
Agent Architecture for Mesh Based

Simulation Systems

K. Banaś

Cracow University of Technology
Warszawska 24, 31-155 Kraków

kbanas@pk.edu.pl

Abstract. The paper presents an analysis of requirements for build-
ing simulation systems with tightly coupled components, such as typical
mesh based PDE approximation software. The considered systems are
characterized as having high communication to computation ratio. When
designing architectures for such systems the hardware and middleware
capabilities for providing communication links between processes have to
be investigated and fully exploited. This is the place where agent technol-
ogy perfectly fits the requirements. In the whole system, the capabilities
of agents should be complemented with less flexible but more efficient
software organization.

As an example a framework for finite element simulations, employing
a modular architecture (described in [1]), is considered. Communication
requirements for typical computations are estimated and evaluated in
view of possible inter-process communication. The role of agents in set-
ting up the execution structure of simulations is described.

1 Agent Based Simulation Systems

Agent technology is often used to add flexibility to classical computational sys-
tems that are executed on distributed hardware resources [2, 3]. Agents can be
used to query static information on hardware resources, as well as to monitor
their workload. Based on the data the optimal mapping of computations on pro-
cessing elements together with proper communication patterns can be selected
[4]. Autonomous agents can additionally gather necessary information and take
decisions: concerning e.g. splitting computations, migrating or stopping. The cur-
rent paper describes a setting where the above mentioned possibilities of agents
are crucial for achieving the assumed goal. The setting consist of a classical com-
putational science system, a mesh based PDE solver, for which a new flexible
architecture, that can take advantage of modern hardware resources is sought.

2 Mesh Based Computations with Tightly Coupled
Components

Mesh based computations, using the finite difference, finite element and finite
volume methods, are common in scientific computing. Such computations con-
tain, as an important ingredient, matrix operations, and therefore the focus of

V.N. Alexandrov et al. (Eds.): ICCS 2006, Part III, LNCS 3993, pp. 743–750, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

744 K. Banaś

research on such systems, in view of achieving high performance, is often put on
developing linear algebra packages. However, the overall efficiency of such codes
may depend on the architecture of the whole system, including the interaction of
algorithms and data structures that deal with mathematical entities appearing
in the problem domain: discretized computational domains, discrete fields and
systems of algebraic linear equations. It is possible to develop software archi-
tectures that use different modules to deal with the above mentioned entities
and to combine the resulting flexibility in setting up the computational system
with high performance of execution. Such architectures can be useful when com-
plex data structures and algorithms are used for e.g. adaptive mesh refinement,
projections of complex discrete fields or multigrid solvers and preconditioners.

The agent technology for modular mesh based solvers can be employed through
linking each module (component) with an agent that serves as a control and steer-
ing unit for the module. Such an agent has to know the specifications of hardware
resources as well as the detailed characteristics of the modules it controls, includ-
ing the required communication with other modules. This knowledge is used to
properly configure a computational system, exploiting the capabilities of hard-
ware and software components.

Next sections describe an example architecture for a mesh based solver that
uses the adaptive finite element method. From the three, mentioned previously,
numerical methods used in mesh based simulations, the finite element method
is theoretically the most complex: it can use unstructured adaptive meshes and
higher order approximation. It is also the one, that usually suffers from the most
severe performance penalty due to the need to deal with the above mentioned
complexities. Therefore it is important to design architectures for FEM systems
that can take advantage of different, flexible hardware environments.

3 Modular Architecture for Sequential Finite Element
Systems

Classical architectures for finite element codes usually distinguish between the
two levels of coupling among their building components. At the loosely coupled
level there are modules for three phases of simulations: pre-processing (creating
the description of a computational domain, generating a mesh for the domain),
processing (actual calculations) and post-processing (calculation of derived quan-
tities, visualization). At that level the requirements for communication between
modules are low and the modules are often organized into different programs
exchanging data by means of files that are produced by one module and then
subsequently read by another.

