On the Generation of Fast Verifiable
IPv6 Addresses

Qianli Zhang and Xing Li

Tsinghua University, Beijing 100084, China
zhangqlO02@mails.tsinghua.edu.cn

Abstract. Many network attacks forge the source address in their IP
packets to block traceback. This situation does not change much in IPv6
network since IPSEC is not enabled generally and most IP address spoof
attacks have taken effect before packets reached destination. Although
ingress filtering can be used to validate source addresses, it could only en-
sure that the network portion of an address is not spoofed. Since subnets
are much larger in IPv6, even with RFC 2827-like filtering an adversary
can spoof an enormous range of addresses. In this paper, we propose an
IPv6 address assignment scheme to generate verifiable IPv6 addresses in
one network. With this scheme, router could validate the IPv6 addresses
quickly, thus allow all outgoing packets with improper source addresses
and all incoming packets with improper destination addresses to be im-
mediately identified. Apart from the obvious merit to counter denial of
service attacks, this scheme also make network audit and pricing easier.

1 Introduction

Attackers commonly forge source addresses to hinder tracing of their malicious
packets. Examples include DDoS attacks [I], smurf attacks[2], and TCP SYN
flooding attacks[3]. Reliably detecting the attacker is hard because standard
routers cannot verify that a packet is indeed sent by the node specified in its
source address. Ingress filtering[4] is widely used to validate source addresses.
RFC 2827 specifies methods to implement ingress filtering to prevent spoofed
traffic at its origin. Unfortunately such filtering lacks of the initiative for the
origin network to implement. Also RFC 2827 ensures that only the network
portion of an address is not spoofed, not the host portion. For example, for
24-bit subnet 192.0.2.0/24, RFC 2827 filtering ensures that traffic originating
from 192.0.3.0 is dropped but does not stop an adversary from spoofing all the
hosts within the 192.0.2.0/24. Since subnets are much larger in IPv6, even with
RFC 2827-like filtering an adversary can spoof an enormous range of addresses.
Currently no techniques are available to mitigate the spoofing of the 64 bits of
host address space available in IPv6.

Another approach to the problem of IP spoofing is tracing[5]. Since source
addresses are unreliable, tracing requires expensive and complicated techniques
to observe traffic as they pass through routers and reconstruct a packets travel

V.N. Alexandrov et al. (Eds.): ICCS 2006, Part IV, LNCS 3994, pp. 176-[I79] 2006.
© Springer-Verlag Berlin Heidelberg 2006

On the Generation of Fast Verifiable IPv6 Addresses 177

path at the end. Tracing also becomes ineffective when the volume of attack traf-
fic is small or the attack is distributed. Moreover, tracing is typically performed
after an attack is detected, and perhaps the victim has already been damaged.

In this paper, we propose a scheme to assign verifiable IPv6 addresses in a
network. With this scheme, router could validate not only the subnet part but
also the interface part of the IPv6 addresses quickly. Apart from the obvious
value in ingress filtering, this scheme can also ensure that incoming packets with
improper destination addresses to be immediately identified and dropped. Thus
it provide some initiative for its deployment. With identifier contained in the
addresses, it could also be used to identify the possible sources of an attack.
Intrusion detection and network problem diagnosis can also be simplified.

This paper is structured as follows: Section 2 presents some background no-
tations and information. Details are provided in section 3. The paper concludes
in section 4.

2 Background Notations

An TPv6 address is 128 bits long. It is divided into two parts. The leftmost 64
bits, the subnet prefix, is used for routing IP packets across the Internet to the
destination network. The rightmost 64 bits, the interface identifier, identifies an
individual node within a local network. The interface identifiers may be chosen
in an arbitrary way, e.g. randomly, as long as no two nodes on the same network
share the same value.

Two bits of the interface identifier have a special semantics. The 7th bit from
the left is the Universal/Local bit or "u” bit. It is usually set to 1 to mean
that the interface identifier is configured from an EUI-64 identifier from the
interface hardware and, thus, is globally unique. The 8th bit from the left is the
Individual/Group or ”g” bit, which is set to 1 for multicast addresses.

To better present our scheme, the following notations are used throughout
the paper.

— hash: Cryptographic hash function, SHA-1[6] for example.

— hashT: Cryptographic hash function whose output is truncated by taking
the T leftmost bits of the output.

— cipher64: 64 bits block cipher, IDEA[7] for example.

3 Verifiable IPv6 Address Generation

The verifiable address is generated by a local authority, DHCP server for example.
In figure 1, I D is the identifier generated by authority for tracking, R is not used
now and will be set to zero. P is prefix required and used to generate destination
specific addresses. Given the destination address D, prefix requirement P,., subnet
prefix N and the correspondent key K, the generation procedure is as follows.

