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Abstract. Changing a consistent ontology may turn the ontology into an incon-
sistent state. It is the task of an approach supporting ontology evolution to en-
sure an ontology evolves from one consistent state into another consistent state. 
In this paper, we focus on checking consistency of OWL DL ontologies. While 
existing reasoners allow detecting inconsistencies, determining why the ontol-
ogy is inconsistent and offering solutions for these inconsistencies is far from 
trivial. We therefore propose an algorithm to select the axioms from an ontol-
ogy causing the inconsistency, as well as a set of rules that ontology engineers 
can use to resolve the detected inconsistency. 

1   Introduction 

More and more, ontologies are finding their way into a wide variety of software sys-
tems. Not only do they serve as the foundation of the Semantic Web [3], ontologies 
are starting to be applied in content and document management, information integra-
tion and knowledge management systems. The use of ontologies enhances systems 
with extensive reasoning capabilities, improve query possibilities, and ease integra-
tion and cooperation between systems. 

Until recently, ontologies were mainly treated as being static i.e. once the ontology 
was developed and deployed, the knowledge captured by the ontology was considered 
to be fixed. Nevertheless, there is a need for ontologies to evolve in course of their 
lifetime. Reasons for ontology evolution includes changes to the domain represented, 
modifications of user requirements and corrections of design flaws. As ontologies may 
be shared by different applications and extended by other ontologies, a manual and ad-
hoc handling of such an ontology evolution process is not feasible nor desirable as it is 
a too laborious, time intensive and complex process [17]. A structured approach is 
therefore essential to support the ontology engineer in this evolution process. 

As ontologies are used to reason about and to infer implicit knowledge from, it is 
essential for an approach supporting ontology evolution to ensure that ontologies 
evolve from one consistent state into another consistent state. As changes to an  
ontology may possibly introduce inconsistencies, a method to detect and resolve incon-
sistencies in the ontology is required. For OWL DL1, several reasoners capable of 
checking for inconsistencies have been developed (e.g., RACER [8], Fact [5], Pellet 
[9]). These reasoners are based on the description logics tableau algorithm. While such 
reasoners allow detecting inconsistencies, determining why the ontology is inconsistent 
                                                           
1 http://www.w3.org/TR/owl-ref/ 
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and how to resolve these inconsistencies is far from trivial. However, pinpointing the 
concepts that lead to an inconsistent ontology, determining the reasons for the inconsis-
tencies and using these to offer the ontology engineer suggestions how to resolve these 
inconsistencies should be part of an ontology evolution approach. 

In literature, three forms of ontology consistency are in general distinguished: 
Structural Consistency, Logical Consistency and User-defined Consistency [4]. The 
difference between these three forms is as follows: 

• Structural Consistency: an ontology is considered structural consistent when the 
structure of the ontology conforms to the language constructs imposed by the un-
derlying ontology language (e.g., OWL). Structural consistency can be enforced by 
checking a set of structural conditions defined for the underlying ontology lan-
guage. Examples of such structural conditions include: ‘the complement of a class 
must be a class’, ‘a property can only be a subproperty of a property’, etc. In case 
of OWL, the set of structural conditions depends on the variant of OWL used. E.g., 
the set of structural conditions for OWL Lite will be more restrictive than these for 
OWL DL. 

• Logical Consistency: an ontology is considered logical consistent when the ontol-
ogy conforms to the underlying logical theory of the ontology language. In the case 
of OWL, this is a variant of description logics. E.g., specifying the range of a prop-
erty requires the objects of all instantiations of this property to be in this range. 

• User-defined Consistency: this form of consistency means that users can add their 
own, additional conditions that must be met in order for the ontology to be consid-
ered consistent. E.g., users could require that classes can only be defined as a sub-
class of at most one other class (i.e. preventing multiple inheritance) in order for 
the ontology to be considered consistent.  

Most research in the field of ontology evolution concerning consistency has been 
focused on structural consistency. In this paper however, we focus on the problem of 
logical consistency. We therefore extend our previous work on ontology evolution 
[10, 11] to support the detection and resolving of logical inconsistencies within OWL 
DL (and by definition OWL Lite) ontologies. Checking logical consistency can be 
achieved by running a reasoner on the ontology. To achieve this, most state-of-the-art 
reasoners have adopted a description logic tableau algorithm as mentioned earlier. Al-
though reasoners can be used to identify unsatisfiable concepts, they provide very lit-
tle information about which axioms are actually causing the inconsistency. This 
makes it extremely difficult to offer the ontology engineer solutions to solve the in-
consistency. 

