

Y. Sure and J. Domingue (Eds.): ESWC 2006, LNCS 4011, pp. 200 – 214, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Resolving Inconsistencies in Evolving Ontologies

Peter Plessers and Olga De Troyer

Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
{Peter.Plessers, Olga.DeTroyer}@vub.ac.be

Abstract. Changing a consistent ontology may turn the ontology into an incon-
sistent state. It is the task of an approach supporting ontology evolution to en-
sure an ontology evolves from one consistent state into another consistent state.
In this paper, we focus on checking consistency of OWL DL ontologies. While
existing reasoners allow detecting inconsistencies, determining why the ontol-
ogy is inconsistent and offering solutions for these inconsistencies is far from
trivial. We therefore propose an algorithm to select the axioms from an ontol-
ogy causing the inconsistency, as well as a set of rules that ontology engineers
can use to resolve the detected inconsistency.

1 Introduction

More and more, ontologies are finding their way into a wide variety of software sys-
tems. Not only do they serve as the foundation of the Semantic Web [3], ontologies
are starting to be applied in content and document management, information integra-
tion and knowledge management systems. The use of ontologies enhances systems
with extensive reasoning capabilities, improve query possibilities, and ease integra-
tion and cooperation between systems.

Until recently, ontologies were mainly treated as being static i.e. once the ontology
was developed and deployed, the knowledge captured by the ontology was considered
to be fixed. Nevertheless, there is a need for ontologies to evolve in course of their
lifetime. Reasons for ontology evolution includes changes to the domain represented,
modifications of user requirements and corrections of design flaws. As ontologies may
be shared by different applications and extended by other ontologies, a manual and ad-
hoc handling of such an ontology evolution process is not feasible nor desirable as it is
a too laborious, time intensive and complex process [17]. A structured approach is
therefore essential to support the ontology engineer in this evolution process.

As ontologies are used to reason about and to infer implicit knowledge from, it is
essential for an approach supporting ontology evolution to ensure that ontologies
evolve from one consistent state into another consistent state. As changes to an
ontology may possibly introduce inconsistencies, a method to detect and resolve incon-
sistencies in the ontology is required. For OWL DL1, several reasoners capable of
checking for inconsistencies have been developed (e.g., RACER [8], Fact [5], Pellet
[9]). These reasoners are based on the description logics tableau algorithm. While such
reasoners allow detecting inconsistencies, determining why the ontology is inconsistent

1 http://www.w3.org/TR/owl-ref/

 Resolving Inconsistencies in Evolving Ontologies 201

and how to resolve these inconsistencies is far from trivial. However, pinpointing the
concepts that lead to an inconsistent ontology, determining the reasons for the inconsis-
tencies and using these to offer the ontology engineer suggestions how to resolve these
inconsistencies should be part of an ontology evolution approach.

In literature, three forms of ontology consistency are in general distinguished:
Structural Consistency, Logical Consistency and User-defined Consistency [4]. The
difference between these three forms is as follows:

• Structural Consistency: an ontology is considered structural consistent when the
structure of the ontology conforms to the language constructs imposed by the un-
derlying ontology language (e.g., OWL). Structural consistency can be enforced by
checking a set of structural conditions defined for the underlying ontology lan-
guage. Examples of such structural conditions include: ‘the complement of a class
must be a class’, ‘a property can only be a subproperty of a property’, etc. In case
of OWL, the set of structural conditions depends on the variant of OWL used. E.g.,
the set of structural conditions for OWL Lite will be more restrictive than these for
OWL DL.

• Logical Consistency: an ontology is considered logical consistent when the ontol-
ogy conforms to the underlying logical theory of the ontology language. In the case
of OWL, this is a variant of description logics. E.g., specifying the range of a prop-
erty requires the objects of all instantiations of this property to be in this range.

• User-defined Consistency: this form of consistency means that users can add their
own, additional conditions that must be met in order for the ontology to be consid-
ered consistent. E.g., users could require that classes can only be defined as a sub-
class of at most one other class (i.e. preventing multiple inheritance) in order for
the ontology to be considered consistent.

Most research in the field of ontology evolution concerning consistency has been
focused on structural consistency. In this paper however, we focus on the problem of
logical consistency. We therefore extend our previous work on ontology evolution
[10, 11] to support the detection and resolving of logical inconsistencies within OWL
DL (and by definition OWL Lite) ontologies. Checking logical consistency can be
achieved by running a reasoner on the ontology. To achieve this, most state-of-the-art
reasoners have adopted a description logic tableau algorithm as mentioned earlier. Al-
though reasoners can be used to identify unsatisfiable concepts, they provide very lit-
tle information about which axioms are actually causing the inconsistency. This
makes it extremely difficult to offer the ontology engineer solutions to solve the in-
consistency.

