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Abstract. In this paper we present a MOF compliant metamodel and
UML profile for the Semantic Web Rule Language (SWRL) that inte-
grates with our previous work on a metamodel and UML profile for OWL
DL. Based on this metamodel and profile, UML tools can be used for
visual modeling of rule-extended ontologies.

1 Introduction

An ontology defines a common set of concepts and terms that are used to de-
scribe and represent a domain of knowledge. The manual creation of ontologies is
a labor-intensive, expensive, often difficult, and – without proper tool support –
an error-prone task. Visual syntaxes have shown to bring many benefits that sim-
plify conceptual modeling [18]. As for other modeling purposes, visual modeling
of ontologies decreases syntactic and semantic errors and increases readability.
It makes the modeling and use of ontologies much easier and faster, especially if
tools are user-friendly and appropriate modeling languages are applied.

The usefulness of a visual syntax for modeling languages has been shown
in practice; visual modeling paradigms such as the Entity Relationship (ER,
[4]) model or the Unified Modeling Language (UML, [5]) are used frequently
for the purpose of conceptual modeling. Consequently, the necessity of a visual
syntax for KR languages has been argued frequently in the past [6, 12]. Particular
representation formalisms such as conceptual graphs [19] or Topic Maps [11], for
example, are based on well-defined graphical notations.

Description Logic-based ontology languages such as OWL, however, are usu-
ally defined in terms of an abstract (text-based) syntax and most care is spent on
the formal semantics, neglecting the development of good modeling frameworks.
In our previous work [3], we therefore have developed a Meta Object Facility
(MOF, [14]) metamodel for the purpose of defining ontologies, called Ontology
Definition Metamodel (ODM), with specific focus on the OWL DL language,
along with a UML profile for the purpose of visual modeling.

In the meantime, rule extensions for OWL have been heavily discussed [20].
Just recently the W3C has chartered a working group for the definition of a Rule
Interchange Format [21]. One of the most prominent proposals for an extension
of OWL DL with rules is the Semantic Web Rule Language (SWRL, [9]). SWRL
proposes to allow the use of Horn-like rules together with OWL axioms.
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A high-level abstract syntax is provided that extends the OWL abstract syn-
tax described in the OWL Semantics and Abstract Syntax document [17]. An
extension of the OWL model-theoretic semantics provides a formal meaning for
SWRL ontologies.

The definition of a visual notation for SWRL rules is currently missing. There-
fore, this paper defines a metamodel and UML profile for SWRL that extends
and complements our previous metamodel and UML profile for OWL DL. Our
goal is to achieve an intuitive notation, both for users of UML and description
logics as well as for rule-based systems. Naturally, the proposed metamodel has a
one-to-one mapping to the abstract syntax of SWRL and OWL DL and thereby
to their formal semantics.

The paper is organized as follows: Section 2 introduces the Meta Object Fa-
cility (MOF) and our previous work on an OWL DL metamodel along with its
UML profile. Section 3 presents our extensions of the ODM towards SWRL rules.
Section 4 introduces a UML Profile for the modeling of rules and explains the
major design choices made in order to make the notation readable and intuitive
both for users with UML background and for users with a background in OWL
and rule-based systems. In Section 5 we discuss related work. We conclude in
Section 6 by summarizing our work and discussing future research.

2 An Ontology Definition Metamodel of OWL Within
the MOF Framework

This section introduces the essential ideas of the Meta Object Facility (MOF)
and shows how the Ontology Definition Metamodel (ODM) and the UML On-
tology Profile (UOP) fit into this more general picture. The need for a dedicated
visual ontology modeling language stems from the observation that an ontology
cannot be sufficiently represented in UML [8]. The two representations share a
set of core functionalities such as the ability to define classes, class relationships,
and relationship cardinalities. But despite this overlap, there are many features
which can only be expressed in OWL, and others which can only be expressed
in UML. Examples for this disjointness are transitive and symmetric properties
in OWL or methods in UML. For a full account of the conceptual differences we
refer the reader to [10].

