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Abstract. An Easily-implemented Adaptive Packet Sampling (EAPS) is pre-
sented in this paper, which overcomes the shortcoming of NetFlow and Adap-
tive Netflow. EAPS is easy to be hardware-implemented and scalable for 
high-speed networks. Additionally, EAPS is automatically adaptive to traffic 
rate under resource constrains, thus it is convenient to be used by network 
operators. Experiments are conducted with the real network traces. Results 
show that EAPS is more accurate than ANF over links with light load or  
traffic fluctuations. 

1   Introduction 

Traffic measurement is the basis of IP network monitoring, management and control-
ling tasks. Particularly, flow-level measurements are widely used for various applica-
tions such as traffic profiling, dominant applications or users tracking, and traffic 
engineering. With the ever increasing speeds of transmission links and volume of 
network traffic, flow-level measurements face the formidable challenges of the scal-
ability issues. On today’s high-speed links, monitoring every packet and recording 
statistics of every flow consume too much resource at the routers or other network 
elements. Packet sampling has been suggested[1-5] to address this problem, which is a 
scalable alternative for network measurement. 

Cisco’s NetFlow[6] which adopts static packet sampling method are widely de-
ployed by most major ISPs and becomes the most popular flow measurement solution. 
Though the wide deployment of NetFlow is a proof of its ability to satisfy the impor-
tant needs of network operators, it has several shortcomings[5]: during flooding attacks, 
resource consumed by flow records may increase beyond what is available; selecting 
the right static sampling rate is difficult. Estan et al. proposed Adaptive Net-
Flow(ANF)[5] to address the problems of NetFlow. When the traffic volume increases, 
ANF can dynamically decrease the sampling rate until it is low enough for the flow 
records to fit into flow cache memory. However, the renormalization algorithm 
adopted by ANF is complex and heuristic, which hinder it from the implementation by 
hardware. Therefore, ANF itself may become the processing bottleneck when the link 
speed exceeds OC-48(2.5Gpbs). Furthermore, the maximal sampling rate of ANF 
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(about 1/35) is computed under worst case conditions, but it is suboptimal and less 
accurate in the light loaded conditions. Additionally, once the sampling rate used by 
ANF is reduced, it can not increase again in one measurement bin. Consider the cases 
that the traffic rate fluctuates in the measurement bin: the traffic load is high in the 
fore-half bin, so ANF adopts small sampling rate; but as the traffic load decrease, ANF 
can not increase its sampling rate again. Thus ANF becomes less accurate when the 
traffic load decreases during the measurement bins.  

In order to overcome aforementioned shortcomings of ANF, an Easily-implemented 
Adaptive Packet Sampling EAPS is proposed in this paper for flow measurement. With 
measurement buffer, EAPS samples a fixed number of packets in every measurement 
interval by adopting a reservoir sampling method. Since the number of sampled pack-
ets is constant in every measurement interval, the sampling rate of EAPS automatically 
decreases with the increasing of traffic rate. On the contrary, the sampling rate will 
automatically increase when the traffic rate decreases. Furthermore, the flow cache 
memory and bandwidth consumption is also constrained by the size of the measure-
ment buffer 1. Therefore, EAPS is robust during flooding attacks. We also show the 
upper-limit of the relative standard deviation of EAPS estimation through theoretical 
analyses. With the experiments of real network traces, the result demonstrates that 
EAPS is more accurate than ANF over links with light load or traffic fluctuations.  

The rest of this paper is organized as follows. Section 2 describes the methodology 
of EAPS. Section 3 proposes the estimation error. In Section 4, EAPS is compared to 
ANF using real flow traces. Finally, the paper is concluded in Section 5. 

2   Methodology of EAPS 

In this section, we will discuss the sampling and estimation methodology of EAPS. 
NetFlow uses four rules to decide when a flow has ended which then allows the corre-
sponding record to be exported: 1) when indicated by TCP flags (FIN or RST), 2) 15 
seconds(configurable) after seeing the last packet with a matching flow ID, 3) 30 min-
utes (configurable) after the record was created (to avoid staleness) and 4) when the 
flow cache is full. As shown in [5], most traffic analysis tools divide the traffic stream 
into fixed analysis bins. Unfortunately, NetFlow records can span bins, causing unnec-
essary complexity and inaccuracy for traffic analysis. Just as ANF, EAPS divide the 
NetFlow operation into short bins so that the bins used by traffic analysis are exact 
multiples of the measurement bins. Differing from ANF, EAPS retains Netflow’s four 
rules during the measurement bins, but terminates all active flow records at the end of 
each measurement bin. In our experiments we used the more challenging one minute 
size for the measurement bin. �

2.1   Random Sampling Algorithm with a Reservoir 

Since the size of measurement buffer n is limited, EAPS can not record all the packets 
arrived within one measurement bin and then do sampling process. It must do sample 
at the same time one packet arrives. However, the challenging problem is how to select 
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a random sample of n packets from N successively arriving packets, where the value of 
N is unknown beforehand. This can be solved by reservoir random sampling algorithm 
in literature [8]. The naive algorithm work as follows: the first n packets arrived are 
stored in the reservoir and became the sample candidates; when the tst (t>n) packet is 
arriving, it has a n/t probability of being a sample candidate, if it became a candidate, it 
will randomly replace one candidate in the reservoir. It is easy to see that the resulting 
set of n candidates in the reservoir forms a random sample of the first t packets. The 
computing complexity of this algorithm is O(N), where N is the total number of pack-
ets arrived in one bin. In [8], Vitter proposed algorithm Z with the much less complex-
ity )))/log(1(( nNnO + . EAPS will adopt algorithm Z which is easy to be implemented 
by hardware with higher efficiency. 