At the tightly coupled level there are submodules that handle specific data
structures and computations within the simulation phases. In the sequel, only the
phase of actual calculations will be considered in detail, as usually the most time
consuming. For the component that realizes this phase, the finite element com-
putational kernel, a modular architecture has been proposed [5], that aims at cre-
ating software more flexible and easier to modify and extend. This architecture,

Agent Architecture for Mesh Based Simulation Systems 745

Problem dependent
level

Sequential finite
element core

Interfaces with
external software

External
software

adapter

Linear solver

module

Approximation

Mesh manipulation

module

Linear solver

interface module

Problem dependent

module

Linear solver

Fig. 1. The proposed architecture for sequential finite element codes

illustrated by a UML diagram in Fig. 1, consist of several modules, that are
distinguished based on the data structures they operate on. The reason for this
is that classical structural analysis of FEM computations, that finds modules
by looking at the flow of computations, is no longer the only possible and even
not the most appropriate, as the computations become more and more interac-
tive. Hence there are the following modules and data structures in the proposed
architecture:

– problem dependent module with algorithms and data structures particular
to a problem solved

– mesh manipulation module with a data structure that holds all topological
and geometric data on a mesh; algorithms in the module perform e.g. mesh
modifications

– approximation module; the module responsible for storing discrete data on
physical fields and for realizing the necessary operations on the fields (like
e.g. integration, differentiation, projection)

– interface with linear solvers module that translates information expressed
in terms particular to the PDE approximation methods into information
expressed in terms of numerical linear algebra entities like vectors and ma-
trices; this module can be equipped with additional data structures, e.g. for
reordering linear equations

– linear solver which is considered an external software in the proposed archi-
tecture

746 K. Banaś

4 Domain Decomposition for FEM Core

For parallel execution the extension shown in Fig. 2 has been proposed [1], that
uses a centralized management based on domain decomposition and message
passing. This architecture enables achieving high performance of execution for
static parallel hardware configurations. However, from the software engineering
point view it goes against the design goals of the sequential version. The idea to
create independent components for dealing with fundamental data structures of
the code does no longer holds.

Therefore in the current paper a natural next step in development of modular
design for computational kernels is presented. This next step consist in equip-
ping each sequential module of the code with its own domain decomposition
manager. The architecture is shown in Fig. 3. The parallel modules, consisting of
pairs sequential module–domain decomposition manager, can now be developed
and tested separately. Additional flexibility is brought by the possibility of using
the same domain decomposition managers for different sequential modules of the
same kind and exchanging in a particular code only one parallel module at a time.

The standard run-time structure of a parallel code built according to the
architecture consist of a set of processes executed on different processing nodes of
a computational system. The processes correspond to compiled FEM programs,
each of which contains all modules from Fig. 3.

It is known that with the increasing number of subdomains (processes) the
parallel efficiency of fundamental algorithms, such as computing vector norms

Sequential finite
element core

Problem dependent
level

Interfaces with
external software

External
software

module

Approximation

Mesh manipulation

module

Linear solver

interface module

Problem dependent

module

solver adapter

Parallel linear

library

Parallel communication

Domain decomposition

manager

linear solver
Parallel

Fig. 2. The centralized architecture for parallel finite element codes

Agent Architecture for Mesh Based Simulation Systems 747

module

Approximation

Mesh manipulation

module

Linear solver

interface module

Problem dependent

module

solver adapter

Parallel linear

Domain decomposition

manager (for solver)

Domain decomposition

manager (for field)

Domain decomposition

manager (for mesh)

library

Parallel communication

linear solver

Parallel

Fig. 3. The proposed modular architecture for parallel finite element codes

and scalar products or matrix-vector products, that form building blocks of
mesh based simulation systems, diminishes. Moreover, the convergence of itera-
tive solvers usually slows down. In order to maintain algorithmic complexity of
sequential computations and to maximize utilization of computing systems com-
prising of more and more processors, different parallelization strategies, beyond
simple domain decomposition and message passing, have to employed. One of
such strategies is to combine message passing with multi-threading [6]. Still the
processes correspond to programs consisting of all modules, the difference lying
in the multi-threaded mode of execution, using compiler directives or OpenMP.