The contribution of this paper is twofold. First we present an approach that deter-
mines the axioms causing a logical inconsistency. We do this by extending the tableau
algorithm so that it keeps track of both the transformations performed during the pre-
processing step of the algorithm and the axioms (in transformed format) leading to a
clash used in the execution of the tableau algorithm itself. Based on this extra informa-
tion, we have defined an algorithm to determine the axioms causing the inconsistency.
The second contribution concerns a set of rules that can be applied by the ontology en-
gineer to actually resolve the inconsistency detected.

The paper is structured as follows. Section 2 describes the process of consistency
checking and discusses the principles of a tableau algorithm. Section 3 introduces an

202 P. Plessers and O. De Troyer

algorithm to determine those axioms causing an inconsistency. In section 4, we pre-
sent the set of rules that can be used by an ontology engineer to resolve the inconsis-
tency detected. Section 5 discusses related work, and finally, Section 6 presents some
conclusions.

2 Consistency Checking

The objective of our approach is to verify whether an ontology remains logical consis-
tent after changes have been applied. We differentiate between two possible scenarios
based on the common distinction found in literature between TBox (terminological or
concept knowledge) and ABox (assertional or instance knowledge):

1. An axiom was added to the TBox or an existing axiom from the TBox was
modified. To check logical consistency of the ontology, we require two tasks per-
formed sequentially. First, we verify whether the concepts of the TBox itself are
still satisfiable (without considering a possible ABox). We refer to this task as the
TBox Consistency Task. Second, we verify if the ABox remains consistent w.r.t.
the modified TBox, called the ABox Consistency Task.

2. An axiom was added to the ABox or an existing axiom from the ABox was
modified. We verify if the ABox remains consistent w.r.t. its TBox (called ABox
Consistency Task).

Note that we don’t take the deletion of an axiom from either the TBox or ABox

into account. Because OWL DL is based on a monotonic logic, an ontology can only
become inconsistent when new axioms are added or existing ones are changed. An
overview of the consistency checking process is shown in Figure 1.

When the user applies changes to the TBox, first the TBox Consistency Task (see)
is performed. An inconsistent TBox can be resolved by changing particular axioms
of the TBox (see). Note that resolving inconsistencies is an iterative process as

Fig. 1. Overview of consistency checking process.

 Resolving Inconsistencies in Evolving Ontologies 203

new changes may introduce new inconsistencies. When the TBox is consistent, the
ABox Consistency Task is performed (see). Inconsistencies in the ABox can be re-
solved either by changing particular axioms of the TBox (see) so that the TBox
conforms to the changed ABox, or by changing axioms of the ABox so that the
changed ABox forms a valid model for the TBox (see). In Section 3, we present an
algorithm to determine which axioms are causing the inconsistency, while in Section
4 we introduce a set of rules that specify which changes can be applied to these axi-
oms to resolve the inconsistency. The checking of TBox and ABox consistency is
based on existing OWL reasoners. As the state-of-the-art reasoners are based on a tab-
leau algorithm, we first give a short introduction of the tableau algorithm in the next
subsection.

2.1 Tableau Algorithm

We focus in this paper, as already mentioned in the introduction, on the DL variant of
OWL. OWL DL conforms to the SHOIN(D) description logic. The syntax of
SHOIN(D) is summarized in Table 1. We adopt the following convention: A and B are
atomic concepts, C and D are complex concepts, R is an abstract role, S is an abstract
simple role, T and U are concrete roles, d is a datatype, a, b and c are individuals, and
n is a non-negative integer. Based on this syntax, different types of axioms can be
formed: concept equivalent axioms C ≡ D, concept inclusion axioms C m D, role
equivalent axioms R ≡ S, role inclusion axioms R m S, transitivity axioms Trans(R),
inverse role axioms R ≡ S-, symmetric role axioms R ≡ R-, concept assertions C(a),
role assertions R(a, b), individual equalities a º b and inequalities a M b. Subse-
quently, we define an ontology O as a finite set of axioms.

The tableau algorithm allows verifying both the satisfiability of a concept C w.r.t. a
given TBox i.e. whether C doesn’t denote the empty concept, as well as the consis-
tency of a given ABox w.r.t. a TBox i.e. whether the assertions in the ABox form a
valid model for the axioms defined in the TBox. An ontology O (composed of a TBox
T and ABox A) is considered to be logical consistent if all concepts of the TBox T are
satisfiable and the ABox A is consistent w.r.t. to this TBox T.

The basic principle of the tableau algorithm used when checking the satisfiability
of a concept C is to gradually build a model I of C, i.e. an interpretation I in which CI
is not empty. The algorithm tries to build a tree-like model of the concept C by de-
composing C using tableau expansion rules. These rules correspond to constructors in
the description logic. E.g., C * D is decomposed into C and D, referring to the fact
that if a œ (C * D)I then a œ CI and a œ DI. The tableau algorithm ends when either no
more rules are applicable or when a clash occurs. A clash is an obvious contradiction
and exists in two forms: C(a) ñ ŸC(a) and (§ n S) ñ (¥ m S) where m > n. A con-
cept C is considered to be satisfiable when no more rules can be applied and no
clashes occurred. The tableau algorithm can be straightforwardly extended to support
consistency checking of ABoxes. The same set of expansion rules can be applied to
the ABox, requiring that we add inequality assertions a M b for every pair of distinct
individual names.

