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Abstract. We present an Identity Based Encryption (IBE) system that
is fully secure in the standard model and has several advantages over
previous such systems – namely, computational efficiency, shorter public
parameters, and a “tight” security reduction, albeit to a stronger as-
sumption that depends on the number of private key generation queries
made by the adversary. Our assumption is a variant of Boneh et al.’s
decisional Bilinear Diffie-Hellman Exponent assumption, which has been
used to construct efficient hierarchical IBE and broadcast encryption
systems. The construction is remarkably simple. It also provides recip-
ient anonymity automatically, providing a second (and more efficient)
solution to the problem of achieving anonymous IBE without random
oracles. Finally, our proof of CCA2 security, which has more in com-
mon with the security proof for the Cramer-Shoup encryption scheme
than with security proofs for other IBE systems, may be of independent
interest.
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1 Introduction

An Identity Based Encryption (IBE) system [25, 8] is a public key encryption
system in which a user’s public key may be an arbitrary string, such as an email
address or other identifier. The user’s private key is generated by a trusted au-
thority, called a Private Key Generator (PKG), which applies its master key to
the user’s identity after the user authenticates itself. Shamir [25] proposed the
notion of IBE in 1984 as a way to simplify public key and certificate manage-
ment. Rather than obtaining the disparate public keys of its intended recipients
separately, a message sender who knows the identities of its recipients needs
only to obtain the public parameters of the PKG; public key certificates are
eliminated altogether.

Boneh and Franklin [8, 9] described the first secure and truly practical IBE
system. Their system uses bilinear maps (or “pairings”), and they proved its
security in the random oracle model. Canetti et al. [15] presented an IBE system
whose security could proven without random oracles, but in a weaker “selective-
ID” model, in which the adversary must declare at the beginning of its attack
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which identity it will target. Boneh and Boyen [4] provided more practical IBE
systems in the selective-ID model. Shortly thereafter, Boneh and Boyen [5] pre-
sented a fully secure scheme – i.e., one in which the adversary may choose the
target identity adaptively – without random oracles. Waters [27] simplified the
scheme described in [5], substantially improving its efficiency.

Previous IBE Systems. Moni Naor observed that every IBE system secure
against an adaptive-ID attack (as defined by Boneh and Franklin in [8]) implies
a signature scheme secure against existential forgery under a chosen-message at-
tack. The generic transformation is as follows: the PKG’s parameters correspond
to the public key of the signature scheme; private key generation queries to the
PKG correspond to signature queries. If an adversary of the signature scheme
can forge a signature on an unqueried message, it can generate a private key for
an unqueried identity, thus breaking the IBE system. So, to design a secure IBE
system, one begins (in some sense) by designing a secure signature scheme.

A common strategy for proving the security of a signature scheme in the
random oracle model – e.g., for RSA with full-domain-hash – is as follows. The
simulator responds to hash queries in such a way that it can generate a signature
on most messages, but not all. The simulator aborts if the adversary requests
a signature on a message that it cannot sign, or if the adversary’s forgery is
on a message that the simulator knows how to sign already. One can also use
this strategy to design a secure private key generation procedure for an IBE
system. Boneh and Franklin [8] did precisely that; the private key generation
procedure in their system is essentially equivalent to the BLS signature scheme
[12], which uses the proof strategy just described. (Though, inconveniently for
our narrative, Boneh and Franklin’s IBE system slightly pre-dates its associated
signature scheme.)

When Boneh and Boyen [5] and later Waters [27] devised IBE systems fully
secure without random oracles, their main innovation was in the private key gen-
eration procedures. Each of these procedures corresponds to a signature scheme
that is fully secure (i.e., against a chosen-message attack) without random ora-
cles. Interestingly, though, the (implicit) proof strategy for these standard-model
signature schemes is still basically the same as above – i.e., the simulator con-
structs its public key in such a way that it can generate a signature on most
messages, but not all. Since, intuitively speaking, the simulator follows the same
strategy except for using its control of the public key (or public parameters, for
an IBE system) to compensate for not controlling a random oracle, it should not
be surprising that the public parameters for these IBE systems are quite large.

Another side effect of the above proof strategy is that the reduction is loose.
If δ is the probability that the simulator can generate a private key for a ran-
dom identity, then the probability that the simulator does not abort is at most
δq(1 − δ), where q is the number of private key generation queries made by the
adversary. Setting δ ≈ 1 − 1/q maximizes this probability at O(1/q). Thus, the
reduction loses a multiplicative factor of q. A lossy reduction is not merely a
theoretical problem; if we take the lossiness seriously, we should augment the
security parameter to compensate, making the system less efficient.
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Almost all of the IBE systems since Boneh-Franklin follow the “common strat-
egy” for proving security; consequently, they suffer from long parameters (when
security is proven in the standard model) and lossy reductions (in the standard
model or the random oracle model). However, we note a couple of exceptions.
The IBE systems described in [4] have short parameters and achieve a tight
reduction, but this is because they are proven secure only against selective-ID
attacks. As noted in [4], one can generally transform a selective-ID scheme into
a fully secure scheme by having the simulator guess which identity the adver-
sary will ultimately select, but this transformation loosens the reduction by
huge multiplicative factor – namely, by the total number of identities – that is
super-polynomial and (much) larger than q. This transformation is also a very
unsatisfying approach from a theoretical point of view. A second exception is
the IBE system by Katz and Wang [23], which achieves a tight reduction in the
random oracle model. In their system, the encryption of M under identity ID ef-
fectively consists of two ciphertexts under each of the derived identities H(ID, 0)
and H(ID, 1) (for hash function H modeled as random oracle). Through its con-
trol of the random oracle, the simulator ensures that, for each ID, it knows the
private key for exactly one of H(ID, 0) and H(ID, 1). It can thus answer any
key generation query. The successful adversary partially decrypts the challenge
ciphertext with the “wrong” private key with probability 1/2, giving the simula-
tor useful information. Though this system relies heavily on the random oracle
model, it illustrates how a tight reduction for an IBE system can be achieved
when the simulator can generate a private key for every identity. A recent paper
[2] discusses the Katz-Wang system in detail.

Currently, there is no IBE system that is fully secure without random oracles,
yet has short public parameters, or has a tight security reduction. Given this state
of affairs, several papers [4, 5, 27] have encouraged work on the open problem
of tight security; Waters posed [27] the open problem regarding compact public
parameters.