2.2   Design of Measurement Buffer 

In order to further reduce the size of measurement buffer, we divide the measure-
ment bin into m fixed intervals, and do reservoir sampling in each interval. In our 
scheme, the measurement buffer is divided into two reservoirs: reservoir A and B. 
As shown in figure 1, in the ith interval, when flow measurement software reads 
sampled packets from reservoir A to update flow entries, the packet arriving from 
network is buffered in another reservoir B. And in the (i+1)th interval, the function 
of reservoir A and B will be swapped ,and so on. The sampling will be done by the 
hardware implemented Algorithm Z.  

In fact, only parts of packet fields (about 21 bytes) are needed to store in the meas-
urement buffer for flow measurement, including TOS, packet length, protocol, source 
IP address, destination IP, source port, destination port, TCP flags, timestamp, and etc. 
For a reservoir containing 12000 packets information, a 3.85Mbit  SRAM is needed, 
which is easily implemented by today’s semiconductor technology. 

 
 

 

Fig. 1. Design of measurement buffer in router line card 

2.3   Estimation Methodology 

Denote m intervals in one measurement bin by mttt ,...,, 21 . In the interval ),...,2,1( miti = , 

denote a flow appeared by ,...)2,1( =kfk  and the total number of packets arrived of all 

flows by iN . Since the number of sampled packets in the reservoir is constant n, the 

sampling rate in this interval is iNn / . For a flow kf  in interval it , let k
iN  be the num-



 Easily-Implemented Adaptive Packet Sampling 131 
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Theorem 1. Consider a flow kf , kN̂  is an unbiased estimation of kN . 
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Theorem 3. For each flow kf , the standard deviation of kN̂  is up-bounded 
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Theorem 4. For each flow kf , the standard deviation of kx̂  is up-bounded by 
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Proof. From formula of variance of the sample mean in simple random sampling[9], 
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4   Experiment Results and Analysis 

In our experiments we use real network traces from OC-48 links collected by 
CAIDA[10] project2, and ten one-minute datasets were adopted. We run EAPS over 
these datasets using different parameters settings, including buffer size of 6k, 12k, 
18k and 24k, and measurement interval of 6, 12 and 20 seconds.  For same parameters 
settings, we run EAPS for 27 times. 

4.1   Experiment Results of EAPS  

Firstly, the relative estimated error of packet number is computed and shown in figure 
2.a. We can see that the points are symmetrically distributed around coordinate y. 
Thus, the estimation is unbiased in accordance with theorem 1.  

In practice, it is convenient for network analysis to aggregate individual flows into 
aggregate flow. In this paper, we define individual flows with same port number as an 
aggregate flow.  As shown in figure 2.b, the upper line is the upper-limit of relative 
error given by theorem 3, and the spanned points below the line are the results of dif-
ferent experiments. This conforms to theorem 3.   

For space limit, we omitted the corresponding traffic bytes results which are similar 
to figure 2.a. or figure 2.b. 
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(a) 
 

(b) 
 

Fig. 2. Experiment Results of EAPS 

4.2   Comparison with ANF 

We then compare EAPS with ANF proposed in [5]. For same parameter setting, we run 
EAPS and ANF respectively. 

For space limit, we only show the bytes comparison results of EAPS and ANF 
based on two typical Datasets. In Dataset1, the traffic load is relatively light. In Data-
Set2, the traffic load is relatively high, and the traffic rate decreases (fluctuates) during 
the measurement bin. From table 2, we can see that, for both DataSet1 and DataSet2, 
EAPS is more accurate than ANF. It can be explained as follows: in the case of Data-
Set1(on 6s measurement interval), the traffic load is relatively light; and the automati-
cally-adaptive sampling rate of EAPS is about 1/22, while the maximal sampling rate 
of ANF is 1/35; As to DataSet2(on 12s measurement interval), ANF choose a rela-
tively small sampling rate (about 1/200) when the traffic load is high in the fore-half 
bin, and can not increase its sampling rate even when the traffic load decreases in the 
post-half bin; EAPS is automatically adaptive to the changes of traffic rate, it takes a 
sampling rate about 1/55. Thus EAPS is more accurate than ANF over links with light 
load or traffic fluctuations. 

Table 1. Relative Error Comparison of EAPS with ANF 

Aggregate flows HTTP P2P FTP SMTP RTSP HTTPS DNS 

Percent(%) 54.61 12.83 1.74 0.72 0.41 0.33 0.19 
EAPS  0.003 0.009 0.020 0.036 0.054 0.043 0.026 Dataset1 

(6s) ANF 0.007 0.016 0.041 0.070 0.068 0.074 0.048 
EAPS  0.005 0.014 0.031 0.042 0.073 0.059 0.046 Dataset2 

(12s) ANF 0.009 0.022 0.039 0.081 0.077 0.081 0.050 

5   Conclusion 

Adaptive NetFlow(ANF) has been proposed to overcome the shortcoming of Cisco’s 
NetFlow by dynamically adjusting the sampling rate. However, the renormalization 
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algorithm adopted by ANF is difficult to be implemented by hardware, thus it is not 
scalable for higher speed links. In this paper, an Easily-implemented Adaptive Packet 
Sampling (EAPS) is presented. Compared with ANF, EAPS is easier to be hardware-
implemented and used, as well as automatically adaptive to traffic rate with certain 
resource consumption. With the real network traces, the experiments demonstrate that 
EAPS is more accurate than ANF over links with light load or traffic fluctuations. 
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