The contribution of this paper is twofold. First we present an approach that deter-
mines the axioms causing a logical inconsistency. We do this by extending the tableau 
algorithm so that it keeps track of both the transformations performed during the pre-
processing step of the algorithm and the axioms (in transformed format) leading to a 
clash used in the execution of the tableau algorithm itself. Based on this extra informa-
tion, we have defined an algorithm to determine the axioms causing the inconsistency. 
The second contribution concerns a set of rules that can be applied by the ontology en-
gineer to actually resolve the inconsistency detected. 

The paper is structured as follows. Section 2 describes the process of consistency 
checking and discusses the principles of a tableau algorithm. Section 3 introduces an 
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algorithm to determine those axioms causing an inconsistency. In section 4, we pre-
sent the set of rules that can be used by an ontology engineer to resolve the inconsis-
tency detected. Section 5 discusses related work, and finally, Section 6 presents some 
conclusions. 

2   Consistency Checking 

The objective of our approach is to verify whether an ontology remains logical consis-
tent after changes have been applied. We differentiate between two possible scenarios 
based on the common distinction found in literature between TBox (terminological or 
concept knowledge) and ABox (assertional or instance knowledge): 

1. An axiom was added to the TBox or an existing axiom from the TBox was 
modified. To check logical consistency of the ontology, we require two tasks per-
formed sequentially. First, we verify whether the concepts of the TBox itself are 
still satisfiable (without considering a possible ABox). We refer to this task as the 
TBox Consistency Task. Second, we verify if the ABox remains consistent w.r.t. 
the modified TBox, called the ABox Consistency Task. 

2. An axiom was added to the ABox or an existing axiom from the ABox was 
modified. We verify if the ABox remains consistent w.r.t. its TBox (called ABox 
Consistency Task). 

 
Note that we don’t take the deletion of an axiom from either the TBox or ABox 

into account. Because OWL DL is based on a monotonic logic, an ontology can only 
become inconsistent when new axioms are added or existing ones are changed. An 
overview of the consistency checking process is shown in Figure 1.  

When the user applies changes to the TBox, first the TBox Consistency Task (see ) 
is performed. An inconsistent TBox can be resolved by changing particular axioms  
of the TBox (see ). Note that resolving inconsistencies is an iterative process as  
 

 

Fig. 1. Overview of consistency checking process. 
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new changes may introduce new inconsistencies. When the TBox is consistent, the 
ABox Consistency Task is performed (see ). Inconsistencies in the ABox can be re-
solved either by changing particular axioms of the TBox (see ) so that the TBox 
conforms to the changed ABox, or by changing axioms of the ABox so that the 
changed ABox forms a valid model for the TBox (see ). In Section 3, we present an 
algorithm to determine which axioms are causing the inconsistency, while in Section 
4 we introduce a set of rules that specify which changes can be applied to these axi-
oms to resolve the inconsistency. The checking of TBox and ABox consistency is 
based on existing OWL reasoners. As the state-of-the-art reasoners are based on a tab-
leau algorithm, we first give a short introduction of the tableau algorithm in the next 
subsection. 

2.1   Tableau Algorithm 

We focus in this paper, as already mentioned in the introduction, on the DL variant of 
OWL. OWL DL conforms to the SHOIN(D) description logic. The syntax of 
SHOIN(D) is summarized in Table 1. We adopt the following convention: A and B are 
atomic concepts, C and D are complex concepts, R is an abstract role, S is an abstract 
simple role, T and U are concrete roles, d is a datatype, a, b and c are individuals, and 
n is a non-negative integer. Based on this syntax, different types of axioms can be 
formed: concept equivalent axioms C ≡ D, concept inclusion axioms C m D, role 
equivalent axioms R ≡ S, role inclusion axioms R m S, transitivity axioms Trans(R), 
inverse role axioms R ≡ S-, symmetric role axioms R ≡ R-, concept assertions C(a), 
role assertions R(a, b), individual equalities a º b and inequalities a M b. Subse-
quently, we define an ontology O as a finite set of axioms. 