Our Contributions. We present an IBE system that is fully secure without
random oracles and has several advantages over previous such systems, including:

– Short public parameters (5 group elements for CCA2 security)
– A tight reduction, albeit based on a stronger assumption (see below)
– Recipient-anonymity

Our constructions are simple and efficient. For example, in the construction
described in Section 4.1, which we prove secure against adaptive-ID and adaptive
chosen-ciphertext attacks, a ciphertext consists of four group elements. Encryp-
tion and decryption require only a small constant number of group operations,
while user private keys and the PKG’s public parameters are compact. Compare,
for example, the public parameters in our IBE system (five group elements and
a hash function) to those in [27] (n + 4 group elements, where an identity is a
bitstring of length n).

An IBE system is recipient-anonymous, roughly speaking, if it hard for an
eavesdropper to distinguish which identity was used to generate a given
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ciphertext. Boneh et al. [7] discuss how anonymous IBE is useful in the con-
text of searchable public key encryption; Abdalla et al. [1] propose the open
problem of finding an anonymous IBE system secure without random oracles.
Boyen and Waters recently presented the first such anonymous IBE system at
the rump session of Crypto 2005 (see [14]). Our IBE system represents a second,
but more efficient, solution to this problem; it gives recipient-anonymity basi-
cally “for free.” The security proof for our scheme is also much simpler. However,
we note that the Boyen-Waters approach offers hierarchical anonymous IBE.

Regarding the open problem of constructing an IBE system with a tight secu-
rity reduction, our contribution is less clear. Our decision q-ABDHE assumption,
discussed in Section 2.3, is related to the q-BDHE assumption, which has been
used to construct efficient hierarchical IBE and broadcast encryption systems
[6, 10], but it is stronger than the decision BDH assumption used in [5, 27]. We
obtain a tight reduction based on q-ABDHE in the sense that the simulator’s
time complexity and success probability are identical to that of the adversary
in breaking the system, except for additive factors depending on q. However,
since our assumption is stronger, we cannot claim that a tighter reduction is
necessarily an improvement. Moreover, it is not obvious what it means to have
an asymptotically tight reduction based on the q-ABDHE assumption, since this
assumption varies as q varies. However, we can analyze the concrete security of
our system for specific values of q, as we do in Section 3.3. One conclusion of
this analysis is that if we assume decision q-ABDHE is no easier than decision
BDH (which may or may not be true), then our tighter reduction (for specific
reasonable values of q) allows us to choose a smaller security parameter, adding
to the efficiency advantages of our scheme. But perhaps this is not a very satis-
fying “solution” to the open problem; certainly, it would be preferable to obtain
a tight reduction under a more natural assumption, such as decision BDH.

A final contribution of this paper is our proof technique, which differs sub-
stantially from the “common strategy” described above. Interestingly, our proof
strategy draws inspiration from the Cramer-Shoup signature scheme [18] (and
strong-RSA based signature schemes, generally) for our private key generation
procedure, as well as from the Cramer-Shoup encryption scheme [17] for our
approach to proving security against chosen-ciphertext attacks.

Strong-RSA based signatures typically achieve a tight reduction and have
short public keys. Intuitively, this is related to the fact that, in the reduction, the
simulator can produce a signature for any message. Similarly, unlike in previous
IBE systems fully secure in the standard model, the simulator in our reduction
can generate a private key for any identity. One can view our private key gener-
ation procedure as a strongly existentially unforgeable signature scheme that is
“tightly” secure in the standard model under the q-strong DH assumption: that it
is hard to compute a pair (c, g1/(α−c)) given {gαi

: i ∈ [0, q]}, where q corresponds
to the anticipated number of queries. The savvy reader may notice that this sig-
nature scheme has direct analogue based on strong RSA. In the procedure, the
PKG (signer) publishes groups G and GT , and bilinear map e : G × G → GT ,
along with generators g, g1, h ∈ G, where g1 = gα. A private key for identity
ID ∈ Zp is a pair (rID, hID), where rID ∈ Zp and hID = (hg−rID)1/(α−ID); if the
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private key for ID is requested more than once, the PKG uses the same value
of rID each time. In the reduction, the simulator is given gi = g(αi) for all
i ∈ [0, q], where q is (roughly) the anticipated number private key generation
queries. Given {gi}, the simulator computes h by generating a random q-degree
polynomial f(x) ∈ Zp[x], and setting h = gf(α). To generate a private key for
ID, it sets rID = f(ID) and hID = (hg−rID)1/(α−ID) = g(f(α)−f(ID))/(α−ID); the sim-
ulator can compute the latter value from {gi}, since (f(x)− f(ID))/(x− ID) is a
(q − 1)-degree polynomial in x. The values of rIDi

in the simulation for i ∈ [1, q]
appear uniformly random, since f(x) is a random polynomial of degree q. If the
adversary can generate a private key (r′ID, h′

ID) for ID for which r′ID �= rID, the
simulator can efficiently compute g1/(α−ID).

The fact that the simulator in our system can generate exactly one pri-
vate key for any identity dovetails nicely with the proof strategy used in the
Cramer-Shoup encryption scheme, where the simulator actually knows exactly
one valid decryption key: its scalars (x1, y1, z1), along with the dependent values
(x2, y2, z2). Roughly speaking, in their proof, Cramer and Shoup show that these
scalars remain unconditionally hidden from the adversary (with overwhelming
probability), and thus the adversary cannot (except with negligible probability)
construct an invalid ciphertext that passes the simulator’s validity test, or guess
with advantage how the simulator would decrypt its own challenge ciphertext
when that challenge ciphertext is incorrectly distributed. How do we adapt their
technique to our (multi-user) IBE system? We augment the public parameters
to include group elements h1, h2, h3 ∈ G (rather than just h), where hi = gfi(α)

and fi(x) ∈ Zp[x] is a random and independent q-degree polynomial. The three
scalars rID,i = fi(ID), which a user receives as part of its private key, play a role
analogous to the scalars z1, x1, and y1, respectively, in Cramer-Shoup; the values
rID,2 and rID,3 are used in a projective-hash ciphertext validity test. The three
scalars remain hidden from the adversary with overwhelming probability, even
if the adversary obtains the scalars rID′,i = fi(ID′) for less than q − 1 identities
ID′ �= ID, since fi(x) is random and has degree q. Interestingly, previous IBE
systems fully secure without random oracles use an entirely different approach
to proving chosen-ciphertext security. They employ results by Canetti et al. [16]
(later improved by Boneh and Katz [11] and further by Boyen, Mei and Waters
[13]) that a chosen-ciphertext-secure IBE system follows from a chosen-plaintext-
secure 2-level hierarchical IBE system.