UML methodology, tools and technology, however, seem to be a feasible ap-
proach for supporting the development and maintenance of ontologies. The gen-
eral idea of using MOF-based metamodels and UML profiles for this purpose is
depicted in Figure 1 and explained in the following:

1. The ODM and the UOP are grounded in MOF, in that they are defined in
terms of the MOF meta-metamodel, as explained in Section 2.1.

2. The UML profile defines a visual notation for OWL DL ontologies, based on
the above mentioned metamodel. Furthermore, mappings in both directions
between the metamodel and this profile are established.

3. Specific OWL DL ontologies instantiate the Ontology Definition Metamodel.
The constructs of the OWL DL language have a direct correspondence with
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those of the ODM. Analogously, specific UML models instantiate the UML
Ontology Profile. The translation between the UML models and OWL on-
tologies is based on the above mappings between the ODM and the UOP.

Fig. 1. An ontology to UML mapping allows existing tools to operate on compatible
aspects of ontologies

2.1 Meta Object Facility

The Meta Object Facility (MOF) is an extensible model driven integration
framework for defining, manipulating and integrating metadata and data in a
platform independent manner. The goal is to provide a framework that sup-
ports any kind of metadata and that allows new kinds to be added as required.
MOF plays a crucial role in the four-layer metadata architecture of the Object
Management Group (OMG) shown in Figure 2. The bottom layer of this archi-
tecture encompasses the raw information to be described. For example, Figure 2
contains information about a wine called ElyseZinfandel and about the Napa
region, where this wine grows. The model layer contains the definition of the
required structures, e.g. in the example it contains the classes used for group-
ing information. Consequently, the classes wine and region are defined. If these
are combined, they describe the model for the given domain. The metamodel
defines the terms in which the model is expressed. In our example, we would
state that models are expressed with classes and properties by instantiating the
respective meta classes. Finally, the MOF constitutes the top layer, also called
the meta-metamodel layer. Note that the top MOF layer is hard wired in the
sense that it is fixed, while the other layers are flexible and allow to express
various metamodels such as the UML metamodel or the ODM.

2.2 Ontology Definition Metamodel

The Ontology Definition Metamodel (ODM, [3]) defines a metamodel for on-
tologies. This metamodel is built on the MOF framework, which we explained in
Section 2.1. We defined an Ontology Definition Metamodel for OWL DL using
a notation which is accessible for users of UML as well as for OWL DL ontology
engineers. A metamodel for a language that allows the definition of ontologies
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MOF - Meta-metamodel
MetaClass, MetaAttr, ...

Metamodel:
MetaClass(“Class“), MetaClass(“Property“), ...

Model:
Class( “Wine“ ), Class(“Region“ ), ...

Information:
Wine: ElyseZinfandel, Region: NapaRegion

Fig. 2. OMG Four Layer Metadata Architecture

NamedElement

-uri:URI

Ontology

AnnotatableElement

OntologyElement

OntologyProperty

AnnotationProperty

Property

Class

Individual

DataRange

Rule

*

Fig. 3. Main Elements of the Ontology Definition Metamodel

naturally follows from the modeling primitives offered by the ontology language.
The proposed metamodel has a one-to-one mapping to the abstract syntax of
OWL DL and thereby to the formal semantics of OWL. It primarily uses ba-
sic well-known concepts from UML2, which is the second and newest version of
UML. Additionally, we augmented the metamodel with constraints specifying
invariants that have to be fulfilled by all models that instantiate the metamodel.
These constraints are expressed in the Object Constraint Language [23], a declar-
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Fig. 4. Properties
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Fig. 5. Classes

ative language that provides constraint and object query expressions on object
models that cannot otherwise be expressed by diagrammatic notation.

Figure 3 shows the main elements of the ODM. Every element of an ontology
is a NamedElement and hence a member of an Ontology.