The tableau algorithm allows verifying both the satisfiability of a concept C w.r.t. a 
given TBox i.e. whether C doesn’t denote the empty concept, as well as the consis-
tency of a given ABox w.r.t. a TBox i.e. whether the assertions in the ABox form a 
valid model for the axioms defined in the TBox. An ontology O (composed of a TBox 
T and ABox A) is considered to be logical consistent if all concepts of the TBox T are 
satisfiable and the ABox A is consistent w.r.t. to this TBox T. 

The basic principle of the tableau algorithm used when checking the satisfiability 
of a concept C is to gradually build a model I of C, i.e. an interpretation I in which CI 
is not empty. The algorithm tries to build a tree-like model of the concept C by de-
composing C using tableau expansion rules. These rules correspond to constructors in 
the description logic. E.g., C * D is decomposed into C and D, referring to the fact 
that if a œ (C * D)I then a œ CI and a œ DI. The tableau algorithm ends when either no 
more rules are applicable or when a clash occurs. A clash is an obvious contradiction 
and exists in two forms: C(a) ñ ŸC(a) and (§ n S) ñ (¥ m S) where m > n. A con-
cept C is considered to be satisfiable when no more rules can be applied and no 
clashes occurred. The tableau algorithm can be straightforwardly extended to support 
consistency checking of ABoxes. The same set of expansion rules can be applied to 
the ABox, requiring that we add inequality assertions a M b for every pair of distinct 
individual names. 

Important to note is that, although the tableau algorithm allows us to check ontol-
ogy consistency, the algorithm doesn’t provide us any information regarding the  
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axioms causing the inconsistency, neither does it suggest solutions to overcome the 
inconsistency. In the remainder of this paper we discuss how we can overcome these 
shortcomings. 

Table 1. SHOIN(D) syntax 

Syntax Description Syntax Description 
C * D Conjunction § n S Atmost restriction 
C + D Disjunction ¥ n S Atleast restriction 
ŸC or Ÿd Negation ∃T.d Datatype exists 
∃R.C Exists restriction ∀T.d Datatype value 
∀R.C Value restriction § n T Datatype atmost 
{a, b, c} Individuals ¥ n T Datatype atleast 

3   Selecting Axioms Causing Inconsistency 

In this section we discuss how we extend the tableau algorithm by keeping track of 
the internal transformations that occur during the preprocessing step and the axioms 
leading to a clash used in the execution of the algorithm. We therefore introduce 
Axiom Transformation Trees and Concept Dependency Trees.  Next, we explain how 
such a Concept Dependency Tree is used to determine the axioms causing the incon-
sistency. In the last subsection, we explain the overall algorithm and illustrate it with 
an example. 

3.1   Axiom Transformations and Concept Dependencies 

To be able to determine the axioms causing an inconsistency, we keep track of both 
the axiom transformations that occur in the preprocessing step, and the axioms lead-
ing to a clash used during algorithm execution. The result of the preprocessing step is 
a collection of axiom transformations, represented by a set of Axiom Transformation 
Trees (ATT), while the axioms used are represented in a Concept Dependency Tree 
(CDT). We explain the construction of both the ATT and the CDT by means of a 
simple example. We consider for our example the following TBox T consisting of the 
following axioms: {PhDStudent m Ÿ∀enrolledIn.ŸCourse, ∃enrolledIn.Course m Un-
dergraduate, Undergraduate m ŸPhDStudent, PhDStudent_CS m PhDStudent}. 

3.1.1   Axiom Transformation Tree 
We give an overview of the different kind of transformations that occur during the 
preprocessing step of the tableau algorithm:  

• Normalization: The tableau algorithm expects axioms to be in Negation Normal 
Form (NNF) i.e. negation occurs only in front of concept names. Axioms can be 
transformed to NNF using De Morgan’s rules and the usual rules for quantifiers. 
For our example, this means that PhDStudent m Ÿ∀enrolledIn.ŸCourse is trans-
formed to PhDStudent m ∃enrolledIn.Course. Other forms of normalization can be 
treated in a similar way. 
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• Internalization: Another task in the preprocessing step concerns the transforma-
tion of axioms to support General Concept Inclusion (GCI) of the form C m D 
where C and D are complex concepts. In contrast to subsumption relations between 
atomic concepts (A m B), which are handled by expansion, this is not possible with 
GCI. To support GCI, C m D must first be transformed into ¨ m ŸC + D (meaning 
that any individual must belong to ŸC + D). In our example, ∃enrolledIn.Course m 
Undergraduate is transformed to ¨ m Undergraduate +  ∀enrolledIn.ŸCourse. 