5 Functional Decomposition for FEM Core

Further increase in flexibility of setting up a run-time structure of codes can be
obtained by investigating the possibility of using separate processes for different
parallel modules of the code. In such a case each dependence between modules
should be now understood as requiring communication: each inter-module func-
tion call involves sending a message. This creates two kinds of communication
links for each module: horizontal – among modules of the same kind managing
a distributed data structure and vertical – between different modules.

It is interesting to estimate what are the communication requirements for
different modules in the above mentioned situation. The analysis below uses
simple and typical settings, more detailed investigations can be found in [7].

748 K. Banaś

The main steps of the typical FEM solution process comprise numerical inte-
gration of terms from the finite element formulation of the problem, assembling
of the linear system matrix and solving the system of linear equations. In the
parallel execution model with domain decomposition and message passing the
first two phases can be performed perfectly or almost perfectly in parallel. When
typical iterative solvers are used for linear system solution phase, communication
requirements are mainly related to matrix-vector products.

The communication complexity of performing matrix-vector products for FEM
matrices depends on their non-zero structure. This structure reflects the whole fi-
nite element setting: the type of problem solved, the dimension of the physical
space, the mesh employed, the kind of approximation. The most important ingre-
dient (the other change the communication cost by constant factors) is domain
decomposition that determines the ratio of the number of unknowns (degrees of
freedom) inside domain to the number of unknowns on the boundary of domains.
When performing matrix-vector products data corresponding to intersubdomain
boundary has to be exchanged among processes. In the simple case of very reg-
ular 3D domains with perfect domain decomposition the number of exchanged
unknowns per subdomain can be estimated as being in order of (N/NS)2/3, where
N is the total number of unknowns and NS is the number of subdomains. During
the whole solution process the number of data exchanges is usually equal to the
number of iterations, Nit, which practically is of order 10–1000.

Among the parallel modules exchanging data vertically the pair approxima-
tion module–linear solver interface module requires the least communication.
The minimal estimate for this communication comprises sending all entries of
the system matrix (this neglects, among others, sending an initial guess vector,
a right hand side vector and the information on the structure of the matrix).
The number of entries per subdomain, in the same case as considered for the
communication analysis, is in the order of (N/NS)Nnz where Nnz is the average
number of non-zero entries in a single row of the system matrix. The last number
for typical problems, meshes and approximations is of order 10–1000.

Hence the amount of vertical communication is, in typical configurations, at
least one order of magnitude greater than the amount of horizontal communi-
cation (the ratio of vertical communication to horizontal communication in the
considered particular case is equal at least to (N/NS)1/3Nnz/Nit). Taking this
into account the question arises, whether the vertical splitting of modules can
bring performance advantages? This may take place for hardware systems con-
sisting of several SMP nodes or, the solution that will become more and more
popular in the future, multi-core processors. Fast communication using shared
memory can be used to execute modules in parallel, keeping hardware resources
busy, and not increasing the number of subdomains.

6 Agent Based Architecture

For the described architecture with horizontal and vertical splitting of execution
components the proper mapping of computations on the hardware become a

Agent Architecture for Mesh Based Simulation Systems 749

module

Approximation

Mesh manipulation

module

Linear solver

interface module

solver adapter

Parallel linear

Domain decomposition

manager (for solver)

Domain decomposition

manager (for field)

Domain decomposition

manager (for mesh)

library

Parallel communication

Problem dependent

module

linear solver

Parallel

Solver

Field

Mesh
agent

agent

agent

and steering
GUI − control

Fig. 4. The proposed agent based modular architecture for parallel finite element codes

complex issue. To resolve this issue an agent based architecture is introduced
in Fig. 4. Each horizontal layer is equipped with an agent that is used to dis-
cover possible hardware-software setting for the simulation and to make decisions
aiming at achieving the best performance. The information considered by agents
includes data on simulation (problem, mesh, approximation, linear solver) as well
as on computing system (the number of available computers/processors/cores,
the speed of communication links – latency and bandwidth, current load etc.).
A control-and-steering unit (possibly distributed) activates agents and provides
them with user data.