Properties, as shown in Figure 4, represent named binary associations in the
modeled knowledge domain. OWL distinguishes two kinds of properties, so-called
object properties and datatype properties. A common generalization of them is
given by the abstract metaclass Property. Properties can be functional and
their domain is always a class. Object properties may additionally be inverse
functional, transitive, symmetric, or inverse to another property. Their range is
a class, while the range of datatype properties are datatypes.

Users can relate properties by using two types of axioms: property subsump-
tion (subPropertyOf) specifies that the extension of a property is a subset of
the related property, while property equivalence (equivalentProperty) defines
extensional equivalence.

Class descriptions are depicted in Figure 5. In contrast to UML, OWL DL does
not only allow to define simple named classes. Instead, classes can be formed using
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a number of class constructors. One can conceptually distinguish the boolean com-
bination of classes, class restrictions, and enumerated classes. EnumeratedClass
is defined through a direct enumeration of named individuals. Boolean combina-
tions of classes are provided through Complement, Intersection and Union.

OWL does not follow the clear conceptual separation between terminology
(T-Box) and knowledge base (A-box) that is present in most description logics
and in MOF, which distinguishes between model and information. The knowl-
edge base elements (cf. Figure 6) are part of an ontology. An Individual is an
instantiation of a Class and is the subject of a PropertyValue, which instan-
tiates a Property. Naturally, an ObjectPropertyValue relates its subject with
another Individual whilst a DatatypePropertyValue relates its subject with
a DataValue, which is an instance of a DataType.

Class Property

Individual PropertyValue

ObjectPropertyValue DatatypePropertyValue

DataType

DataValue Individual AllDifferent

type type type

objectobject

subject

sameAs

differentFrom

distinctMembers

*

*

*

Fig. 6. Knowledge Base

Individuals can be related via three special axioms: The sameAs association
allows users to state that two individuals (with different names) are equiva-
lent. The differentFrom association specifies that two individuals are not the
same. AllDifferent is a simpler notation for the pairwise difference of several
individuals.

For a full specification of the OWL DL metamodel, we refer to [3].

2.3 UML Ontology Profile

The UML ontology profile (UOP) describes a visual UML syntax for modeling
ontologies. We provide a UML profile that is faithful to both UML2 and OWL
DL, with a maximal reuse of UML2 features and OWL DL features. Since the
UML profile mechanism supports a restricted form of metamodeling, our pro-
posal contains a set of extensions and constraints to UML2. This tailors UML2
such that models instantiating the ODM can be defined. Our UML profile has
a basic mapping, from OWL class to UML class, from OWL property to bi-
nary UML association, from OWL individual to UML object, and from OWL
property filler to UML object association. Extensions to UML2 consist of cus-
tom UML stereotypes, which usually carry the name of the corresponding OWL
DL language element, and dependencies. Figure 7 (left) shows an example of
two classes Wine and WineGrape, visually depicted as UML classes, which are
connected via the object property madeFromGrape, depicted as a UML associ-
ation. Some extensions to UML2 are used in the example in Figure 7 (right),
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<< >>

WineColor

White Rose Red

owl::oneOf
Wine

WineGrape

madeFromGrape

Fig. 7. A fragment of the UML profile: The ObjectProperty and oneOf constructs

SelaksIceWine

<< owl::intersectionOf >>

LateHarvest DessertWine

<< rdf::type >>

Fig. 8. A fragment of the UML profile: An individual of a complex class description

which shows that an enumerated class is connected to the enumerated individ-
uals by dependencies. A stereotype denotes the enumerated class, whereas the
UML notation for objects is used for individuals. Another example, depicted in
Figure 8, shows an individual SelaksIceWine of the intersection between the
classes LateHarvest and DessertWine.

