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Abstract. Simulating large networks of spiking neurons is a very com-
mon task in the areas of Neuroinformatics and Computational Neuro-
sciences. These simulations are time-consuming but also often intrinsi-
cally parallel. The recent advent of powerful and programmable graphic
cards seems to be a pertinent solution to the problem: they offer a cheap
but efficient possibility to serve as very fast co-processors for the parallel
computing that spiking neural networks need. We describe our implemen-
tation of three different problems on such a card: two image-segmentation
algorithms using spiking neural networks and one multi-purpose spiking
neural-network simulator. Using these examples we show the benefits,
the challenges and the limits of such an implementation.

1 Introduction

1.1 Motivations

Considering the power of recent graphic cards in parallel computation, and the
possibility to program them, it is no wonder that so many people have tried to
divert them from their initial purpose. Simulations of spiking neural networks,
very common in Neuroinformatics, are highly parallel and are therefore one of
the many tasks that could benefit from such cards.

We found few references to artificial neural networks on graphic cards [1].
However perceptrons are very different from spiking neural networks, and do not
serve the same purpose at all. This work is therefore far from what interested
us, which we now describe here.

We will briefly introduce spiking neural networks and how they differ from
artificial neural networks, and then give details on the implementation of three
different problems using such networks: two image-segmentation algorithms and
a general-purpose spiking neural network simulator. We will try to show the
benefits, the challenges and the limits of such a task and give our conclusion on
its pertinence.

1.2 Spiking Neural Networks

Frank Rosenblatt’s perceptron [2] in the late fifties was the first famous attempt
to simulate the brain on a computer. Although able to learn and useful in some
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simple classification tasks, it is limited, as Minsky and Papert’s work showed
[3]. More generally, artificial neural networks are too far from a biologically
plausible model to interest scientists in Neuroinformatics and computational
Neurosciences.

Research in those domains is oriented towards spiking neural networks, for
which models also take into account the internal dynamic of each neuron: the
membrane potential, the firing rate, the amount of ions released at the synapses,
etc. Not only do these models reproduce more closely the dynamics observed
in real neural networks, but they also enable to take into account phenomena
forgotten in the simple rate-based model, as for example spiking synchronisation.
A very simple but common and already powerful spiking model is for example
Lapique’s integrate-and-fire neuron [4] which describes the neuron’s membrane
as a leaky condensator. This is the one we are going to use in the three following
implementations.

Spiking neural networks’ dynamics are however harder to describe mathemat-
ically than artificial neural networks’. Simulation is therefore an essential part of
their study, but these are also slower: the pertinent time-scale would be roughly
for example the average duration between spikes, which can be as long as a
hundred cycles of a timestep simulation, a lot more than for an artificial neural
network, whose weights are updated at every cycle. Fortunately, since these net-
works try to mimic the brain’s behaviour, where neurons all work independently
from one another, they are intrinsically parallel.

1.3 Graphics Processing Unit

The primary goal of 3D graphic cards is to replace the CPU in all the calculations
needed to show 3-dimensional objects to the screen: projection of the objects,
texturing, lighting, etc.

One of the tasks that graphic cards accelerate very significantly is the calcu-
lations of the screen’s pixels’ colour. After having projected the different objects
on the screen according to the position of the viewer, a program (the fragment
shader) is run in parallel on all pixels to decide their colour, taking into account
objects’ textures, lighting, fog, etc. This is accelerated by up to 24 pipelines and
is the step that we will divert to serve as a powerful co-processor for our spiking
neural networks’ simulations.

Basically, we will map a neuron to a pixel and replace the fragment program by
one that will calculate the updated state of our neurons’ variables. By repeating
this multiple times, we will have our timestep simulations. A very good guide
on how to efficiently do this can be found on Dominik Göddeke’s page [5].