Important to note is that, although the tableau algorithm allows us to check ontol-
ogy consistency, the algorithm doesn’t provide us any information regarding the

204 P. Plessers and O. De Troyer

axioms causing the inconsistency, neither does it suggest solutions to overcome the
inconsistency. In the remainder of this paper we discuss how we can overcome these
shortcomings.

Table 1. SHOIN(D) syntax

Syntax Description Syntax Description
C * D Conjunction § n S Atmost restriction
C + D Disjunction ¥ n S Atleast restriction
ŸC or Ÿd Negation ∃T.d Datatype exists
∃R.C Exists restriction ∀T.d Datatype value
∀R.C Value restriction § n T Datatype atmost
{a, b, c} Individuals ¥ n T Datatype atleast

3 Selecting Axioms Causing Inconsistency

In this section we discuss how we extend the tableau algorithm by keeping track of
the internal transformations that occur during the preprocessing step and the axioms
leading to a clash used in the execution of the algorithm. We therefore introduce
Axiom Transformation Trees and Concept Dependency Trees. Next, we explain how
such a Concept Dependency Tree is used to determine the axioms causing the incon-
sistency. In the last subsection, we explain the overall algorithm and illustrate it with
an example.

3.1 Axiom Transformations and Concept Dependencies

To be able to determine the axioms causing an inconsistency, we keep track of both
the axiom transformations that occur in the preprocessing step, and the axioms lead-
ing to a clash used during algorithm execution. The result of the preprocessing step is
a collection of axiom transformations, represented by a set of Axiom Transformation
Trees (ATT), while the axioms used are represented in a Concept Dependency Tree
(CDT). We explain the construction of both the ATT and the CDT by means of a
simple example. We consider for our example the following TBox T consisting of the
following axioms: {PhDStudent m Ÿ∀enrolledIn.ŸCourse, ∃enrolledIn.Course m Un-
dergraduate, Undergraduate m ŸPhDStudent, PhDStudent_CS m PhDStudent}.

3.1.1 Axiom Transformation Tree
We give an overview of the different kind of transformations that occur during the
preprocessing step of the tableau algorithm:

• Normalization: The tableau algorithm expects axioms to be in Negation Normal
Form (NNF) i.e. negation occurs only in front of concept names. Axioms can be
transformed to NNF using De Morgan’s rules and the usual rules for quantifiers.
For our example, this means that PhDStudent m Ÿ∀enrolledIn.ŸCourse is trans-
formed to PhDStudent m ∃enrolledIn.Course. Other forms of normalization can be
treated in a similar way.

 Resolving Inconsistencies in Evolving Ontologies 205

• Internalization: Another task in the preprocessing step concerns the transforma-
tion of axioms to support General Concept Inclusion (GCI) of the form C m D
where C and D are complex concepts. In contrast to subsumption relations between
atomic concepts (A m B), which are handled by expansion, this is not possible with
GCI. To support GCI, C m D must first be transformed into ¨ m ŸC + D (meaning
that any individual must belong to ŸC + D). In our example, ∃enrolledIn.Course m
Undergraduate is transformed to ¨ m Undergraduate + ∀enrolledIn.ŸCourse.

• Absorption: The problem with GCI axioms is that they are time-expensive to rea-
son with due to the high-degree of non-determinism that they introduce [1]. They
may degrade the performance of the tableau algorithm to the extent that it becomes
in practice non-terminating. The solution of this problem is to eliminate GCI axi-
oms whenever possible. This is done by a technique called absorption that tries to
absorb GCI axioms into primitive axiom definitions.

• Axiom composition: different axioms can be composed together into one axiom.
E.g., the axioms C m A and C m B can be transformed to C m A * B.

We introduce the notion of an Axiom Transformation Tree (ATT) to keep track of
the transformations that occur during the preprocessing step i.e. an ATT stores the
step-by-step transformation of the original axiom (as defined by the ontology engi-
neer) to their transformed form. When later on the tableau algorithm ends with a
clash, the ATTs can be used to retrieve the original axioms by following the inverse
transformations from the axioms causing the clash (as found by the tableau algorithm)
to the original ones. We define an Axiom Transformation Tree as follows:

Definition (ATT). An Axiom Transformation Tree, notation ATT, is a tree structure
starting from one or more axioms f1, ..., fn, and ending with a transformed axiom f’.
Each branch of the tree represents a transformation and is accordingly labeled as
follows:

• ØNRM: transformation into normal form;
• ØABS: absorption of axioms into primitive axiom definitions;
• ØGCI: transformation of General Concept Inclusion axioms;
• ØCMP: composition of axioms.