2 Preliminaries

Below, we review the definition of security for an IBE system. We also review
the definition of a bilinear map and discuss the complexity assumption on which
the security of our system is based.

2.1 Security Model for Identity-Based Encryption

An IBE system consists of four algorithms [25, 8]: Setup, KeyGen, Encrypt,
and Decrypt. Setup establishes the PKG’s parameters params and a master
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key master-key. KeyGen applies the master-key to an identity to generate the
private key for that identity. Encrypt takes a message, an identity and params
as input, and outputs a ciphertext. Decrypt decrypts a ciphertext for an identity
using a private key for that identity.

Boneh and Franklin [8, 9] define chosen ciphertext security for IBE systems
under a chosen identity attack via the following game.

Setup: The challenger runs Setup, and forwards params to the adversary.
Phase 1: Proceeding adaptively, the adversary issues queries q1, . . . , qm where

qi is one of the following:
– Key generation query 〈IDi〉: the challenger runs KeyGen on IDi and for-
wards the resulting private key to the adversary.
– Decryption query 〈IDi, Ci〉. The challenger runs KeyGen on IDi, decrypts
Ci with the resulting private key, and sends the result to the adversary.

Challenge: The adversary submits two plaintexts M0, M1 ∈ M and an identity
ID. ID must not have appeared in any key generation query in Phase 1. The
challenger selects a random bit b ∈ {0, 1}, sets C =Encrypt(params, ID, Mb),
and sends C to the adversary as its challenge ciphertext.

Phase 2: This is identical to Phase 1, except that the adversary may not request
a private key for ID or the decryption of (ID, C).

Guess: The adversary submits a guess b′ ∈ {0, 1}. The adversary wins if b = b′.

We call an adversary A in the above game a IND-ID-CCA adversary.

Definition 1. An IBE system is (t, qID, qC , ε) IND-ID-CCA secure if all t-time
IND-ID-CCA adversaries making at most qID private key queries and at most qC

chosen ciphertext queries have advantage at most ε in winning the above game.

IND-ID-CPA security is defined similarly, but with the restriction that the ad-
versary cannot make decryption queries.

Definition 2. An IBE system is (t, qID, ε) IND-ID-CPA secure if it is (t, qID, 0, ε)
IND-ID-CCA secure.

Recipient-Anonymity. Informally, we say that an IBE system is anonymous if
an adversary cannot distinguish the public key ID under which a ciphertext was
generated. More formally, we can incorporate anonymity into our game above
through the following simple modification. In the Challenge phase, the adversary
outputs two identities ID0 and ID1 not queried in Phase 1 and two messages M0
and M1. The challenger picks two random bits b, c ∈ {0, 1}, uses IDb to encrypt
Mc, and sends the resulting ciphertext C to the adversary. Phase 2 is like Phase
1, except that the adversary cannot request a private key for ID0 or ID1, or the
decryption of C under either identity. Finally, in the Guess phase, the adversary
guesses two bits b′, c′ and wins if b = b′ and c = c′; we define the adversary’s
advantage in this game to be |Pr[b = b′ ∧ c = c′] − 1

4 |.
Definition 3. We say that an IBE system E is (t, qID, qC , ε) ANON-IND-ID-CCA
secure if all t-time ANON-IND-ID-CCA adversaries making at most qID private
key queries and at most qC chosen ciphertext queries have advantage at most ε
in the modified game. We define ANON-IND-ID-CPA security similarly.
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2.2 Bilinear Maps

We review bilinear maps, using the following standard notation [8, 4, 27]:

1. G and GT are two (multiplicative) cyclic groups of prime order p;
2. g is a generator of G.
3. e : G × G → GT is a bilinear map.

Let G and GT be two groups as above. A bilinear map is a map e : G×G → GT

with the following properties:

1. Bilinear: for all u, v ∈ G and a, b ∈ Z, we have e(ua, vb) = e(u, v)ab.
2. Non-degenerate: e(g, g) �= 1.

We say that G is a bilinear group if the group action in G can be computed
efficiently and there exists a group GT and an efficiently computable bilinear
map e : G × G → GT as above. Note that e(, ) is symmetric since e(ga, gb) =
e(g, g)ab = e(gb, ga).

2.3 Complexity Assumptions

The security of our system is based on a complexity assumption that we call the
decisional augmented bilinear Diffie-Hellman exponent assumption (decisional
ABDHE). First, we recall the q-BDHE problem [6, 10], which is as follows:
Given a vector of 2q + 1 elements(

g′, g, gα, g(α2), . . . , g(αq), g(αq+2), . . . , g(α2q)
)

∈ G2q+1

as input, output e(g, g′)(α
q+1) ∈ GT . Since the input vector is missing the term

g(αq+1), the bilinear map does not seem to help compute e(g, g′)(α
q+1).

We define the q-ABDHE problem almost identically: Given a vector of 2q + 2
elements(

g′, g′(α
q+2)

, g, gα, g(α2), . . . , g(αq), g(αq+2), . . . , g(α2q)
)

∈ G2q+2

as input, output e(g, g′)(α
q+1) ∈ GT . Introducing the additional term g′(α

q+2)

still does not appear to ease the computation of e(g, g′)(α
q+1), since the input

vector is missing the term g(α−1).
The q-ABDHE problem is actually more than we need for our IBE system.