• Absorption: The problem with GCI axioms is that they are time-expensive to rea-
son with due to the high-degree of non-determinism that they introduce [1]. They 
may degrade the performance of the tableau algorithm to the extent that it becomes 
in practice non-terminating. The solution of this problem is to eliminate GCI axi-
oms whenever possible. This is done by a technique called absorption that tries to 
absorb GCI axioms into primitive axiom definitions. 

• Axiom composition: different axioms can be composed together into one axiom. 
E.g., the axioms C m A and C m B can be transformed to C m A * B. 

We introduce the notion of an Axiom Transformation Tree (ATT) to keep track of 
the transformations that occur during the preprocessing step i.e. an ATT stores the 
step-by-step transformation of the original axiom (as defined by the ontology engi-
neer) to their transformed form. When later on the tableau algorithm ends with a 
clash, the ATTs can be used to retrieve the original axioms by following the inverse 
transformations from the axioms causing the clash (as found by the tableau algorithm) 
to the original ones. We define an Axiom Transformation Tree as follows: 

 
Definition (ATT). An Axiom Transformation Tree, notation ATT, is a tree structure 
starting from one or more axioms f1, ..., fn, and ending with a transformed axiom f’. 
Each branch of the tree represents a transformation and is accordingly labeled as  
follows: 

• ØNRM: transformation into normal form; 
• ØABS: absorption of axioms into primitive axiom definitions; 
• ØGCI: transformation of General Concept Inclusion axioms; 
• ØCMP: composition of axioms. 

 

Fig. 2. An ATT for the given example 
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Figure 2 shows the ATT for the axioms ∃enrolledIn.Course m Undergraduate and 
PhDStudent m Ÿ∀enrolledIn.ŸCourse in our example. 

3.1.2   Concept Dependency Tree 
The tableau algorithm reasons with the transformed set of axioms resulting from the 
preprocessing step. In our example this means the following set: {PhDStudent m ∃en-
rolledIn.Course * (Undergraduate + ∀enrolledIn.ŸCourse), Undergraduate m 
ŸPhDStudent * (Undergraduate + ∀enrolledIn.ŸCourse), PhDStudent_CS m 
PhDStudent * (Undergraduate + ∀enrolledIn.ŸCourse)}. To test the satisfiability of 
a concept C, the set of tableau rules are applied to expand this concept until either a 
clash occurs or no more rules are applicable. We now want to store explicitly the dif-
ferent axioms that are used during the tableau reasoning process leading to a clash. 
We therefore introduce a Concept Dependency Tree (CDT): 

Definition (CDT). We define a Concept Dependency Tree for a given concept C, nota-
tion CDT(C), as an n-ary tree where N1, ..., Nn are nodes of the tree and a child(Ni,Nj) 
relation exists to represent an edge between two nodes in the tree. Furthermore, we de-
fine parent as the inverse relation of child, and child* and parent* as the transitive 
counterparts of respectively child and parent. A node Ni is a tuple of the form 〈φ, RA〉 
where φ is a concept axiom and RA is a set of role axioms and assertions. 

To construct a CDT, we keep track, for each node added to the tableau, of the path 
of axioms leading to the addition of that node. When a clash is found between two 
nodes, the paths of axioms associated with both nodes are used to construct the CDT.  
 

 

Fig. 3. Example tableau algorithm result and associated CDTs 
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For each concept axiom φ represented in a path, we add a new node N to the CDT 
(unless such a node already exists) as child of the previous node (if any) so that N = 
〈φ, {}〉. When we encounter a role axiom or assertion y, we add it to the RA set of the 
current node N of the CDT so that y ∈ RA where N =  〈φ, RA〉. Note that cyclic axi-
oms (e.g., C m ∀R.C) don’t lead to the construction of an infinite CDT, as reasoners 
normally include some sort of cycle checking mechanism, such as blocking. 

The result of the tableau algorithm testing the satisfiability of the concept PhDStu-
dent_CS in our example is shown in Figure 3 at the top, while the CDTs are shown 
below. The tableau algorithm terminates with a clash between PhDStudent(a) ñ 
ŸPhDStudent(a) and between Course(a) ñ ŸCourse(a). Note that non-deterministic 
branches in the tableau result in more than one CDT i.e. one for each non-
deterministic branch. The CDTs contain the different axioms that lead from the con-
cept examined (in our example PhDStudent_CS) to the cause of the inconsistency (the 
concepts involved in the clash). 