Fig. 2. An ATT for the given example

206 P. Plessers and O. De Troyer

Figure 2 shows the ATT for the axioms ∃enrolledIn.Course m Undergraduate and
PhDStudent m Ÿ∀enrolledIn.ŸCourse in our example.

3.1.2 Concept Dependency Tree
The tableau algorithm reasons with the transformed set of axioms resulting from the
preprocessing step. In our example this means the following set: {PhDStudent m ∃en-
rolledIn.Course * (Undergraduate + ∀enrolledIn.ŸCourse), Undergraduate m
ŸPhDStudent * (Undergraduate + ∀enrolledIn.ŸCourse), PhDStudent_CS m
PhDStudent * (Undergraduate + ∀enrolledIn.ŸCourse)}. To test the satisfiability of
a concept C, the set of tableau rules are applied to expand this concept until either a
clash occurs or no more rules are applicable. We now want to store explicitly the dif-
ferent axioms that are used during the tableau reasoning process leading to a clash.
We therefore introduce a Concept Dependency Tree (CDT):

Definition (CDT). We define a Concept Dependency Tree for a given concept C, nota-
tion CDT(C), as an n-ary tree where N1, ..., Nn are nodes of the tree and a child(Ni,Nj)
relation exists to represent an edge between two nodes in the tree. Furthermore, we de-
fine parent as the inverse relation of child, and child* and parent* as the transitive
counterparts of respectively child and parent. A node Ni is a tuple of the form 〈φ, RA〉
where φ is a concept axiom and RA is a set of role axioms and assertions.

To construct a CDT, we keep track, for each node added to the tableau, of the path
of axioms leading to the addition of that node. When a clash is found between two
nodes, the paths of axioms associated with both nodes are used to construct the CDT.

Fig. 3. Example tableau algorithm result and associated CDTs

 Resolving Inconsistencies in Evolving Ontologies 207

For each concept axiom φ represented in a path, we add a new node N to the CDT
(unless such a node already exists) as child of the previous node (if any) so that N =
〈φ, {}〉. When we encounter a role axiom or assertion y, we add it to the RA set of the
current node N of the CDT so that y ∈ RA where N = 〈φ, RA〉. Note that cyclic axi-
oms (e.g., C m ∀R.C) don’t lead to the construction of an infinite CDT, as reasoners
normally include some sort of cycle checking mechanism, such as blocking.

The result of the tableau algorithm testing the satisfiability of the concept PhDStu-
dent_CS in our example is shown in Figure 3 at the top, while the CDTs are shown
below. The tableau algorithm terminates with a clash between PhDStudent(a) ñ
ŸPhDStudent(a) and between Course(a) ñ ŸCourse(a). Note that non-deterministic
branches in the tableau result in more than one CDT i.e. one for each non-
deterministic branch. The CDTs contain the different axioms that lead from the con-
cept examined (in our example PhDStudent_CS) to the cause of the inconsistency (the
concepts involved in the clash).

3.2 Interpretation of Concept Dependency Trees

We use the CDTs to determine the axioms causing the inconsistency. The interpreta-
tion of a CDT differs for the TBox and ABox consistency task. In this section, we will
discuss both interpretations.

3.2.1 TBox Consistency Task
The set of axioms of a CDT(C) can be seen as a MUPS (Minimal Unsatisfiability Pre-
serving Sub-TBox) of the unsatisfiable concept C, i.e. the smallest set of axioms re-
sponsible for the unsatisfiable concept C [13]. Although removing one of the axioms
of the CDT will resolve, by definition of a MUPS, the unsatisfiability of C, we con-
sider it in general bad practice to take all axioms of a CDT into consideration to re-
solve inconsistencies. We will explain this by means of an example. Assume the fol-
lowing TBox: {C m B, B ª ∃R.D, D m E, E m A * F, F m ¬A}. Checking the
satisfiability of C will reveal that C is unsatisfiable due to a clash between A(b) ñ
ŸA(b). The left side of Figure 4 shows the tableau, the right side the associated CDT.

Fig. 4. Example of a CDT in the TBox Consistency Task

208 P. Plessers and O. De Troyer

Although removing for example the axiom C m B resolves the unsatisfiability of
C, this change fails to address the true cause of the unsatisfiability as the overall
TBox remains inconsistent. A concept is considered unsatisfiable if a clash is found
in two deterministic branches of the tableau. This implies that the axioms contain-
ing the concepts involved in the clash must have a common parent in the CDT. Oth-
erwise, no clash could have occurred between both concepts. Therefore, only the
first common parent of these axioms and the axioms along the paths from this first
common parent to the clashes are directly involved in the unsatisfiability problem.
Changing axioms leading to this common parent (e.g. C m B or D m E) may resolve
the unsatisfiability of the concept under investigation, but doesn’t tackle the true
cause. We therefore introduce the notion of a FirstCommonParent for the CDT, and
define it as follows:

Definition (FirstCommonParent). We define fc as the first common parent for two
axioms f1 and f2, notation FirstCommonParent(fc, f1, f2), iff ∃Nc ∈ CDT (par-
ent*(Nc, N1) ∧ parent*(Nc, N2) ∧ Ÿ∃N3 (parent*(N3, N1) ∧ parent*(N3, N2) ∧
child*(N3, Nc) ∧ N3 ≠ Nc)) where Nc = 〈φc, RA〉, N1 = 〈φ1, RA’〉 and N2 = 〈φ2, RA’’〉.