Our technical choice was to use OpenGl to interface with the graphic card,
the FrameBufferObject class [6] to render to textures and NVidia’s Cg to write
the fragment programs. It seemed to us to be the most flexible and efficient
solution at the time of the experiments. The GPU card used was mostly a Nvidia
6800 Ultra, and at the end the 7800. We worked on a Bi-Xeon 2.8GHz, 1GB
RAM, with Windows. To compare the results, we used all the possible compiling
optimisations for the CPU version.
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2 Implementation of Three Different Algorithms Using
Spiking Neural Networks

2.1 Synchrony and Desynchrony in Integrate-and-Fire Oscillators,
S.R. Campbell, D.L. Wang, and C. Jayaprakash

Quick description of the algorithm. This first algorithm [7] is a segmenta-
tion of a picture based on a locally-excitatory globally-inhibitory spiking neural
network. For each pixel of the picture to segment, there is a spiking neuron
associated to it, verifying a Lapicque-like differential equation:

dV

dt
= −V + I (1)

I is defined at the beginning so that neurons in homogeneous regions spike
spontaneously, i.e. I > θ for them, where θ is the threshold of the neuron.
Every neuron is connected in an excitatory manner to all its local neighbours
(up, down, left and right) if they have a similar colour. If a neuron emits a
spike, the potential of its similar neighbours is increased. Every neuron is also
globally connected to all the others in an inhibitory manner. The result is that
neurons coding a segment of homogeneous colour will excite themselves locally
and after a short time will synchronize their spikes. Neurons of different seg-
ments will inhibit themselves through the global inhibition and stay desyn-
chronized. Segments of homogeneous colour will therefore appear after a short
time by just looking at the spiking times of every neurons: all neurons of a
same segment will spike together while different segments will spike at different
times.

Implementation on the GPU. All arrays like V and I are put into textures.
The evolution of the potential can be implemented as a Euler-timestep, but here
in that simple case, we can also observe that:

V (t) = I(1 − e−t) ⇒ V (t + dt) = I + e−dt (V (t) − I) (2)

The first challenge appears with the spiking. In a graphic card, we have a
CREW (concurrent reading, exclusive writing) mechanism: we can read in par-
allel anywhere in the textures (a process also called ”gather” [9]), but we can
write only in one place: the destination pixel (”scatter” is not possible). There-
fore we cannot, when a neuron fires, update the connected neuron’s potential,
as we would simply do in sequential mode. To solve this problem we convert the
scatter problem to a gather problem by introducing a new array, E, coding the
excitatory state of a neuron. At every step, every neuron reads the excitatory
state of its connected neurons. If it is equal to 1, we add the appropriate excita-
tion. This method is fast enough for a little number of connections, since reading
in a texture is very fast on graphic cards.

For the global inhibition however, this method would mean that every neu-
ron must read at each pass from every other neuron. This would become very
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Fig. 1. The original picture followed by the different steps of its segmentation by the
algorithm of Campbell, Wang and Jayaprakash

time-consuming. Since the global inhibition here just depends on the number
of neurons having fired at the precedent pass we just need to determine that
number. The first idea we had, was to implement it through a reduction: For a
n × n square, we calculate

E(x, y) = E(x, y)+E(x+2i, y)+E(x, y+2i)+E(x+2i, y+2i), i ∈ [|0, log2(n)|].
(3)

We therefore have after log2(n) cycles E(0, 0) =
∑

E(x, y). The second idea
was to use the hardware acceleration of mipmapping to perform that same re-
duction. For a texture of size n, the mipmap is a pyramid of log2(n) textures
of sides n

2i , i ∈ [|1, log2(n)|], the pixels of which are the average of the source
texture. Therefore the last texture is one pixel large and contains the average
of all points of the source texture, in our case: 1

n2

∑
E(x, y). However this is

not very precise since it is done on 8 bits and is not very flexible. The solu-
tion found was to use a trick specific to graphic cards: there is a counter that
is able to count the number of pixels written in a pass: the Occlusion Query.
We therefore just need to run a pass on the graphic card which writes the pixel
(x, y) only if E(x, y) = 1, else it exits the fragment program with the CG com-
mand discard() and then count the number of pixels written with the occlusion
query.