3.2 Interpretation of Concept Dependency Trees 

We use the CDTs to determine the axioms causing the inconsistency. The interpreta-
tion of a CDT differs for the TBox and ABox consistency task. In this section, we will 
discuss both interpretations. 

3.2.1   TBox Consistency Task 
The set of axioms of a CDT(C) can be seen as a MUPS (Minimal Unsatisfiability Pre-
serving Sub-TBox) of the unsatisfiable concept C, i.e. the smallest set of axioms re-
sponsible for the unsatisfiable concept C [13]. Although removing one of the axioms 
of the CDT will resolve, by definition of a MUPS, the unsatisfiability of C, we con-
sider it in general bad practice to take all axioms of a CDT into consideration to re-
solve inconsistencies. We will explain this by means of an example. Assume the fol-
lowing TBox: {C m B, B ª ∃R.D, D m E, E m A * F, F m ¬A}. Checking the 
satisfiability of C will reveal that C is unsatisfiable due to a clash between A(b) ñ 
ŸA(b). The left side of Figure 4 shows the tableau, the right side the associated CDT. 
 

 

Fig. 4. Example of a CDT in the TBox Consistency Task 
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Although removing for example the axiom C m B resolves the unsatisfiability of 
C, this change fails to address the true cause of the unsatisfiability as the overall 
TBox remains inconsistent. A concept is considered unsatisfiable if a clash is found 
in two deterministic branches of the tableau. This implies that the axioms contain-
ing the concepts involved in the clash must have a common parent in the CDT. Oth-
erwise, no clash could have occurred between both concepts. Therefore, only the 
first common parent of these axioms and the axioms along the paths from this first 
common parent to the clashes are directly involved in the unsatisfiability problem. 
Changing axioms leading to this common parent (e.g. C m B or D m E) may resolve 
the unsatisfiability of the concept under investigation, but doesn’t tackle the true 
cause. We therefore introduce the notion of a FirstCommonParent for the CDT, and 
define it as follows: 

 
Definition (FirstCommonParent). We define fc as the first common parent for two 
axioms f1 and f2, notation FirstCommonParent(fc, f1, f2), iff ∃Nc ∈ CDT (par-
ent*(Nc, N1) ∧ parent*(Nc, N2) ∧ Ÿ∃N3 (parent*(N3, N1) ∧ parent*(N3, N2) ∧ 
child*(N3, Nc) ∧ N3 ≠ Nc)) where Nc = 〈φc, RA〉, N1 = 〈φ1, RA’〉 and N2 = 〈φ2, RA’’〉. 

 
In our example, the axiom E m A * F is the first common parent for the axioms 

containing the concepts involved in the clash. We therefore restrict the set of axioms 
causing the inconsistency to the following set: {E m A * F, F m ¬A}. 

3.2.2   ABox Consistency Task 
The interpretation of the CDT differs for the ABox consistency task from the TBox 
consistency task. Consider the example with TBox: {C m B, B ª ∀R.D, E m A, D m 
¬A} and ABox: {C(a), E(b)}. Note that the TBox doesn’t contain any unsatisfiable 
concepts (as we assume that the TBox consistency task was performed previously).  
 

 

Fig. 5. Example of CDTs in the ABox consistency task 
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Adding the assertion R(a, b) to the ABox, will result in an inconsistent ABox as a 
clash occurs between A(b) ñ ¬A(b). At the top of Figure 5 the tableau is shown and 
at the bottom the CDTs. 

Checking the ABox consistency for our example results in two CDTs, one for each 
individual checked (i.e., a and b). The axioms causing the inconsistency are the axi-
oms resulting from both CDTs, together with axioms of the ABox used during the 
reasoning process (e.g., R(a, b) as it allowed to trigger the →∀ expansion rule). Note 
that we only consider axioms present in the original ABox i.e. no individuals added 
by the tableau algorithm to direct reasoning. 