In our example, the axiom E m A * F is the first common parent for the axioms

containing the concepts involved in the clash. We therefore restrict the set of axioms
causing the inconsistency to the following set: {E m A * F, F m ¬A}.

3.2.2 ABox Consistency Task
The interpretation of the CDT differs for the ABox consistency task from the TBox
consistency task. Consider the example with TBox: {C m B, B ª ∀R.D, E m A, D m
¬A} and ABox: {C(a), E(b)}. Note that the TBox doesn’t contain any unsatisfiable
concepts (as we assume that the TBox consistency task was performed previously).

Fig. 5. Example of CDTs in the ABox consistency task

 Resolving Inconsistencies in Evolving Ontologies 209

Adding the assertion R(a, b) to the ABox, will result in an inconsistent ABox as a
clash occurs between A(b) ñ ¬A(b). At the top of Figure 5 the tableau is shown and
at the bottom the CDTs.

Checking the ABox consistency for our example results in two CDTs, one for each
individual checked (i.e., a and b). The axioms causing the inconsistency are the axi-
oms resulting from both CDTs, together with axioms of the ABox used during the
reasoning process (e.g., R(a, b) as it allowed to trigger the →∀ expansion rule). Note
that we only consider axioms present in the original ABox i.e. no individuals added
by the tableau algorithm to direct reasoning.

3.3 Axiom Selection

In this section, we give an overview of the overall algorithm to determine the axioms
causing an inconsistency based on the interpretations of the CDT given in the previ-
ous section. Note that the axioms that will be considered differ for the TBox and
ABox consistency task. The algorithm takes as input the clash information, CDTs and
ATTs and outputs a set of axioms causing the inconsistency. Before explaining the
complete algorithm, we fist need to address the following issues:

• Mark axioms. A complete axiom is not necessarily the cause of an inconsistency;
instead only parts of the axiom may be the cause. Parts of axioms are causing an
inconsistency either because they are the direct cause of the inconsistency, or be-
cause they are leading to a concept directly causing the inconsistency. The algo-
rithm therefore marks those parts of the axioms. In order to do so, we introduce the
markAllParents function that marks all parent nodes of the nodes containing a con-
cept involved in the clash. The pseudo-code of the function is given below:

markAllParents(N):
 if not rootNode(N) then
 f = getConceptAxiom(N);
 Cf = getLeftPart(f);
 Nparent = getParentNode(N);
 fparent = getConceptAxiom(Nparent);
 mark(deff, fparent);
 call markAllParents(Nparent)
 end if

• Non-inconsistency-revealing clashes. Clashes found between transformed axioms
by the tableau algorithm, may not always indicate conflicting concepts in the origi-
nal axioms as defined by the ontology engineer. Figure 3 (see Section 3.1.2) illus-
trates this. The clash Course(b) ñ ŸCourse(b) seems to reveal a contradiction ,
but when we transform the axioms back to their original form (i.e., PhDStudent m
Ÿ∀enrolledIn.ÿCourse and ∃enrolledIn.Course m Undergraduate) it is clear that
they both refer to the same concept ∃enrolledIn.Course (although one is in NNF
while the other is not). The clash found guided the tableau algorithm, rather than
revealing an actual inconsistency.

210 P. Plessers and O. De Troyer

The structure of the overall algorithm is as follows:

1. For each clash C(a) ñ D(a), lookup the concepts C and D in the leaf nodes of the
associated CDTs, and mark these concepts.

2. For each marked node N, mark all parent nodes using the markAllParents(N) func-
tion.

3. Depending on the task performed (TBox or ABox consistency task) select for each
CDT the axioms as described in Section 3.2. This results for each CDT in a set S
containing the selected axioms.

4. For each set S, transform all axioms f ∈ S into their original form by applying the
inverse transformations of the correct ATT.