Results. Thanks to the occlusion query trick we were able to put the whole
algorithm on the GPU and gain a significant increase in speed: it is about 7
times faster on the 6800 Ultra and 10 times faster on the 7800 than on the CPU.
The results are identical. The visualisation is also made easier. In figure 1 we
represent in red the membrane potential, in green the excitement state. Blue is
just there for visualisation reasons: it is set to 1 when the neuron spikes and
then decreases exponentially. Neurons of the same segment, which spiked at the
same time, have therefore the same blue colour.

Finally it is interesting to see that we are able to determine connexity, since
connex neurons are synchronized, a problem that the simple perceptron cannot
solve [7]. More generally the use of spiking-synchrony is only possible in spiking
neural networks and shows their potential.
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2.2 Image Segmentation by Networks of Spiking Neurons,
J.M. Buhmann, T. Lange, and U. Ramacher

Quick description of the algorithm. This second algorithm [8] is a segmen-
tation algorithm based on a histogram clustering method: we divide the picture
in N × N little rectangles for which we calculate the luminosity histogram, for
M grey levels. The segmentation then tries to assign to a same segment blocs of
similar luminosity histogram. For that we use a spiking neural network designed
to roughly minimize the objective function

H =
N×N∑

1

DKL(hi, h̄s(i)) (4)

where DKL is a distance, hi the histogram of block i and h̄s(i) the average
histogram of the segment to which block i belongs. We are therefore looking for
segments where the member blocs are the most homogeneous possible.

The spiking neural network is composed of K × N × N neurons, where K
is the a priori known number of segments: for each bloc (i, j), we will have
K neurons that will compete in a winner-take-all mechanism to choose which
segment the bloc belongs to. The neurons are modeled by the simple differential
equation:

dV

dt
= −V

ρ
(5)

The neuron (i, j, k) receives input spikes with weights ∀m ∈ [|1, M |], wk,m and
with probability hi,j(m): the relative importance of the mth grey level in the
histogram of block (i, j). All K neurons of bloc (i, j) have inhibitory connec-
tions between them to implement the winner-take-all mechanism. There are
also connections between contiguous blocs to smooth the segmentation: neu-
rons coding for the same segment in direct neighbours have excitatory
connections while neurons coding for different segments have inhibitory con-
nections, so that direct neighbours tend to belong to the same segment if similar
enough.

Knowing h̄k, the average histogram of blocs in segment k, the weights are
updated at every cycle with the following rule:

d

dt
wk,m = α

(
exp (wmax − wk,m(t)) h̄k,m − 1

)
(6)

Implementation on GPU. This algorithm is divided in four steps:

– We first update with a pass the weights wk,m.
– We then update in a pass Vi,j,k taking into accounts the input spikes and

the neighbour’s connections.
– We calculate in a third pass s(i, j): the segment to which bloc (i,j) belongs,

defined by the k for which neuron (i,j,k) fires most.
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– Finally we calculate the average histogram of segment k h̄k on the CPU,
since it is unfortunately not possible to do it efficiently on the graphic card.

Of course, implementing this is not as straightforward on the GPU as it would
be on CPU. First of all we need random numbers to implement noise, used to
avoid staying in local minima, and also to send the input spikes with probability
hi,j(m). We did this by filling a giant texture with random numbers, but it is
clearly not an optimal solution since the period of this pseudo-random generator
is equal to the size of the random-filled texture, a number that cannot be much
bigger than the size of our network.

We stored our three-dimensional variable: V (i, j, k) of size (N, N, K), in a
(N ×K, N) texture. However we notice that we now need to have N ×K ≤ 4096.

To avoid border effects we chose to add a null border to the texture containing
V, which does not imply more calculation since we can tell the card to render
only the inner part.

We are not always able to transform conditional branches into multiplications
by 0 or 1 to avoid slow conditional branching. However we have observed that
there exist conditional arithmetic operators in the assembly language, used if
there is just a simple arithmetic operation inside the conditional branch. This
enables us to make multiple tests without significant speed loss.

The last part of the algorithm is not efficiently parallelisable so we leave it
on the CPU. However the transfer of the data from the GPU to the CPU and
back is a costly operation. We therefore try to do that step only once every 100
steps.