7 Conclusion

The final agent architecture for computational kernels of mesh based solvers
consists of several layers dealing with fundamental data structures of the code.
The exchange of data and services between layers is done through fast commu-
nication links, preferably using shared memory. Each layer is composed of three
components:

– the sequential part unaware of possible parallel execution
– domain decomposition manager enabling the module to communicate with

other modules of the same kind using message passing and to work with
them in parallel

– agent – intelligent component discovering resources and other modules, used
for setting up the whole simulation environment

750 K. Banaś

The proposed architecture brings additional flexibility to the process of form-
ing hardware-software environments for performing computations. The flexibility
comes with a price of much more complex management of different modules for
parallel and distributed execution. The role of agents in the architecture is to
provide intelligence necessary to unify all components and achieve high perfor-
mance realization.

References

1. Banaś, K.: A modular design for parallel adaptive finite element computational
kernels. In Bubak, M., van Albada, G., Sloot, P., Dongarra, J., eds.: Computational
Science — ICCS 2004, 4th International Conference, Kraków, Poland, June 2004,
Proceedings, Part II. Volume 3037 of Lecture Notes in Computer Science., Springer
(2004) 155–162

2. Szymanski, B., Varela, C., Cummings, J., Napolitano, J.: Dynamically reconfig-
urable scientific computing on large-scale heterogeneous grids. In Wyrzykowski,
R., Dongarra, J., Paprzycki, M., Wa’sniewski, J., eds.: Parallel Processing and
Applied Mathematics, Proceedings of Vth International Conference, PPAM 2003,
Czȩstochowa, Poland, 2003. Volume 3019 of Lecture Notes in Computer Science.,
Springer (2004) 419–430

3. Kisiel-Dorohinicki, M.: Agent-based models and platforms for parallel evolutionary
algorithms. In Bubak, M., van Albada, G., Sloot, P., Dongarra, J., eds.: Computa-
tional Science — ICCS 2004, 4th International Conference, Kraków, Poland, June
2004, Proceedings, Part III. Volume 3037 of Lecture Notes in Computer Science.,
Springer (2004) 646–653

4. Grochowski, M., Schaefer, R., Uhruski, P.: Diffusion based scheduling in the agent-
oriented computing system. In Wyrzykowski, R., Dongarra, J., Paprzycki, M.,
Wa’sniewski, J., eds.: Parallel Processing and Applied Mathematics, Proceedings
of Vth International Conference, PPAM 2003, Czȩstochowa, Poland, 2003. Volume
3019 of Lecture Notes in Computer Science., Springer (2004) 97–104

5. Banaś, K.: On a modular architecture for finite element systems. I. Sequential codes.
Computing and Visualization in Science 8 (2005) 35–47

6. P�lażek, J., Banaś, K., Kitowski, J.: Comparison of message passing and shared
memory implementations of the GMRES method on MIMD computers. Scientific
Programming 9 (2001) 195–209

7. Banaś, K.: The application of the adaptive finite element method in large scale
computations (in Polish). Wydawnictwo Politechniki Krakowskiej, Kraków (2004)

	Agent Based Simulation Systems
	Mesh Based Computations with Tightly Coupled Components
	Modular Architecture for Sequential Finite Element Systems
	Domain Decomposition for FEM Core
	Functional Decomposition for FEM Core
	Agent Based Architecture
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