Instead, we can use a truncated version of the q-ABDHE problem, in which the
terms (g(αq+2), . . . , g(α2q)) are omitted from the input vector. Clearly, the trun-
cated q-ABDHE problem is hard if the q-ABDHE problem is hard. An algorithm
A has advantage ε in solving truncated q-ABDHE if

Pr
[A (

g′, g′q+2, g, g1, . . . , gq

)
= e(gq+1, g

′)
] ≥ ε

where we use gi and g′i to denote g(αi) and g′(α
i), and where the probability is

over the random choice of generators g, g′ in G, the random choice of α in Zp,
and the random bits used by A.
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The decisional version of truncated q-ABDHE is defined as one would expect.
An algorithm B that outputs b ∈ {0, 1} has advantage ε in solving truncated
decision q-ABDHE if∣∣∣∣Pr

[B(
g′, g′q+2, g, g1, . . . , gq, e(gq+1, g

′)
)

= 0
]

− Pr
[B(

g′, g′q+2, g, g1, . . . , gq, Z
)

= 0
] ∣∣∣∣ ≥ ε

where the probability is over the random choice of generators g, g′ in G, the
random choice of α in Zp, the random choice of Z ∈ GT , and the random bits
consumed by B. We refer to the distribution on the left as PABDHE and the
distribution on the right as RABDHE .

Definition 4. We say that the truncated (decision) (t, ε, q)-ABDHE assumption
holds in G if no t-time algorithm has advantage at least ε in solving the truncated
(decision) q-ABDHE problem in G.

As an aside, we note that the truncated q-ABDHE problem is also closely related
to the q-bilinear Diffie-Hellman inversion (q-BDHI) problem, which has been
used to construct an IBE system secure without random oracles under a selective-
ID attack [4] and a verifiable random function [20]. Specifically, let us define
the q-augmented BDHI (q-ABDHI) problem as follows: given a vector of q + 2
elements (

g(α−q−2), g, gα, g(α2), . . . , g(αq)
)

∈ Gq+1

as input, output e(g, g)1/α ∈ GT . The q-ABDHI problem is identical to the
q-BDHI problem, except that the former adds the term g(α−q−2) to the input
vector, which does not seem to help compute e(g, g)1/α. One can reduce (deci-
sion) q-ABDHI to truncated (decision) q-ABDHE simply by setting (g′, g′α

q+2

) =
((g(α−q−2))x, gx) for random x ∈ Z∗

p, and deriving e(g, g)1/α as e(gq+1, g
′)1/x.

3 Construction I: Chosen-Plaintext Security

We now present an efficient IBE system that is ANON-IND-ID-CPA secure with-
out random oracles under the truncated decision (qID + 1)-ABDHE assumption.
Though this construction is substantially similar to the construction presented
in Section 4.1, which is ANON-IND-ID-CCA secure, we present this construction
separately because there are applications (such as searchable public key encryp-
tion [7, 1]) that only require chosen-plaintext security, and because we believe
the reader may benefit from seeing this construction’s (relatively) simple proof
of security without being distracted by the additional machinery needed to prove
chosen-ciphertext security.
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3.1 Construction

Let G and GT be groups of order p, and let e : G × G → GT be the bilinear
map. The IBE system works as follows.

Setup: The PKG picks random generators g, h ∈ G and random α ∈ Zp. It sets
g1 = gα ∈ G. The public params and private master-key are given by

params = (g, g1, h) master-key = α .

KeyGen: To generate a private key for identity ID ∈ Zp, the PKG generates
random rID ∈ Zp, and outputs the private key

dID = (rID, hID), where hID = (hg−rID)1/(α−ID) .

If ID = α, the PKG aborts. We require that the PKG always use the same
random value rID for ID. This can be accomplished, for example, using a
PRF or an internal log to ensure consistency.

Encrypt: To encrypt m ∈ GT using identity ID ∈ Zp, the sender generates
random s ∈ Zp and sends the ciphertext

C = (gs
1g

−s·ID, e(g, g)s, m · e(g, h)−s) .

Notice that encryption does not require any pairing computations once
e(g, g) and e(g, h) have been pre-computed. Alternatively, e(g, g) and e(g, h)
can be included in the system parameters, in which case h can be dropped.

Decrypt: To decrypt ciphertext C = (u, v, w) with ID, the recipient outputs

m = w · e(u, hID)vrID .

Correctness: Assuming the ciphertext is well-formed for ID:

e(u, hID)vrID = e(gs(α−ID), h1/(α−ID)g−rID/(α−ID))e(g, g)srID = e(g, h)s ,

as required.

Intuitively, the recipient can decrypt because it possess a (α − ID)-th root of h
(after h is perturbed by g−rID). When this is paired with u, a (α − ID)-th power
of gs, the recipient obtains the mask e(g, h)s after removing the perturbation.

3.2 Security

We now prove that the above IBE system is ANON-IND-ID-CPA secure under
the truncated decision (qID + 1)-ABDHE assumption.

Theorem 1. Let q = qID+1. Assume the truncated decision (t, ε, q)-ABDHE as-
sumption holds for (G, GT , e). Then, the above IBE system is (t′, ε′, qID) ANON-
IND-ID-CPA secure for t′ = t − O(texp · q2) and ε′ = ε + 2/p, where texp is the
time required to exponentiate in G.
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Proof. Let A be an adversary that (t′, ε′, qID)-breaks the ANON-IND-ID-CPA se-
curity of the IBE system described above. We construct an algorithm, B, that
solves the truncated decision q-ABDHE problem, as follows. B takes as input a
random truncated decision q-ABDHE challenge (g′, g′q+2, g, g1, . . . , gq, Z), where
Z is either e(gq+1, g

′) or a random element of GT (recall that gi = g(αi)). Algo-
rithm B proceeds as follows.

Setup: B generates a random polynomial f(x) ∈ Zp[x] of degree q. It sets
h = gf(α), computing h from (g, g1, . . . , gq). It sends the public key (g, g1, h)
to A. Since g, α, and f(x) are chosen uniformly at random, h is uniformly
random and this public key has a distribution identical to that in the actual
construction.

Phase 1: A makes key generation queries. B responds to a query on ID ∈ Zp as
follows. If ID = α, B uses α to solve truncated decision q-ABDHE immedi-
ately. Else, let FID(x) denote the (q−1)-degree polynomial (f(x)−f(ID))/(x−
ID). B sets the private key (rID, hID) to be (f(ID), gFID(α)). This is a valid pri-
vate key for ID, since gFID(α) = g(f(α)−f(ID))/(α−ID) = (hg−f(ID))1/(α−ID), as
required. We will describe why this private key appears to A to be correctly
distributed below.