3 A Metamodel for SWRL Rules

We propose a metamodel for SWRL rules as a consistent extension of the meta-
model for OWL DL ontologies which we described in the previous section of this
paper. Figure 9 shows the metamodel for SWRL rules. We discuss the meta-
model step by step along the SWRL specifications. Interested readers may refer
to the specifications [9] for a full account of SWRL. For a complete reference
of the formal correspondence between the metamodel and SWRL itself and the
OCL constraints for the rule metamodel, we refer the reader to [2].

3.1 Rules

SWRL defines rules as part of an ontology. The SWRL metamodel defines Rule
as a subclass of OntologyElement. OntologyElement is defined in the OWL DL
metamodel (Figure 3) as an element of an Ontology, via the composition link
between NamedElement and Ontology. As can also be seen in Figure 3, the class
OntologyElement is a subclass of the class AnnotatableElement, which defines
that rules can be annotated. As annotations are modeled in the ODM, a URI
reference can be assigned to a rule for identification.
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A rule consists of an antecedent and a consequent, also referred to as body and
head of the rule, respectively. Both the antecedent and the consequent consist
of a set of atoms which can possibly be empty, as depicted by the multiplicity in
Figure 9. Informally, a rule says that if all atoms of the antecedent hold, then
the consequent holds. An empty antecedent is treated as trivially true, whereas
an empty consequent is treated as trivially false.

The same antecedent or consequent can be used in several rules, as indicated
in the metamodel by the multiplicity on the association between Rule on the one
hand and Antecedent or Consequent on the other hand. Similarly, the multi-
plicities of the association between Antecedent and Atom and of the association
between Consequent and Atom define that an antecedent and a consequent can
hold zero or more atoms. The multiplicity in the other direction defines that the
same atom can appear in several antecedents or consequents. According to the
SWRL specifications, every Variable that occurs in the Consequent of a rule
must occur in the Antecedent of that rule, a condition referred to as ”safety”.

3.2 Atoms, Terms and Predicate Symbols

The atoms of the antecedent and the consequent consist of predicate symbols
and terms. According to SWRL, they can have different forms:

– C(x), where C is an OWL description and x an individual variable or an
OWL individual, or C is an OWL data range and x either a data variable
or an OWL data value;

– P (x, y), where P is an OWL individual valued property and x and y are both
either an individual variable or an OWL individual, or P is an OWL data
valued property, x is either an individual variable or an OWL individual and
y is either a data variable or an OWL data value;

OntologyElement

Rule

Antecedent Consequent

Atom

PredicateSymbol

Class DataRange Property BuiltIn

−builtInID:URI

Term

Variable Constant

TermList

−order:int

DataVariable IndividualVariable Individual DataValue

hasAntecedent hasConsequent

hasPredicateSymbol

containsAtomcontainsAtom

* *

* *

* *
* *

1 1

1 1

1

*

Fig. 9. The Rule Definition Metamodel



A Metamodel and UML Profile for Rule-Extended OWL DL Ontologies 311

– sameAs(x, y), where x and y are both either an OWL individual or an indi-
vidual variable;

– differentFrom(x, y), where x and y are both either an OWL individual or an
individual variable;

– builtIn(r, x, ...), where r is a built-in predicate and x is a data variable or
OWL data value. A builtIn atom could possibly have more than one variable
or OWL data value.

The first of these, OWL description, data range and property, were already pro-
vided in the ODM, namely as metaclasses Class, DataRange and Property, re-
spectively. As can be seen in Figure 9, the predicates Class, DataRange,Property
and BuiltIn are all defined as subclasses of the class PredicateSymbol, which is
associated to Atom. The remaining two atom types, sameAs and differentFrom,
are represented as specific instances of PredicateSymbol.

To define the order of the atom terms, we put a class TermOrder in between
Atom and Term. This UML association class connects atoms with terms and
defines the term order via the attribute order.