Fig. 2. The original picture followed by the different steps of its segmentation by the
algorithm of Buhmann and Lange

Results. We manage to get once again a significant acceleration: 5 times faster
on the 6800 Ultra and 10 times faster on the 7800 256MB. The convergence
is however a little slower, due surely to the pseudo-random texture which is
clearly not as good as a real pseudo-random generator, and the last part, on
the CPU, not executed at each step. It is interesting to note that this last part
is considered by the authors as the weakness of their algorithm in terms of
biological plausibility. The results are visualised by projecting the outcome of
the third pass: s(i, j), see for example figure 2.
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2.3 Generalisation to an Easily Modifiable Network for Use in
Neuroinformatics

The implementation of the two precedent algorithms on GPU being convincing,
we decided to make a more general simulator, that would be flexible enough to
be adapted to different networks used in Neuroinformatics.

The main new challenge here was to provide an easy and flexible way to
define the connections between neurons. The idea proposed for M connections
per neuron in a N × N network was to store them in a (N

√
M/4, N

√
M/4)

RGBA (4 colour components) texture, with a connection (two coordinates)
in each colour component. This is possible since our coordinates (necessarily
smaller than 4 × 4096 because of textures’ sizes limitations) fit in 16 bits and
Cg provides a function to store two 16 bits variables in a 32 bits component:
pack_2half(half2 (x,y)) Using squares of side

√
M/4 for each neuron’s con-

nections is motivated by the fact that textures’ width and height are both limited
to 4096. Very large or long rectangles are therefore not possible.

At each neuron’s update we will then go through the table of connections with
two nested ’for’ loops. Something which is possible only in the latest generation
cards. There is a limitation here in the 6800 Ultra, that each loop has to be
smaller than 256, but that is not a real problem since we will face another
limitation before: the size of the texture. They are limited to 4096 × 4096, and
that number is still theoretical since in many cards such a texture would fill the
entire memory on its own. But roughly, we could imagine with a 3584 × 3584
neighbours’ texture, for example:

– 896 × 896 = 802816 neurons with 64 neighbours each
– 512 × 512 = 262144 neurons with 196 neighbours each
– 128 × 128 = 16384 neurons with 3136 neighbours each

However, the more connections there are, the more texture lookups are done.
The observation was that for M big, the time needed increased linearly, limiting
the size of M . In our experiments, we tried a 896 × 896 large network with 64
neighbours for each neuron. We had a pass rate of about 22 per second on a 7800
256MB, which was more than 20 times faster than a CPU-only implementation.
One interesting reason for such a gain is that our model also included electrical
synapses, which means that neurons adjust a little to the potential of their
connections at every pass. And this is not cache-friendly, therefore favouring

Fig. 3. Detail of the simulation of an excitatory spiking neural network, with tracking
of some neurons’ spiking times (yellow dots) and a global spiking histogram
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even more the GPU, with its faster memory. In figure 3 you can see this basic
excitatory network with random but constant connections, with the red value
representing V , to which we added the tracking of some neurons’ spikes (the
yellow pixels) and a histogram of the global spiking activity.

3 Conclusion

We have clearly seen a significant speed increase, (between 5 and 20 times faster)
in all the algorithms implemented, thanks to the inherently parallel way of func-
tioning of neural networks. But there are other practical reasons that make
the GPU very interesting: it is cheap compared to clusters, more flexible than a
hardware implementation, has a bright future since GPUs’ speed increases faster
than CPUs’ speed [9] and there is always the possibility to leave parts of the
algorithms on the CPU if this is more efficient.

Different limitations exist, either due to the parallel nature of the calculations
or to the fact that graphic cards are still designed more towards 3-D graphics
rendering than general purpose calculations. The most important ones being:
the impossibility to ”scatter”, therefore imposing neurons to listen for a possi-
ble incoming spike at every pass, slow conditional branching, the absence of a
random-generator function and the limited size of the textures. But we managed
to bypass more or less all these problems in our implementations using differ-
ent tricks. Some of these limitations might even disappear in future generations’
card, making, in our opinion, the future of simulations of spiking neural networks
on GPU very interesting.
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