5. The union of all sets S is the desired set of axioms.

Applying this algorithm to the example introduced in Section 3.1 results in the fol-
lowing set S. Underlined concepts are the concepts marked by the algorithm, under-
lined and bold concepts are the concepts involved in the consistency-revealing clash.
S = {PhDStudent m Ÿ∀enrolledIn.ŸCourse, ∃enrolledIn.Course m Undergraduate,
Undergraduate m ÿPhDStudent};

4 Resolving Inconsistencies

When an ontology is logical inconsistent this is because the axioms of the ontology
are too restrictive as axioms are contradicting each other. To resolve the inconsis-
tency, the restrictions imposed by the axioms should be weakened. In the previous
section (see Section 3.3), we have defined an algorithm to determine the set of axioms
causing the inconsistency. Changing one of these selected axioms will resolve the de-
tected inconsistency. In the remainder of this section, we present a collection of rules
that guides the ontology engineer towards a solution. A rule either calls another rule
or applies a change to an axiom. Note that it remains the responsibility of the ontol-
ogy engineer to decide which axiom he wants to change from the set provided by the
approach.

Before we define the different rules, we first introduce the notion of class- and
property hierarchy. We call Hc the class hierarchy of all classes present in the set S so
that if (C, D) ∈ Hc then C m D, and Hp the property hierarchy of all properties present
in the set S so that if (R, S) ∈ Hp then R m S. Note that these hierarchies don’t include
classes or properties not included in S. Furthermore, we define yt as the top of a hier-
archy H for a concept y, notation top(yt, y, H), iff yt m y ∧ ¬∃w ∈ S: w m yt. Analo-
gous, we define yl as the leaf of a hierarchy H for a concept y, notation leaf(yl, y,
H), iff y m yl ∧ ¬∃w ∈ S: yl m w.

In the remainder of this section, we present a set of rules that guide the ontology
engineer to a solution for the detected inconsistency. Note that we don’t list the com-
plete set of rules due to space restrictions. First, we define a set of rules that handle
the different types of axioms. Secondly, we define the necessary rules to weaken or
strengthen the different types of concepts. Note that axioms can always be weakened
by removing the axiom. We therefore won’t mention this option explicitly in the rules
below. The rules for weakening axioms are given below:

 Resolving Inconsistencies in Evolving Ontologies 211

• A concept definition C ª D can be weakened either by removing the axiom or by
weakening C or D (assuming C ª D resulted from C m D in the CDT):
(4.1) weaken(C ª D) ï strengthen(C)
(4.2) weaken(C ª D) ï weaken(D)

• A concept inclusion axiom C m D can be weakened by removing the axiom,
strengthening C or weakening D. The same rule applies for role inclusion axioms:
(4.3) weaken(C m D) ï strengthen(C)
(4.4) weaken(C m D) ï weaken(D)

• A concept assertion C(a) can be weakened by either removing the axiom or by re-
placing C with a superclass:
(4.5) weaken(C(a)) ï change(C(a), D(a)) where X m D and leaf(X, C, Hc)

• A role assertion R(a, b) can be weakened by either removing the axiom or by re-
placing R with a super-property:
(4.6) weaken(R(a, b)) ï change(R(a, b), S(a, b)) where X m S and leaf(X, R, Hp)

The second part of rules deal with the weakening and strengthening of concepts:

• A conjunction relation C * D can be weakened (strengthened) by weakening
(strengthening) either C or D. The rules for weakening are given below; the rules
for strengthening are analogous:
(4.7) IF marked(C): weaken(C * D) ï weaken(C)
(4.8) IF marked(D): weaken(C * D) ï weaken(D)
(4.9) IF marked(C) ∧ marked(D): weaken(C * D) ï weaken(C) ∨ weaken(D)

• A disjunction relation C + D can be weakened (strengthened) by weakening
(strengthening) C, D, or both C and D. The rules for weakening are given below;
the rules for strengthening are analog:
(4.10) IF marked(C): weaken(C + D) ï weaken(C)
(4.11) IF marked(D): weaken(C + D) ï weaken(D)
(4.12) IF marked(C) ∧ marked(D): weaken(C + D) ï weaken(C) ∨ weaken(D)

• An existential quantification ∃R.C can be weakened and strengthened in two
manners as it represents both a cardinality restriction (“at least one”) and a value
restriction. To weaken ∃R.C, we either remove ∃R.C if it concerns a cardinality
restriction violation, or we weaken C if it concerns a value restriction violation.
To strengthen ∃R.C, we either add a minimum cardinality restriction if it concerns
a cardinality restriction violation, or we strengthen C if it concerns a value restric-
tion violation:
(4.13) IF marked(C): weaken(∃R.C) ï weaken(C)
(4.14) IF marked(R): strengthen(∃R.C) ï add((¥ 2 R))
(4.15) IF marked(C): strengthen(∃R.C) ï strengthen(C)

• A universal quantification ∀R.C can be weakened (strengthened) by weakening
(strengthening) C. The rule for weakening is given below; the rule for strengthen-
ing is analogous:
(4.16) IF weaken(∀R.C) ï weaken(C)

• A maximum cardinality restriction (§ n R) can be weakened either by raising n or
by removing the cardinality restriction altogether. To strengthen (§ n R), we can
lower n:

212 P. Plessers and O. De Troyer

(4.17) weaken((§ n R)) ï changeCardinalityRestriction(R, m) where m ¥ 1
 if (§ n R) conflicts with ∃R.C, or m ¥ α if (§ n R) conflicts with (¥ α R)
(4.18) weaken((§ n R)) ï remove((§ n R))
(4.19) strengthen((§ n R)) ï changeCardinalityRestriction(R, m) where m = 0
 if (§ n R) conflicts with ∃R.C, or m § α if (§ n R) conflicts with (¥ α R)

• A minimum cardinality restriction (¥ n R) can be weakened by either lowering n or
by removing the cardinality restriction altogether. To strengthen (¥ n R), we can
raise n:
(4.20) weaken((¥ n R)) ï changeCardinalityRestriction(R, m) where m § α

 if (¥ n R) conflicts with (§ α R)
(4.21) weaken((¥ n R)) ï remove((§ n R))
(4.22) strengthen((¥ n R)) ï changeCardinalityRestriction(R, m) where m ¥ α
 if (¥ n R) conflicts with (§ α R)

• A negation ŸC is weakened by either removing ŸC or by strengthening C. To
strengthen ŸC, we need to weaken C:
(4.23) weaken(ŸC) ï strengthen(C)
(4.24) strengthen(ŸC) ï weaken(C)

• A concept A is weakened either by removing the concept or by replacing it with a
superclass of A. To strengthen an atom concept A, we replace it with a subclass of
A. When no (appropriate) sub- or superclass exists, we can create one first:
(4.25) weaken(A) ï change(A, B) where X m B and leaf(X, A, Hc)
(4.26) strengthen(A) ï change(A, B) where B m X and top(X, A, Hc)

We conclude this section with our example. The selection of axioms consisted of

the following axioms: PhDStudent m Ÿ∀enrolledIn.ŸCourse, ∃enrolledIn.Course m
Undergraduate, Undergraduate m ÿPhDStudent. If, for example, the ontology engi-
neer beliefs that the axiom ∃enrolledIn.Course m Undergraduate doesn’t reflect the
real world situation, he could for example change the axiom to ∃enrolledIn.Course m
Student, assuming Undergraduate m Student, by following the rules 4.4 and 4.25.

5 Related Work

Change management has been a long-term research interest. Noteworthy in the con-
text of this paper is certainly the work on database schema evolution [13] and mainte-
nance of knowledge-based systems [7]. When considering the problem of ontology
evolution, only few approaches have been proposed. [15] defines the process of ontol-
ogy evolution as the timely adaptation of an ontology to the arisen changes and the
consistent propagation of these changes to depending artifacts. In [16], the authors
propose a possible ontology evolution framework. They introduce a change representa-
tion and discuss the semantics of change for the KAON ontology language. A similar
approach has been taken by [6] for the OWL language. The authors of [11][12] pro-
pose another approach for the OWL language based on the use of a version log to rep-
resent evolution. They define changes in terms of temporal queries on this version log.

On the topic of dealing with consistency maintenance for evolving ontologies, only
very little research has been done. [4] presents an approach to localize an inconsistency

 Resolving Inconsistencies in Evolving Ontologies 213

based on the notion of a minimal inconsistent sub-ontology. The notion of a minimal in-
consistent sub-ontology is very similar to the concept of a MUPS introduced by [14].
Although removing one axiom from the minimal inconsistent sub-ontology will resolve
an unsatisfiable concept, it can not be guaranteed that this will solve the true cause of
the inconsistency (as discussed in this paper). Furthermore, the approach doesn’t mark-
ing indicating parts of axioms as cause of the inconsistency, but rather treats axioms as a
whole.

Some related work has been carried out in explaining inconsistencies in OWL on-
tologies. The authors of [2] present a Symptom Ontology that aims to serve as a
common language for identifying and describing semantic errors and warnings. The
Symptom Ontology doesn’t identify the cause of the ontology nor does it offer possi-
ble solutions to resolve an inconsistency.

Another interesting research area is the field of ontology debugging [10][18]. Their
aim is to provide the ontology engineer with a more comprehensive explanation of the
inconsistency than is generally provided by ‘standard’ ontology reasoners. We distin-
guish two types of approaches: black-box versus glass-box techniques. The first treats
the reasoner as a ‘black box’ and uses standard inferences to locate the source of the in-
consistency. The latter modifies the internals of the reasoner to reveal the cause of the
problem. While black-box techniques don’t add an overhead to the reasoner, more
precise results can be obtained using a glass-box technique. Therefore, glass-box tech-
niques are considered a better candidate in the context of ontology evolution. The authors
of [9] discuss a glass-box approach which offers the users information about the clash
found and selects the axioms causing the inconsistency (similar to a MUPS). The disad-
vantage of a MUPS is that it doesn’t necessarily pinpoints the true cause of the inconsis-
tency. Furthermore, the approach doesn’t offer solutions to resolve the detected problem.