Challenge: A outputs identities ID0, ID1 and messages M0, M1. Again, if α ∈
{ID0, ID1}, B uses α to solve truncated decision q-ABDHE immediately. Else,
B generates bits b, c ∈ {0, 1}, and computes a private key (rIDb

, hIDb
) for IDb

as in Phase 1. Let f2(x) = xq+2 and let F2,IDb
(x) = (f2(x) − f2(IDb))/(x −

IDb), which is a polynomial of degree q + 1. B sets

u = g′f2(α)−f2(IDb), v = Z · e(g′,
q∏

i=0

gF2,IDb,iα
i

) w = Mc/e(u, hIDb
)vrIDb ,

where F2,IDb,i is the coefficient of xi in F2,IDb
(x). It sends (u, v, w) to A as

the challenge ciphertext.
Let s = (logg g′)F2,IDb

(α). If Z = e(gq+1, g
′), then u = gs(α−IDb), v =

e(g, g)s, and Mc/w = e(u, hIDb
)vrIDb = e(g, h)s; thus (u, v, w) is a valid ci-

phertext for (IDb, Mc) under randomness s. Since logg g′ is uniformly random,
s is uniformly random, and so (u, v, w) is a valid, appropriately-distributed
challenge to A.

Phase 2: A makes key generation queries, and B responds as in Phase 1.
Guess: Finally, the adversary outputs guesses b′, c′ ∈ {0, 1}. If b = b′ and c = c′,

B outputs 0 (indicating that Z = e(gq+1, g
′)); otherwise, it outputs 1.

Perfect Simulation: When Z = e(gq+1, g
′), the public key and challenge ci-

phertext issued by B comes from a distribution identical to that in the actual
construction; however, we still must show that the private keys issued by B are
appropriately distributed. Let I be a set consisting of α, IDb, and the identities
queried by A; observe that |I| ≤ q + 1. To show that the keys issued by B
are appropriately distributed, it suffices to show that, from A’s view, the values
{f(a) : a ∈ I} are uniformly random and independent. But this follows from the
fact that f(x) is a uniformly random polynomial of degree q.
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Probability Analysis: If Z = e(gq+1, g
′), then the simulation is perfect, and A

will guess the bits (b, c) correctly with probability 1/4 + ε′. Else, Z is uniformly
random, and thus (u, v) is a uniformly random and independent element of
G×GT . In this case, the inequalities v �= e(u, g)1/(α−ID0) and v �= e(u, g)1/(α−ID1)

both hold with probability 1 − 2/p. When these inequalities hold, the value of
e(u, hIDb

)vrIDb = e(u, (hg−rIDb )1/(α−IDb))vrIDb = e(u, h)α−IDb(v/e(u, g)1/(α−IDb))rIDb

is uniformly random and independent from A’s view (except for the value w),
since rIDb

is uniformly random and independent from A’s view (except for the
value w). Thus, w is uniformly random and independent, and (u, v, w) can impart
no information regarding the bits (b, c).

Assuming that no queried identity equals α (which would only increase B’s
success probability), we see that | Pr[B(g′, g′q+2, g, g1, . . . , gq, Z) = 0]−1/4| ≤ 2/p
when (g′, g′q+2, g, g1, . . . , gq, Z) is sampled from RABDHE . However, we have that
| Pr[B(g′, g′q+2, g, g1, . . . , gq, Z) = 0] − 1/4| ≥ ε′ when (g′, g′q+2, g, g1, . . . , gq, Z) is
sampled from PABDHE . Thus, for uniformly random g, g′, α and Z, we have
that ∣∣∣∣Pr

[B(
g′, g′q+2, g, g1, . . . , gq, e(gq+1, g

′)
)

= 0
]

− Pr
[B(

g′, g′q+2, g, g1, . . . , gq, Z
)

= 0
] ∣∣∣∣ ≥ ε′ − 2/p .

Time-Complexity: In the simulation, B’s overhead is dominated by computing
gFID(α) in response to A’s key generation query on ID, where FID(x) is a polyno-
mial of degree q − 1. Each such computation requires O(q) exponentiations in
G. Since A makes at most q − 1 such queries, t = t′ + O(texp · q2).

This concludes the proof of Theorem 1. ��

3.3 Remarks on the Tightness of the Reduction

In the reduction, B’s success probability and time complexity are the same as
A’s, except for additive factors depending on q. So, one could say that our IBE
system has a tight security reduction in the standard model, addressing an open
problem posed in [4, 5, 27]. However, it would be misleading to claim that a tight
reduction from decision q-ABDHE is necessarily better than the loose reduction
from decision BDH (for the IBE systems described by Boneh and Boyen [4]
and Waters [27]), for a couple of reasons. First, decision q-ABDHE is a stronger
assumption than decision BDH. Second, it is not even obvious what “a tight
reduction from decision q-ABDHE” means, since the assumption is not fixed
when q varies; it becomes stronger as the number of queries increases. Given these
considerations, let’s examine the significance (if any) of the “tight reduction” in
closer detail.

Not much is known about the relative hardness of the decision q-ABDHE
and decision BDH problems; they could be equally hard, or the former could
be significantly easier. Decision q-ABDHE is a new problem, less natural and
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less well-studied than decision BDH, though it seems closely connected to the
decision q-BDHE and decision q-BDHI problems that were used in [6, 10, 4, 20].
Interestingly, Boneh et al. [6] give some evidence that the decision q-ABDHE
problem is easier to solve in the generic group model. In particular, Boneh et al.
[6] show (roughly) that a generic attacker’s advantage in deciding whether an
element of GT equals g

f(α)
1 – when given oracle access to the group operation

and the values g ∈ G, g1 ∈ GT and gfi(α) ∈ G for polynomials f1, . . . , fs – is
at most (t + 2s + 2)2d/2p, where p is the group order, t is the number of oracle
queries, and d = max{deg(f), deg(f1), . . . ,deg(fs)}. Since d = q for the decision
q-ABDHE problem, Boneh et al.’s result suggests that a generic attacker’s ad-
vantage in decision q-ABDHE may be about q times greater than in decision
BDH (for fixed t and p, and assuming q ( t). This factor of q seems to offset
the factor of q that we eliminated by making our reduction tight. On the other
hand, this generic-group result doesn’t tell us much about relative hardness of
the decision q-ABDHE and decision BDH problems in the real world, since the
fastest algorithms for solving them are likely non-generic (and sub-exponential).
Ultimately, it is unclear whether or not our tighter reduction under a stronger
assumption improves security.