3.3   Axiom Selection 

In this section, we give an overview of the overall algorithm to determine the axioms 
causing an inconsistency based on the interpretations of the CDT given in the previ-
ous section. Note that the axioms that will be considered differ for the TBox and 
ABox consistency task. The algorithm takes as input the clash information, CDTs and 
ATTs and outputs a set of axioms causing the inconsistency. Before explaining the 
complete algorithm, we fist need to address the following issues: 

• Mark axioms. A complete axiom is not necessarily the cause of an inconsistency; 
instead only parts of the axiom may be the cause. Parts of axioms are causing an 
inconsistency either because they are the direct cause of the inconsistency, or be-
cause they are leading to a concept directly causing the inconsistency. The algo-
rithm therefore marks those parts of the axioms. In order to do so, we introduce the 
markAllParents function that marks all parent nodes of the nodes containing a con-
cept involved in the clash. The pseudo-code of the function is given below: 

markAllParents(N): 
  if not rootNode(N) then 
    f = getConceptAxiom(N); 
    Cf = getLeftPart(f); 
    Nparent = getParentNode(N); 
    fparent = getConceptAxiom(Nparent); 
    mark(deff, fparent); 
    call markAllParents(Nparent) 
  end if 

• Non-inconsistency-revealing clashes. Clashes found between transformed axioms 
by the tableau algorithm, may not always indicate conflicting concepts in the origi-
nal axioms as defined by the ontology engineer. Figure 3 (see Section 3.1.2) illus-
trates this. The clash Course(b) ñ ŸCourse(b) seems to reveal a contradiction , 
but when we transform the axioms back to their original form (i.e., PhDStudent m 
Ÿ∀enrolledIn.ÿCourse and ∃enrolledIn.Course m Undergraduate) it is clear that 
they both refer to the same concept ∃enrolledIn.Course (although one is in NNF 
while the other is not). The clash found guided the tableau algorithm, rather than 
revealing an actual inconsistency. 
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The structure of the overall algorithm is as follows: 

1. For each clash C(a) ñ D(a), lookup the concepts C and D in the leaf nodes of the 
associated CDTs, and mark these concepts. 

2. For each marked node N, mark all parent nodes using the markAllParents(N) func-
tion. 

3. Depending on the task performed (TBox or ABox consistency task) select for each 
CDT the axioms as described in Section 3.2. This results for each CDT in a set S 
containing the selected axioms. 

4. For each set S, transform all axioms f ∈ S into their original form by applying the 
inverse transformations of the correct ATT. 

5. The union of all sets S is the desired set of axioms. 

Applying this algorithm to the example introduced in Section 3.1 results in the fol-
lowing set S. Underlined concepts are the concepts marked by the algorithm, under-
lined and bold concepts are the concepts involved in the consistency-revealing clash. 
S = {PhDStudent m Ÿ∀enrolledIn.ŸCourse, ∃enrolledIn.Course m Undergraduate, 
Undergraduate m ÿPhDStudent}; 

4   Resolving Inconsistencies 

When an ontology is logical inconsistent this is because the axioms of the ontology 
are too restrictive as axioms are contradicting each other. To resolve the inconsis-
tency, the restrictions imposed by the axioms should be weakened. In the previous 
section (see Section 3.3), we have defined an algorithm to determine the set of axioms 
causing the inconsistency. Changing one of these selected axioms will resolve the de-
tected inconsistency. In the remainder of this section, we present a collection of rules 
that guides the ontology engineer towards a solution. A rule either calls another rule 
or applies a change to an axiom. Note that it remains the responsibility of the ontol-
ogy engineer to decide which axiom he wants to change from the set provided by the 
approach. 

Before we define the different rules, we first introduce the notion of class- and 
property hierarchy. We call Hc the class hierarchy of all classes present in the set S so 
that if (C, D) ∈ Hc then C m D, and Hp the property hierarchy of all properties present 
in the set S so that if (R, S) ∈ Hp then R m S. Note that these hierarchies don’t include 
classes or properties not included in S. Furthermore, we define yt as the top of a hier-
archy H for a concept y, notation top( yt,  y, H), iff yt m y ∧ ¬∃w ∈ S: w m yt. Analo-
gous, we define yl as the leaf of a hierarchy H for a concept y, notation leaf( yl,  y, 
H), iff y m yl ∧ ¬∃w ∈ S: yl m w.  