6 Conclusion

Ontologies are in general not static, but do evolve over time. An important aspect for
evolving ontologies is that they evolve from one consistent state into another consis-
tent state. Checking whether an ontology is consistent can be achieved by means of a
reasoner. The problem is that it is in general extremely challenging for an ontology
engineer to determine the cause of an inconsistency and possible solutions for the
problem based on the output of a reasoner. We therefore presented an algorithm to se-
lect the axioms causing the inconsistency. Furthermore, we have presented a set of
rules that ontology engineers can use to change the selected axioms to overcome the
detected inconsistency.

References

1. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.: The description
logic handbook: theory, implementation and applications. Cambridge University Press.
ISBN 0-521-78176-0 (2003)

2. Baclawski, K., Matheus, C., Kokar, M., Letkowski, J., Kogut, P.: Towards a symptom on-
tology for semantic web applications. In Proceedings of 3rd International Semantic Web
Conference (ISWC 2004), Hiroshima, Japan (2004) 650-667

214 P. Plessers and O. De Troyer

3. Berners Lee, T., Hendler, J., Lassila, O.: The semantic web: A new form of web content
that is meaningful to computers will unleash a revolution of new possibilities. Scientific
American (2001) 5(1)

4. Haase, P., Stojanovic, L.: Consistent evolution of OWL ontologies. Asunción Gómez-
Pérez, Jérôme Euzenat (Eds.), The Semantic Web: Research and Applications, Second
European Semantic Web Conference (ESWC 2005), Lecture Notes in Computer Science
3532 Springer 2005, ISBN 3-540-26124-9, Heraklion, Crete, Greece (2005) 182-197

5. Horrocks, I.: The fact system. In Proceedings of Automated Reasoning with Analytic Tab-
leaux and Related Methods: International Conference Tableaux’98, Springer-Verlag
(1998) 307-312

6. Klein, M.: Change Management for Distributed Ontologies. PhD Thesis (2004)
7. Menzies, T.: Knowledge maintenance: the state of the art, The Knowledge Engineering

Review (1999) 14(1) 1-46
8. Moller, R., Haarslev, V.: Racer system description. In Proceedings of the International

Joint Conference on Automated Reasoning (IJCAR 2001), Siena, Italy (2001)
9. Parsia, B., Sirin, E.: Pellet: An OWL DL reasoner. In Ralf Moller Volker Haaslev (Eds.),

Proceedings of the International Workshop on Description Logics (DL2004) (2004)
10. Parsia, B., Sirin, E., Kalyanpur, A.: Debugging OWL ontologies. In Proceedings of the

14th International World Wide Web Conference (WWW2005), Chiba, Japan (2005)
11. Plessers, P., De Troyer, O., Casteleyn, S.: Event-based modeling of evolution for semantic-

driven systems. In Proceedings of the 17th Conference on Advanced Information Systems
Engineering (CAiSE'05), Publ. Springer-Verlag, Porto, Portugal (2005)

12. Plessers, P., De Troyer, O.: Ontology change detection using a version log, In Proceedings
of the 4th International Semantic Web Conference, Eds. Yolanda Gil, Enrico Motta,
V.Richard Benjamins, Mark A. Musen, Publ. Springer-Verlag, ISBN 978-3-540-29754-3,
Galway, Ireland (2005) 578-592

13. Roddick, J.F.: A survey of schema versioning issues for database systems, Information and
Software Technology (1995) 37(7): 383-393.

14. Schlobach, S., Cornet, R.: Non-standard reasoning services for the debugging of descrip-
tion logic terminologies. In Proceedings of IJCAI 2003 (2003)

15. Stojanovic, L., Maedche, A., Motik, B., Stojanovic, N.: Userdriven Ontology Evolution
Management. In Proceeding of the 13th European Conference on Knowledge Engineering
and Knowledge Management EKAW, Madrid, Spain (2002)

16. Stojanovic, L.: Methods and Tools for Ontology Evolution. Phd Thesis (2004)
17. Tallis, M., Gil, Y.: Designing scripts to guide users in modifying knowledge-based sys-

tems. In Proceedings of the 14th National Conference on Artificial Intelligence
(AAAI/IAAI 1999), Orlando, Florida, USA (1999) 242-249

18. Wang, H., Horridge, M., Rector, A., Drummond, N., Seidenberg, J.: Debugging OWL-DL
ontologies: A heuristic approach. In Proceedings of the 4th International Semantic Web
Conference, Eds. Yolanda Gil, Enrico Motta, V.Richard Benjamins, Mark A. Musen, Publ.
Springer-Verlag, ISBN 978-3-540-29754-3, Galway, Ireland (2005)

	Introduction
	Consistency Checking
	Tableau Algorithm

	Selecting Axioms Causing Inconsistency
	Axiom Transformations and Concept Dependencies
	Interpretation of Concept Dependency Trees
	Axiom Selection

	Resolving Inconsistencies
	Related Work
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