4 A UML Profile for Rules

UML provides an extension mechanism, the UML profile mechanism, to tailor
the language to specific application areas. The definition of such a UML exten-
sion is based on the standard UML metamodel. In this section, we propose a
UML profile for modeling SWRL rules which is consistent with the design con-
siderations taken for the basic UML Ontology Profile. For a complete reference
of the relationship between the UML profile and the metamodel introduced in
Section 3, we refer the reader to [2]. Figure 10 shows an example of a rule,
which defines that when a vintager does not like the wine made in his winery,
he is a bad vintager. We introduce the profile in an order based on the SWRL
metamodel introduced in Section 3.

4.1 Rules

As can be seen in Figure 10, a rule is depicted by two boxes connected via a
dependency with the stereotype rule. All atoms of the antecedent are contained

<< variable >>

X

<< variable >>

Y

<< variable >>

Z

<< variable >>

X:BadVintager

dislikesWine
hasMaker

ownsWinery

<<rule>>

Fig. 10. BadVintager(x) ← ownsWinery(x, y) ∧ dislikesWine(x, z) ∧ hasMaker(z, y)
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in the box at the origin of the dependency, whereas the box at the end contains
the consequent. This way, antecedent and consequent can easily be distinguished,
and it also allows to distinguish between the rule atoms and the OWL DL facts
which are depicted in similar ways. The left box of our example contains the
three variable definitions and the three properties that are defined between these
variables. The consequent-box on the right contains the definition of the variable
X from which it is known which class it belongs to. We explain the specific design
considerations of these concepts in the following subsections.

4.2 Terms

Although the existing UOP already comprises a visual syntax for individuals and
data values, namely by applying the UML object notation, it does not include
a notation for variables since OWL DL ontologies do not contain variables. We
decided to depict variables in the UML object notation as well, since a variable
can be seen as a partially unknown class instance. We provide a stereotype
variable to distinguish a variable. Figure 11 shows a simple example for a
variable, an individual and a data value.

<< variable >>

X
White:WineColor 30:xsd::Integer

Fig. 11. Terms

4.3 Predicate Symbols in Atoms

Class description and data range. A visual notation for individuals as in-
stances of class descriptions is already provided in the UOP for OWL DL. An
atom with a class description and a variable as its term, is illustrated simi-
larly. An appropriate stereotype is added. An example of this can be seen in
the consequent in Figure 10. A visual construct for a data range definition using
individuals is contained in the UOP for OWL DL as well, namely represented
in the same way as class individuals. Data range constructs containing variables
are also depicted in a similar fashion.

Properties. Object properties are depicted as directed associations between the
two involved elements. A datatype property is pictured as an attribute. These
notations were provided for properties of individuals by the UOP for OWL DL,
and we follow them to depict properties of variables. The antecedent of the rule in
Figure 10 contains three such object properties between variables, ownsWinery,
dislikesWine and hasMaker. The other example rule, depicted in Figure 13,
contains amongst other things twice the datavalued property yearValue.

sameAs and differentFrom. According to the UOP, equality and inequality
between objects are depicted using object relations. Because of the similarity
between individuals and variables, as shortly explained in Section 4.2, we propose
to use the same visual notation for sameAs and differentFrom relations between
two variables or between a variable and an object.
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<< built−in>>

swrlb:greaterThan

<< variable >>

y

<< variable >>

x

1

2

Fig. 12. Built-in predicates

Built-in predicates. For the visual representation of built-in relations, we use
usual associations to all participating variables and data values, similar to the
owl:AllDifferent concept provided in the basic UOP. To denote the built-in
relation, we provide the stereotype built-in together with the specific built-in
ID. The names of the associations denote the order of the arguments, by num-
bers. Figure 12 shows an example of a built-in relation swrlb:greaterThan,
which is defined to check whether the first involved argument is greater than the
second one. For the six most basic built-ins, swrlb:equal, swrlb:notEqual,
swrlb:lessThan, swrlb:lessThanOrEqual, swrlb:greaterThan and swrlb:
greaterThanOrEqual, we provide an alternative notation. Instead of depicting
the stereotype and the name of the built-in, an appropriate icon can be used.
Figure 13 depicts a rule example using this alternative notation for built-in pred-
icates. This rule states that if the year value of a wine (y) is greater than the
year value of another wine (x), then the second wine (x) is older than the first
one (y). Next to the built-in predicate, Figure 13 shows six variables with the
properties hasVintageYear, yearValue and olderThan.