In the remainder of this section, we present a set of rules that guide the ontology 
engineer to a solution for the detected inconsistency. Note that we don’t list the com-
plete set of rules due to space restrictions. First, we define a set of rules that handle 
the different types of axioms. Secondly, we define the necessary rules to weaken or 
strengthen the different types of concepts. Note that axioms can always be weakened 
by removing the axiom. We therefore won’t mention this option explicitly in the rules 
below. The rules for weakening axioms are given below: 
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• A concept definition C ª D can be weakened either by removing the axiom or by 
weakening C or D (assuming C ª D resulted from C m D in the CDT): 
(4.1)  weaken(C ª D) ï strengthen(C) 
(4.2)  weaken(C ª D) ï weaken(D) 

• A concept inclusion axiom C m D can be weakened by removing the axiom, 
strengthening C or weakening D. The same rule applies for role inclusion axioms: 
(4.3)  weaken(C m D) ï strengthen(C) 
(4.4)  weaken(C m D) ï weaken(D) 

• A concept assertion C(a) can be weakened by either removing the axiom or by re-
placing C with a superclass: 
(4.5)  weaken(C(a)) ï change(C(a), D(a)) where X m D and leaf(X, C, Hc) 

• A role assertion R(a, b) can be weakened by either removing the axiom or by re-
placing R with a super-property: 
(4.6)  weaken(R(a, b)) ï change(R(a, b), S(a, b)) where X m S and leaf(X, R, Hp) 
 
The second part of rules deal with the weakening and strengthening of concepts: 

• A conjunction relation C * D can be weakened (strengthened) by weakening 
(strengthening) either C or D. The rules for weakening are given below; the rules 
for strengthening are analogous: 
(4.7)  IF marked(C): weaken(C * D) ï weaken(C) 
(4.8)  IF marked(D): weaken(C * D) ï weaken(D) 
(4.9)  IF marked(C) ∧ marked(D): weaken(C * D) ï weaken(C) ∨ weaken(D) 

• A disjunction relation C + D can be weakened (strengthened) by weakening 
(strengthening) C, D, or both C and D. The rules for weakening are given below; 
the rules for strengthening are analog: 
(4.10)  IF marked(C): weaken(C + D) ï weaken(C) 
(4.11)  IF marked(D): weaken(C + D) ï weaken(D) 
(4.12)  IF marked(C) ∧ marked(D): weaken(C + D) ï weaken(C) ∨ weaken(D) 

• An existential quantification ∃R.C can be weakened and strengthened in two 
manners as it represents both a cardinality restriction (“at least one”) and a value 
restriction. To weaken ∃R.C, we either remove ∃R.C if it concerns a cardinality 
restriction violation, or we weaken C if it concerns a value restriction violation. 
To strengthen ∃R.C, we either add a minimum cardinality restriction if it concerns 
a cardinality restriction violation, or we strengthen C if it concerns a value restric-
tion violation: 
(4.13)  IF marked(C): weaken(∃R.C) ï weaken(C) 
(4.14)  IF marked(R): strengthen(∃R.C) ï add((¥ 2 R)) 
(4.15)  IF marked(C): strengthen(∃R.C) ï strengthen(C) 

• A universal quantification ∀R.C can be weakened (strengthened) by weakening 
(strengthening) C. The rule for weakening is given below; the rule for strengthen-
ing is analogous: 
(4.16)  IF weaken(∀R.C) ï weaken(C) 

• A maximum cardinality restriction (§ n R) can be weakened either by raising n or 
by removing the cardinality restriction altogether. To strengthen (§ n R), we can 
lower n: 
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(4.17)  weaken((§ n R)) ï changeCardinalityRestriction(R, m) where m ¥ 1  
    if (§ n R) conflicts with ∃R.C, or m ¥ α if (§ n R) conflicts with (¥ α R) 
(4.18)  weaken((§ n R)) ï remove((§ n R)) 
(4.19)  strengthen((§ n R)) ï changeCardinalityRestriction(R, m) where m = 0  
   if (§ n R) conflicts with ∃R.C, or m § α if (§ n R) conflicts with (¥ α R) 

• A minimum cardinality restriction (¥ n R) can be weakened by either lowering n or 
by removing the cardinality restriction altogether. To strengthen (¥ n R), we can 
raise n: 
(4.20)  weaken((¥ n R)) ï changeCardinalityRestriction(R, m) where m § α  

              if (¥ n R) conflicts with (§ α R) 
(4.21)  weaken((¥ n R)) ï remove((§ n R))     
(4.22)  strengthen((¥ n R)) ï changeCardinalityRestriction(R, m) where m ¥ α  
          if (¥ n R) conflicts with (§ α R) 

• A negation ŸC is weakened by either removing ŸC or by strengthening C. To 
strengthen ŸC, we need to weaken C: 
(4.23)  weaken(ŸC) ï strengthen(C) 
(4.24)  strengthen(ŸC) ï weaken(C) 