1. set Padding and R to 0, P to P., ID to the identifier.
2. SIG = HASH32((D >> (128 — (P, >> 3)))|N|R|P-|ID), where | is con-
catenation.

178 Q. Zhang and X. Li

Subnet ID Interface ID
A
Kn > cipher64
Padding R P ID SIG
8 bits 4 4 16 bits 32 bits

Fig. 1. Verifiable IPv6 address

3. encrypt the 64 bits by cipher64 with key Ky. Encryption guaranteed the
generated addresses can not be discriminated from randomly generated ad-
dresses easily. Encryption also provide a method to keep the I D information
confidential.

4. test whether "u” bit is 0 and ”g” bit is zero. If not, increase padding by
1 and repeat the last step. Since a total of 256 IPv6 interface ID could be
generated, the probability of this 256 IPv6 addresses all have the "u” bit to
1 or”g” bit to 1 is (‘2)2567 which is about 10732 and negligible.

Required prefix mandates when the calculation of STG also includes the left-
most P, bytes of destination IPv6 address. When P, is not zero, the address
generated is destination specific and could not communicate to hosts out of the
range. If P, is zero, the generated address is a static IPv6 addresses and can
communicate to all IPv6 addresses. Destination specific addresses make IP ad-
dress spoof even harder since even if an attacker knows a valid IPv6 address, he
could not decide whether this address is a static one. The limitation of destina-
tion specific addresses is, however, that it requires to extend DHCPv6 protocol.
Also, the value of destination specific addresses is limited since servers have to
have static addresses.

The verification procedure is similar.

1. decrypt the 64 bits interface ID by cipher64 with key K. if R is not zero,
discard the packet.

2. set Padding to 0, SIG, = HASH32((D >> (128 — (P. >> 3)))
|N|R|P,|ID), where | is concatenation, if SIG, does not equal SIG, dis-
card the packet.

For a large domain, it may be of interest to generate K with a master key
K,,. For example, K = hash(K,,|N). However, this scheme does not mandate
the specific method to generate K.

In this scheme, only symmetric cryptography is used, which make it scalable
for the high speed filtering. Asymmetric cryptographic primitives, such as RSA

On the Generation of Fast Verifiable IPv6 Addresses 179

signatures[§], are computationally expensive: RSA signature verification is about
three orders of magnitude slower than one symmetric operation (block cipher
or hash function operation), and signature generation is about four orders of
magnitude slower. When implemented in hardware, the speed difference is even
larger. Thus make this algorithm feasible for high-speed implementation.

4 Conclusion

In this paper, a new scheme to generate verifiable IPv6 addresses is introduced.
This scheme make the IPv6 host portion ingress filter feasible. Also since only
symmetric cryptography is used, this scheme could be implemented in routers
and provide better protection for network bandwidth DOS.

More research is required to resolve the following problems. First of all, for
large organizations, it is often desirable to have a key management protocol to
deal with the key generation and distribution. Secondly, the process of destina-
tion specific addresses generation is worth further research.

References

1. Computer Emergency Response Team. CERT Advisory CA-2000-01 Denial-of-
Service Developments, http://www.cert.org/advisories/CA-2000-01.html, January
2000.

2. Computer Emergency Response Team. CERT Advisory CA-1998-01 Smurf IP
Denial-of-Service Attacks, http://www.cert.org/advisories/CA-1998-01.html, Jan-
uary 2000.

3. C. L. Schuba, I. V. Krsul, M. G. Kuhn, E. H. Spafford, A. Sundaram, and D. Zam-
boni. Analysis of a denial of service attack on TCP, Proceedings of IEEE Symposium
on Security and Privacy, 1997.

4. P. Ferguson and D. Senie. Network Ingress Filtering: Defeating Denial of Service
Attacks Which Employ IP Source Address Spoofing, RFC 2827, May 2000.

5. Stefan Savage, David Wetherall, Anna Karlin, and Tom Anderson, Network Support
for IP Traceback, IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 9,
NO. 3, JUNE 2001

6. C. Madson and R. Glenn, The Use of HMAC-SHA-1-96 within ESP and AH, RFC
2404, November 1998.

7. A.J. Menezes, P.C. v. Oorschot, S.A. Vanstone, Handbook of Applied Cryptography,
CRC Press New York, 1997, p. 265.

8. R. L. Rivest, A. Shamir, and L. M. Adleman. A Method for Obtaining Digital
Signatures and Public-Key Cryptosystems. Communications of the ACM, 21(2):120-
126, 1978.

	Introduction
	Background Notations
	Verifiable IPv6 Address Generation
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