However, for the sake of argument, let’s try to assess the impact of our tighter
reduction under the assumption that the decision q-ABDHE and decision BDH
problems are equally hard. Since it is not very useful simply to characterize our
reduction as “tight” asymptotically, let’s make such a statement more precise
by fixing reasonable values of q and assessing the security and efficiency impli-
cations concretely. Suppose that we want to choose our security parameter such
that, to succeed with probability at least ε′, the time complexity of A’s attack
must be 2100. Suppose also that it is infeasible for A make more than 230 key
generation queries, and that texp = 230. In this case, we should choose our secu-
rity parameter such that t = 2100 + O(texp · q2). Since 290 is much smaller than
2100, it essentially suffices to choose the security parameter such that t ≈ 2100.

On the other hand, consider an IBE system whose reduction loses a multiplica-
tive factor of q in time-complexity (without much loss in the success probability).
In this setting, to ensure that A’s time complexity is 2100, we must choose our se-
curity parameter such that t ≈ 2130. The security parameter in this setting thus
must be at least 30% greater (even more if sub-exponential attacks are possible
against the system). Assuming, as a rough approximation, that exponentiation
takes time proportional to the cube of the security parameter, the increase in
the security parameter size more than doubles the time needed to exponentiate,
which significantly impacts the computational efficiency of the system. So, our
“tight reduction” significantly enhances the efficiency advantages of our system
over previous IBE systems that have been proven fully secure in the standard
model (under decision BDH), at least when we assume that decision q-ABDHE
and decision BDH are equally hard.

Since the relative hardness of decision q-ABDHE and decision BDH is un-
known, however, we stress that it remains an excellent open problem to
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construct an IBE system that has a tight reduction in the standard model under
a more natural assumption, such as decision BDH.

4 Construction II: Chosen-Ciphertext Security

We now present an efficient IBE system that is ANON-IND-ID-CCA secure with-
out random oracles under the truncated decision (qID + 2)-ABDHE assumption.

4.1 Construction

Let G and GT be groups of order p, and let e : G × G → GT be the bilinear
map. The IBE system works as follows.

Setup: The PKG picks a random generators g, h1, h2, h3 ∈ G and a random
α ∈ Zp. It sets g1 = gα ∈ G. It chooses a hash function H from a family of
universal one-way hash functions. The public params and private master-
key are given by

params = (g, g1, h1, h2, h3, H) master-key = α .

KeyGen: To generate a private key for identity ID ∈ Zp, the PKG generates
random rID,i ∈ Zp for i ∈ {1, 2, 3}, and outputs the private key

dID = {(rID,i, hID,i) : i ∈ {1, 2, 3}}, where hID,i = (hig
−rID,i)1/(α−ID) .

If ID = α, the PKG aborts. As before, we require that the PKG always use
the same random values {rID,i} for ID.

Encrypt: To encrypt m ∈ GT using identity ID ∈ Zp, the sender generates
random s ∈ Zp and sends the ciphertext

C = (gs
1g

−s·ID, e(g, g)s, m · e(g, h1)−s, e(g, h2)se(g, h3)sβ) .

Above, for C = (u, v, w, y), we set β = H(u, v, w). As before, encryption
does not require any pairing computations once e(g, g), and {e(g, hi)} have
been pre-computed or alternatively included in params.

Decrypt: To decrypt ciphertext C = (u, v, w, y) with ID, the recipient sets
β = H(u, v, w) and tests whether

y = e(u, hID,2hID,3
β)vrID,2+rID,3β .

If the check fails, the recipient outputs ⊥. Otherwise, it outputs

m = w · e(u, hID,1)vrID,1 .

Correctness: Assuming the ciphertext is well-formed for ID:

e(u, hID,2hID,3
β)vrID,2+rID,3β

= e(gs(α−ID), (h2h3
β)1/(α−ID)g−(rID,2+rID,3β)/(α−ID))e(g, g)s(rID,2+rID,3β)

= e(gs(α−ID), (h2h3
β)1/(α−ID)) = e(g, h2)se(g, h3)sβ .

Thus, the check passes. Moreover, as in the ANON-IND-ID-CPA scheme,

e(u, hID,1)vrID,1 = e(gs(α−ID), h
1/(α−ID)
1 g−rID,1/(α−ID))e(g, g)srID,1 = e(g, h1)s ,

as required.
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4.2 Security

We now prove that the above construction is ANON-IND-ID-CCA secure under
the truncated decision (qID + 2)-ABDHE assumption. We will refer the reader
to the proof of Theorem 1 for some portions of the present proof that would
otherwise be duplicative.

Theorem 2. Let q = qID + 2. Assume the truncated decision (t, ε, q)-ABDHE
assumption holds for (G, GT , e). Then, the above IBE system is (t′, ε′, qID, qC)
ANON-IND-ID-CCA secure for t′ = t − O(texp · q2) and ε′ = ε + 4qC/p, where
texp is the time required to exponentiate in G.

Proof. Let A be an adversary that (t′, ε′, qID, qC)-breaks the ANON-IND-ID-CCA
security of the IBE system described above. We construct an algorithm, B, that
solves the truncated decision q-ABDHE problem, as follows. B takes as input a
random truncated decision q-ABDHE challenge (g′, g′q+2, g, g1, . . . , gq, Z), where
Z is either e(gq+1, g

′) or a random element of GT . Algorithm B proceeds as
follows.

Setup: B generates random polynomials fi(x) ∈ Zp[x] of degree q for i ∈
{1, 2, 3}. It sets hi = gfi(α). It sends the public key (g, g1, h1, h2, h3) to
A. Since g, α, and fi(x) for i ∈ {1, 2, 3} are chosen uniformly at random,
h1, h2, and h3 are uniformly random and the public key has a distribution
identical to that in the actual construction.

Phase 1: A makes key generation queries. B responds to a query on ID ∈ Zp as
follows. If ID = α, B uses α to solve truncated decision q-ABDHE immedi-
ately. Else, to generate a pair (rID,1, hID,1) such that hID,1=(h1g

−rID,1)1/(α+ID),
B sets rID,1 = f1(ID) and computes hID,1 as before (in the proof of Theorem
1). It computes the remainder of the private key similarly. As before, the
private key generated for ID in this fashion is valid.
A also makes decryption queries. To respond to a decryption query on
(ID, C), B generates a private key for ID as above. It then decrypts C by
performing the usual Decrypt algorithm with this private key.