• A concept A is weakened either by removing the concept or by replacing it with a 
superclass of A. To strengthen an atom concept A, we replace it with a subclass of 
A. When no (appropriate) sub- or superclass exists, we can create one first: 
(4.25)  weaken(A) ï change(A, B) where X m B and leaf(X, A,  Hc) 
(4.26)  strengthen(A) ï change(A, B) where B m X and top(X, A, Hc) 
 
We conclude this section with our example. The selection of axioms consisted of 

the following axioms: PhDStudent m Ÿ∀enrolledIn.ŸCourse, ∃enrolledIn.Course m 
Undergraduate, Undergraduate m ÿPhDStudent. If, for example, the ontology engi-
neer beliefs that the axiom ∃enrolledIn.Course m Undergraduate doesn’t reflect the 
real world situation, he could for example change the axiom to ∃enrolledIn.Course m 
Student, assuming Undergraduate m Student, by following the rules 4.4 and 4.25.  

5   Related Work 

Change management has been a long-term research interest. Noteworthy in the con-
text of this paper is certainly the work on database schema evolution [13] and mainte-
nance of knowledge-based systems [7]. When considering the problem of ontology 
evolution, only few approaches have been proposed. [15] defines the process of ontol-
ogy evolution as the timely adaptation of an ontology to the arisen changes and the 
consistent propagation of these changes to depending artifacts. In [16], the authors 
propose a possible ontology evolution framework. They introduce a change representa-
tion and discuss the semantics of change for the KAON ontology language. A similar 
approach has been taken by [6] for the OWL language. The authors of [11][12] pro-
pose another approach for the OWL language based on the use of a version log to rep-
resent evolution. They define changes in terms of temporal queries on this version log. 

On the topic of dealing with consistency maintenance for evolving ontologies, only 
very little research has been done. [4] presents an approach to localize an inconsistency 
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based on the notion of a minimal inconsistent sub-ontology. The notion of a minimal in-
consistent sub-ontology is very similar to the concept of a MUPS introduced by [14]. 
Although removing one axiom from the minimal inconsistent sub-ontology will resolve 
an unsatisfiable concept, it can not be guaranteed that this will solve the true cause of 
the inconsistency (as discussed in this paper). Furthermore, the approach doesn’t mark-
ing indicating parts of axioms as cause of the inconsistency, but rather treats axioms as a 
whole. 

Some related work has been carried out in explaining inconsistencies in OWL on-
tologies. The authors of [2] present a Symptom Ontology that aims to serve as a 
common language for identifying and describing semantic errors and warnings. The 
Symptom Ontology doesn’t identify the cause of the ontology nor does it offer possi-
ble solutions to resolve an inconsistency. 

Another interesting research area is the field of ontology debugging [10][18]. Their 
aim is to provide the ontology engineer with a more comprehensive explanation of the 
inconsistency than is generally provided by ‘standard’ ontology reasoners. We distin-
guish two types of approaches: black-box versus glass-box techniques. The first treats  
the reasoner as a ‘black box’ and uses standard inferences to locate the source of the in-
consistency. The latter modifies the internals of the reasoner to reveal the cause of the 
problem. While black-box techniques don’t add an overhead to the reasoner, more  
precise results can be obtained using a glass-box technique. Therefore, glass-box tech-
niques are considered a better candidate in the context of ontology evolution. The authors 
of [9] discuss a glass-box approach which offers the users information about the clash 
found and selects the axioms causing the inconsistency (similar to a MUPS). The disad-
vantage of a MUPS is that it doesn’t necessarily pinpoints the true cause of the inconsis-
tency. Furthermore, the approach doesn’t offer solutions to resolve the detected problem. 

6   Conclusion 

Ontologies are in general not static, but do evolve over time. An important aspect for 
evolving ontologies is that they evolve from one consistent state into another consis-
tent state. Checking whether an ontology is consistent can be achieved by means of a 
reasoner. The problem is that it is in general extremely challenging for an ontology 
engineer to determine the cause of an inconsistency and possible solutions for the 
problem based on the output of a reasoner. We therefore presented an algorithm to se-
lect the axioms causing the inconsistency. Furthermore, we have presented a set of 
rules that ontology engineers can use to change the selected axioms to overcome the 
detected inconsistency. 
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