the interaction diagram among the seMouse components. The
semanticDesktop component has been unfolded to show its implementation classes,
namely, messageDispatcher, hook11, clipboard and the semanticDesktop class itself.

Figure 10 considers an annotation scenario. A file is opened and some text is se-
lected. By pressing the middle button of the mouse, a two step annotation process is
initiated. First (1.1), the mouse device sends a middle-button click message to the mes-
sageDispatcher. When the dispatcher detects that there is a hook associated to this
message, the hook is called (1.2); finally (1.3), the hook invokes the semanticDesktop
which causes a menu to be popped up. In the second interaction (2.1), the user, through
the mouse device, selects the annotation operation to apply to the selected text (2.2).
The semanticDesktop sends a copy message to the resourceHandler through the mes-
sageDispatcher, and (2.3) the application copies the selected text into the clipboard.
Finally (2.4), the text is retrieved by the semanticDesktop from the clipboard which, in
turn, builds up the OWL triple.

11 A Window hook is “a point in the system message-handling mechanism where an application
can install a subroutine to monitor the message traffic in the system and process certain types of
messages before they reach the target window procedure" [16]. So, hooks are basically event
handlers that catch the message sent to the window. Through hooks, these messages can be
modified or even discarded before they even reach the target window. In this implementation
we caught just one message: WM_MBUTTONDOWN which is sent if the middle button on the
mouse has been pressed. This has been attained using the Cool Mouse utility [7].

470 J. Iturrioz, S.F. Anzuola, and O. Díaz

Fig. 10. Interaction diagram among the seMouse components. The annotation use case.

6 Conclusions

This work strives to lower the adoption barrier of the semantic desktop by providing
seamless tooling. To this end, the mouse is proposed as the interactive device. In this
way, traditional desktop operations are now re-interpreted and framed by the ontology:
copy&paste becomes annotation&authoring, and folder digging becomes property tra-
versal. Moreover, through the mouse, the user can classify, annotate, author, and locate
a file as a resource of the underlying ontology. Being editor-independent, the mouse
accounts for portability and maintainability to face the myriad of formats and editors
which characterizes current desktops.

Similar to other areas of computing, a balance is needed between generality (e.g.
format-independence, editor-independence, etc), and functionality (i.e. the semantic
tooling available). seMouse illustrates a semantic-lite approach where a compact set
of functions are available to no matter which editor within Windows.

Acknowledgments. This work is partially supported by the Spanish Science and Tech-
nology Ministry (MCYT) under contract TIC2002-01442. Sergio F. Anzuola enjoys a
doctoral grant from the University of the Basque Country.

References

1. ISO 9241-11. Ergonomic requirements for office work with visual displays terminals(VDTs)
- Part 11: Guidance on usability. Technical report, ISO, 1998.

2. Adam Cheyer, Jack Park, and Richard Giuli. IRIS: Integrate. Relate. Infer. Share. In 1st
Workshop on The Semantic Desktop, November 2005.

3. Stefan Decker and Martin Frank. The Social Semantic Desktop. Technical report, Digital
Enterprise Research Institute (DERI), May 2004.

Turning the Mouse into a Semantic Device: The seMouse Experience 471

4. Benja Fallenstei. Fentwine: A navigational rdf browser and editor. In Proceedings of 1st
Workshop on Friend of a Friend, Social Networking and the Semantic Web, August 2004.

5. John Gilbert and Mark H. Butler. Review of existing tools for working with schemas, meta-
data, and thesauri. Technical report, Hewlett Packard Laboratories, October 2003.

6. Siegfried Handschuh and Steffen Staab. Authoring and Annotation of Web Pages in
CREAM. In The Eleventh International World Wide Web Conference WWW2002, pages
462–473, 2002.

7. Shelltoys Inc. Cool Mouse - Mouse Wheel and Middle Mouse Button Utility, 2004.
http://www.shelltoys.com/mouse_software/index.html.

8. Stanford Medical Informatics. The Protégé; ontology editor and knowledge acquisition sys-
tem, 2004. http://protege.stanford.edu/.

9. Jon Iturrioz, Oscar Díaz, Sergio F. Anzuola, and Iker Azpeitia. The Semantic Desktop: an
architecture to leverage document processing with metadata. In Proceedings of the VLDB
Workshop on Multimedia and Data Document Engineering (MDDE’03), September 2003.

10. Kirakowski J. and Corbett M. SUMI: The software usability measurement inventory. British
Journal of Educational Technology, 24(3):210–212, 1993.

11. Mustafa Jarrar and Robert Meersman. Formal Ontology Engineering in the DOGMA Ap-
proach. In On the Move to Meaningful Internet Systems, 2002 - DOA/CoopIS/ODBASE 2002
Confederated International Conferences DOA, CoopIS and ODBASE 2002, pages 1238–
1254. Springer-Verlag, 2002.

12. Aditya Kalyanpur, James Hendler, Bijan Parsia, and Jennifer Golbeck. SMORE - Semantic
Markup, Ontology, and RDF Editor. http://www.mindswap.org/papers/SMORE.pdf, 2004.

13. David R. Karger and Dennis Quan. Haystack: A User Interface for Creating, Browsing,
and Organizing Arbitrary Semistructured Information. In CHI 2004 Conference on Human
Factors in Computing Systems, April 2004.

14. Brian Kettler, James Starz, William Miller, and Peter Haglich. A Template-based
Markup Tool for Semantic Web Content. In 4th International Semantic Web Conference
2005,ISWC2005, November 2005.

15. Robert MacGregor, Sameer Maggon, and Baoshi Yan. MetaDesk: A Semantic Web Desktop
Manager. In Knowledge Markup and Semantic Annotation Workshop, ISWC 2004, Novem-
ber 2004.

16. Steve McMahon. Win32 Hooks in VB - The vbAccelerator Hook Library,
2003. http://www.vbaccelerator.com/home/VB/Code/Libraries/Hooks/vbAccelerator_
Hook_Library/article.asp.

17. The Gnowsis Project. Leo sauermann, 2005. http://www.gnowsis.com.
18. The Haystack Project. Haystack team, 2005. http:/haystack.lcs.mit.edu.
19. Marcelo Tallis. Semantic Word Processing for Content Authors. In Workshop Notes of

Knowledge Markup and Semantic Annotation Workshop (SEMANNOT 2003). Second Inter-
national Conference on Knowledge Capture (K-CAP 2003), October 2003.

	Introduction
	Framing the Work
	$seMouse$ at Work
	Evaluating $seMouse$ Usability
	Results

	The $seMouse$ Architecture
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