Challenge: As before, A outputs identities ID0, ID1 and messages M0, M1. If
α ∈ {ID0, ID1}, B uses α to solve truncated decision q-ABDHE immediately.
Else, as before, B generates bits b, c ∈ {0, 1}. After computing a private
key {(rID,i, hID,i) : i ∈ {1, 2, 3}} for IDb, it also computes (u, v, w) as before,
using the (rIDb,1, hIDb,1) portion of the key to compute w. After setting β =
H(u, v, w), B sets y = e(u, hID,2hID,3

β)vrID,2+rID,3β . If Z = e(gq+1, g
′), then

(u, v, w, y) is a valid, appropriately-distributed challenge to A for essentially
the same reason as before.

Phase 2: A makes key generation and decryption queries, and B responds as
in Phase 1.

Guess: As before.

Now, since the time-complexity analysis is as in the proof of Theorem 1, Theo-
rem 2 follows from the following lemmata.
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Lemma 1. When B’s input is sampled according to PABDHE, the joint distri-
bution of A’s view and the bits (b, c) is indistinguishable from that in the actual
construction, except with probability 2qC/p.

Lemma 2. When B’s input is sampled according to RABDHE , the distribution
of the bits (b, c) is independent from the adversary’s view, except with probability
2qC/p.

Our approach to proving these claims closely follows the proof of security for
the Cramer-Shoup encryption scheme [17], in that both proofs rely heavily on
the notion of linear independence. More specifically, when one expresses the
adversary’s knowledge (from the public key, queries, etc.) as equations in the
simulator’s private key variables, one may ask whether a target equation that
the adversary is trying to solve is linearly independent to the equations in its
knowledge base; if so, then in certain circumstances, the adversary can be said to
have an unconditionally negligible probability of finding a solution to the target
equation. This will become clearer below.

Proof of Lemma 1: When B’s input is sampled according to PABDHE , B’s
simulation appears perfect to A if A makes only key generation queries, as in
the proof of Theorem 1. B’s simulation still appears perfect if A makes decryption
queries only on identities for which it queries the private key, since B’s responses
give A no additional information. Furthermore, querying well-formed ciphertexts
to the decryption oracle does not help A distinguish between the simulation
and the actual construction, since, by the correctness of Decrypt, well-formed
ciphertexts will be accepted in either case. Finally, querying a non-well-formed
ciphertext (u′, v′, w′, y′) for ID for which v′ = e(u′, g)1/(α−ID) does not help A
distinguish, since this ciphertext will fail the Decrypt check under every valid
private key for ID. Thus, the lemma follows from the following claim:

Claim: The decryption oracle, in the simulation and in the actual construction,
rejects all invalid ciphertexts under identities not queried by A, except with prob-
ability qC/p.

We say a ciphertext (u′, v′, w′, y′) for ID is “invalid” if v′ �= e(u′, g)1/(α−ID).
Let (u′, v′, w′, y′) be an invalid ciphertext queried by A for ID, an identity

not queried by A. Let {(rID,i, hID,i) : i ∈ {1, 2, 3}} be B’s private key for ID. Let
au′ = logg u′, av′ = loge(g,g) v′, and ay′ = loge(g,g) y′. For (u′, v′, w′, y′) to be

accepted, we must have y′ = e(u′, hID,2hID,3
β′

)v′rID,2+rID,3β′
– i.e.,

ay′ = au′(logg hID,2 + β′ logg hID,3) + av′(rID,2 + β′rID,3) , (1)

for β′ = H(u′, v′, w′). To compute the probability that A can generate such a
y′, we must consider the distribution of {(rID,i, hID,i) : i ∈ {2, 3}} from A’s view.

First, A knows that

logg h1 = (α − ID) logg hID,1 + rID,1 (2)
logg h2 = (α − ID) logg hID,2 + rID,2 (3)
logg h3 = (α − ID) logg hID,3 + rID,3 (4)
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by the construction of the private key. In light of Equations 3 and 4, A’s task
may be re-phrased as finding a y′ such that

ay′ = (au′/(α−ID))(logg h2+β′ logg h3)+(av′−au′/(α−ID))(rID,2+β′rID,3) . (5)

Note that av′ − au′/(α − ID) �= 0, since the ciphertext is invalid. Let z′ =
av′ − au′/(α − ID).

In the actual construction, the values of rID,i for i ∈ {2, 3} are chosen in-
dependently for different identities; however, this is not true in the simulation.
Since fi(ID) = rID,i, A could conceivably gain information regarding (rID,2, rID,3)
from its information regarding (f2(x), f3(x)), which includes the evaluations of
(f2(x), f3(x)) at α (from the public key components (h2, h3)) and at q − 2 iden-
tities (from its key generation queries). We may represent the knowledge gained
from these evaluations as a matrix product:

[f2,0, f2,1, . . . , f2,q, f3,0, f3,1, . . . , f3,q]

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 · · · 1 0 0 · · · 0
x1 x2 · · · xq−1 0 0 · · · 0
...

...
...

...
...

...
...

...
xq

1 xq
2 · · · xq

q−1 0 0 · · · 0
0 0 · · · 0 1 1 · · · 1
0 0 · · · 0 x1 x2 · · · xq−1
...

...
...

...
...

...
...

...
0 0 · · · 0 xq

1 xq
2 · · · xq

q−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where fi,j is the coefficient of xj in fi(x), xk ∈ Zp is the k-th identity queried
by A to the key generation oracle, and xq−1 = α. Let f denote the vector on
the left and let V denote the matrix on the right. Note that V contains two
(q + 1) × (q − 1) Vandermonde matrices; its columns are linearly independent.
From A’s view, since V has four more rows than columns, the solution space for
f is four-dimensional.