<< variable >>

x

<< variable >>

y

<< variable >>

x

<< variable >>

y

<< variable >>

v

<< variable >>

u

<< variable >>

z

<< variable >>

w
hasVintageYear

hasVintageYear

yearValue

yearValue

>

<<rule>>

olderThan

Fig. 13. olderThan(x, y) ← hasVintageYear(x, u) ∧ hasVintageYear(y, v) ∧
yearValue(u, w) ∧ yearValue(v, z) ∧ swrlb:greaterThan(z, w)
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5 Related Work

As a response to the original call of the OMG for an Ontology Definition Meta-
model [16], the OMG has received a number of diverse proposals (see [3] for a
comparison). The various proposals have been merged into one submission [10]
that covered several metamodels for RDF, OWL, Common Logic, and Topic
Maps, as well as mappings between them. Our proposed metamodel departs
from this approach as it strictly focuses on OWL DL and is tailored to its
specific features, with the advantage that it has a direct mapping between the
metamodel and OWL DL. Also, none of the other OMG proposals so far has
considered rule extensions. To the best of our knowledge, our work presents the
first MOF-based metamodel and UML profile for an ontology rule language.

DL-safe rules [13] are a decidable subset of SWRL. As every DL-safe rule is
also a SWRL rule, DL-safe rules are covered by our metamodel. Using additional
constraints it can be checked whether a rule is DL-safe. It should be noted that
SWRL is not the only rule language which has been proposed for ontologies.
Other prominent alternatives for rule languages are mentioned in the W3C Rule
Interchange Format Working Group charter [21], namely the Web Rule Language
WRL [1] and the rules fragment of the Semantic Web Service Language SWSL
[7]. These languages differ in their semantics and consequently also in the way
in which they model implicit knowledge for expressive reasoning support. From
this perspective, it could be desirable to define different metamodels, each of
which is tailored to a specific rules language.

From the perspective of conceptual modeling, however, different rule lan-
guages appear to be very similar to each other. This opens up the possibility to
reuse the SWRL metamodel defined in this paper by augmenting it with some
features to allow for the modeling of language primitives which are not present
in SWRL. As a result, one would end up with a common metamodel for different
rules languages. An advantage of the latter approach would be a gain in flex-
ibility. Intricate semantic differences between different ontology languages may
often be difficult to understand for the practitioner, and hence it may be de-
sirable to provide simplified modeling support in many cases. A common visual
modeling language would for example allow a domain expert to model a domain
independent of a concrete logical language, while an ontology engineer could
decide on the language paradigm most suitable for the application domain.

As a complementary approach to using visual modeling techniques for writing
rules, [22] discusses a proposal to use (controlled) natural language.

6 Conclusion

We have presented a MOF metamodel for the Semantic Web Rule Language
SWRL. This metamodel tightly integrates with our previous metamodel for
OWL DL. The validity of instances of this metamodel is ensured through OCL
constraints. We also provided a UML profile for this metamodel. It employs the
extensibility features of UML2 to allow a visual notation for the modeling of
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rule-extended ontologies which is particularly adequate for users familiar with
UML. We plan to provide an implementation as a next step.

Future work may also include the modeling of other logics-based rule lan-
guages. The outcome of the W3C working group to establish a Rule Interchange
Format is currently open. It is likely that several rule languages will need to
co-exist, which will require techniques for rule language interoperability. Here,
the model driven approaches of MOF might provide useful techniques to achieve
such interoperability, for example based on the Query View and Transformation
(QVT, [15]) framework, which allows the definition and automated execution of
mappings between MOF-based metamodels.
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