Let γID denote the vector (1, ID, . . . , IDq). When we re-phrase Equation 5 in
terms of the simulator’s private key vector f , we obtain:

ay′ = “public” terms + z′(f · γID‖β′γID) , (6)

where “·” denotes the dot product and γID‖β′γID denotes the 2(q+1)-dimensional
vector formed by concatenating the coefficients of γID and β′γID. If γID‖β′γID

were in the linear span of V , then potentially A could use knowledge gained
from its key generation queries to compute a solution y′ to Equation 6. How-
ever, one can easily see that γID‖β′γID is linearly independent. Thus, as in the
security proof of Cramer-Shoup, it follows that the decryption oracle will re-
ject (u′, v′, w′, y′) for ID with probability 1 − 1/p if it is the first invalid ci-
phertext queried by A, since there is only a 1/p chance that f is contained in
the 3-dimensional solution space (with p3 points) defined by Equation 6 and
the columns of V , given that f is in the 4-dimensional solution space (with p4

points) defined by the columns of V .
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Each time the decryption oracle rejects an invalid ciphertext in the simulation,
the solution space for f is “punctured” in a 3-dimensional space that A then
concludes does not contain f ; consequently, the probability that A’s i-th invalid
ciphertext is accepted is at most 1/(p − i + 1). The probability that qC invalid
ciphertexts (on identities not queried to the key generation oracle) are all rejected
is at least 1 − qC/p. This bound also holds for the actual construction (where
A’s attack is less effective). This concludes the proof of Lemma 1.

Proof of Lemma 2: The lemma follows from the following two claims.

Claim 1: If the decryption oracle rejects all invalid ciphertexts, then A has ad-
vantage at most qC/p in guessing the bits (b, c).

Claim 2: The decryption oracle rejects all invalid ciphertexts, except with prob-
ability qC/p.

Let au = logg u, av = loge(g,g) v and ay = loge(g,g) y for challenge cipher-
text (u, v, w, y) on (IDb, Mc). Since (u, v, w, y) is generated by sampling from
RABDHE in this case, (au, av) is a uniformly random element of Zp × Zp in A’s
view. From the challenge ciphertext and Equations 2-4, A obtains the equations

log(Mc/w) = (au/(α − IDb)) log h1 + (av − au/(α − IDb))rIDb,1 (7)
ay=(au/(α−IDb))(logg h2+β logg h3)+(av−au/(α−IDb))(rIDb,2+βrIDb,3) (8)

where β = H(u, v, w).
Regarding Claim 1, if no invalid ciphertexts are accepted, then B’s responses

to decryption queries leak no information about rIDb,1. Furthermore, A’s key
generation queries do not constrain rIDb,1 = f1(IDb), since f1 is of degree q.
Thus the distribution of Mc/w – conditioning on (b, c) and everything in A’s
view other than w – is uniform. As in Cramer-Shoup, Mc/w serves as a perfect
one-time pad; w is uniformly random and independent, and c is independent of
A’s view.

The only part of the ciphertext that can reveal information about b is y, since
A views (u, v, w) as a uniformly random and independent element of G×GT ×GT .
The 2q − 2 equations corresponding to the columns of V intersect Equation 8
in at least a three-dimensional space in Z

2(q+1)
p . A views f as being contained

in one of two three-dimensional spaces, since b has two possible values. By an
argument similar to above, each of A’s invalid ciphertext queries punctures each
of these three-dimensional spaces in a plane, removing each of the two planes
from consideration as containing f . Since no invalid ciphertext is accepted, each
three-dimensional space is left with at least p3 − qCp2 (out of p3) candidates.
Thus, A cannot distinguish b, except with advantage at most qC/p.

Regarding Claim 2, suppose that A submits an invalid ciphertext (u′, v′, w′, y′)
for unqueried identity ID, where (u′, v′, w′, y′, ID) �= (u, v, w, y, IDb). Let β′ =
H(u′, v′, w′). There are three cases to consider:

1. (u′, v′, w′) = (u, v, w): In this case, the hashes are also equal. If ID = IDb

but y′ �= y, the ciphertext will certainly be rejected. If ID �= IDb, A must
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generate a y′ that satisfies Equation 6. However, we claim that the vector
γID‖βγID (corresponding to Equation 6) is linearly independent in Z

2(q+1)
p

to γIDb
‖βγIDb

(corresponding to the challenge ciphertext) and the columns
of V , implying (via arguments analogous to those above) that A cannot gen-
erate such a y′ except with probability 1/(p − i + 1), where (u′, v′, w′, y′)
is the i-th invalid ciphertext. Let V1, . . . , V2q−2 be the columns of V . Sup-
pose that there exist integers (a1, . . . , a2q), not all zero, such that a1V1 +
· · · + a2q−2V2q−2 + a2q−1(γID‖βγID) + a2q(γIDb

‖βγIDb
) is the zero vector in

Z
2(q+1)
p . Then, either (a1, . . . , aq−1, a2q−1, a2q) or (aq, . . . , a2q−2, a2q−1, a2q)

is not all zeros; wlog, assume the former. The first q + 1 coordinates of the
vectors (V1, . . . , Vq−1, γID, γIDb

) form a Vandermonde matrix (with nonzero
determinant), but the first q + 1 coordinates of a1V1 + · · · + aq−1Vq−1 +
a2q−1(γID‖βγID) + a2q(γIDb‖βγIDb) is the zero vector in Zq+1

p – a contradic-
tion.

2. (u′, v′, w′) �= (u, v, w) and β′ = β: This violates the universal one-wayness of
the hash function H , by an argument analogous to that in Cramer-Shoup.

3. (u′, v′, w′) �= (u, v, w) and β′ �= β: In this case, A must generate, for some ID,
a y′ that satisfies Equation 6. For essentially the same reason as discussed
in Item 1, A can do this with only negligible probability when ID �= IDb. If
ID = IDb, then γID‖β′γID and γIDb‖βγIDb generate γIDb‖0q+1 and 0q+1‖γIDb

since β �= β′. These vectors are clearly linearly independent to each other
and the columns of V , and thus the standard analysis applies.

This completes the proof of Lemma 2.

5 Conclusions and Open Problems

We presented a fully secure IBE system that is quite practical, has very compact
public parameters, and has a tight security reduction (though based on a stronger
assumption that depends on the anticipated number of private key generation
queries). The scheme is recipient-anonymous, and its proof extends Cramer-
Shoup-type techniques to IBE systems.

Since a tight reduction based on decision q-ABDHE is not necessarily better
than a loose reduction based on decision BDH (or some other natural assump-
tion), it remains an outstanding open problem to construct a fully secure IBE
system (without random oracles) that has a tight reduction based on a more
natural assumption. Another interesting problem is to construct a hierarchical
IBE system that has a reduction based on a reasonable assumption, either in
the standard model or the random oracle model, that is polynomial in q and the
number of levels.
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