
V.N. Alexandrov et al. (Eds.): ICCS 2006, Part III, LNCS 3993, pp. 695 – 702, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Design and Implementation of a Random Data-Placement
System with High Scalability, Reliability and Performance

Kun Liu, Wei Xue, Di Wang, and Jiwu Shu

Dept. of Computer Science and Technology, Tsinghua University, Beijing
Liukun04@mails.tsinghua.edu.cn

Abstract. As storage system scales to thousands of disks, data distribution, load
balance and the support for heterogeneous disks become increasingly important.
In this paper, we present a new data-placement method named Weighted Interval
Algorithm (WIA) for heterogeneous disks. Through it is not optimal in some
circumstances, the difference between WIA and the optimal algorithm is trivial.
Combined with replication, WIA can nearly balance access load and space
utilization and improve reliability simultaneously. For the first time, we
implement a data-placement system with high scalability, reliability and
performance. The experimental results show that WIA reduces the average
response time by 14.8% and decreases coefficient of relative load from 78.09%
to 47.46% while the difference of the ratio of space utilization between disks is
not more than 0.79%.

1 Introduction

With the development of computer technology, more and more information is created
and used in a digital way. When this trend makes it easier for us to utilize information,
it also makes the storage system’s scalability, reliability and performance become
increasingly important. This domain has become a focus and difficulty of research [1],
[2], [3], [4], and [5].

Data placement is an effective way to improve scalability of storage system. It maps
data objects to different disks to balance access load and space utilization. There are
two well-known data-placement policies: striping and random data-placement [4].
Compared to striping, random data-placement moves almost optimal data objects to
achieve new balance when the characteristic of storage system changes and so has
better scalability. What’s more, its performance is good and comparable to striping [3].

At the same time, data placement introduces the problem of reliability. It may place
logically related objects to different disks and each disk can become single point of
failure. And heterogeneous disks are inevitable in a massive storage system, so
determining how to distribute data to heterogeneous disks is another problem faced by
data placement.

At present, most researches on data placement are about the theoretic model and
little attention is paid to the reliability of data-placement system. Furthermore, data
placement based on disk capacity is hard to balance access load and space utilization at
the same time. In this paper, in order to describe the power of disks, we define the

696 K. Liu et al.

weight of disk, which can be the capacity, throughput or some combination of the two.
Then a new data placement method named Weight Interval Algorithm (WIA for short)
is proposed. Combined with replication, WIA can balance the access load and space
utilization and improve reliability at the same time. For the first time, we implement the
data-placement method in a real storage system AXUM, which is an in-band
virtualization system and introduced in section 3, and get some valuable experimental
data to support this method.

2 Related Work

Liner Hashing and it variants [9], [10], [11], and [12] adopt scalable distributed data
structure. This method does not take into account the differences between disks and so
does not support heterogeneous disks. An algorithm for pseudo-random distribution of
data to multiple disks using portioning of the unit range is proposed in [2]. But it
doesn’t allow for the placement of replicas and isn’t optimal even in theory.

The algorithm in [1] can place data objects optimally. One flaw of this method is that
it supports heterogeneous disks in a restricted way. The concept of cluster is introduced
in this algorithm, which is a group of homogeneous disks. Disks are added into the
system in a cluster way, which means only homogeneous disks can be added to the
system at a time. And the data object and its replicas must be placed at the same cluster.
This may introduce heavy load imbalance between clusters. Another flaw is that though
heterogeneous disks can be added, the construction of a storage system must begin with
a lot of homogeneous disks. The reason why cluster is introduced is that under some
circumstances the optimal algorithm for replicas placement does not exist but with the
prerequisite of cluster, the algorithm in [1] is optimal. On the contrary, our algorithm,
WIA, has no prerequisites. Disks can be added into storage system in any way. And the
difference between WIA and the optimal algorithm is rather trivial.

At present, data-placement algorithms are mostly aimed to balance the space
utilization of disks; little attention is paid to access load. The method in [13] is to place
data objects based on B-ZBSR, bandwidth-zone bandwidth to space ratio. Though it
can alleviate the imbalance of access load, it wastes a lot of disk space.

Generally speaking, there are two policies to improve reliability: replication and
parity. The latter is complicated and hard to scale. In [8], data object and its replica are
placed to neighboring disks to improve reliability. This method can not utilize the
parallelism of multiple disks adequately. If a disk has many hotspots, then most of the
access is focused on two disks while others are free.

3 AXUM: An In-Band Virtualization System

AXUM is an in-band virtualization system and our platform for data placement. All
physical disks (PD for short) are integrated into a storage pool named Source
Container. Every PD is partitioned into several segments named Storage Granularity
(SG for short) with the same size. According to the requirement, the administrator can
allocate some storage space, that is to allocate some SG from SC to form a Virtual Disk
(VD for short), which is used by users. So a VD is also composed of different SGs,

 Design and Implementation of a Random Data-Placement System 697

which are located in different PDs. Then the function of data placement on the basis of
AXUM is to map each SG in VDs to a unique SG in different PDs to achieve a high
scalability and performance.

4 Weighted Interval Algorithm

4.1 The Model and the Criterion

Assume that there are n physical disks 1PD 2PD … nPD in the storage system and

the weight of iPD is iw .The weight can be the capacity, throughput or some

combination of the two. Define the weighted interval for 1PD as),0(1w ,

2PD as),(211 www + , nPD as),(
1

1

1
∑∑

=

−

=

n

i
i

n

i
i ww . The data object set to be

distributed is { }mSGSGSGS ..., 21= and m is the size of S.

We can evaluate different data placement algorithms according to the following
criterions [2].

1. Faithful distribution, i.e. distributing a set of objects among a set of disks in
such a way that the fraction of objects stored at a disk is equal (or at least close) to
its share of the total weight of the system.

2. Efficient localization, i.e. computing the position of an object with a low time
and space complexity.

3. Fast adaptation, i.e. adapting to changing weight with a near-minimal
movement of objects.

4.2 Weighted Interval Algorithm

When replicas are not taken into account, WIA is similar to the algorithm in [1]; the
difference is that we get rid of the restriction of cluster so it becomes much more

flexible and simple. The basic idea of WIA is that for every data object iSG in the set

of S a random number r is generated, which distributes evenly between 0 and∑
=

n

i
iw

1

.

The object iSG is placed to iPD when r belongs to the weighted interval of iPD .

Under this circumstance, this algorithm can distribute data objects faithfully [1].

4.3 The Placement of Replicas

The principle of the placement of replicas is that no two replicas of a data object can be
placed at a same disk. No algorithm can satisfy both the criterion in 3.1 and the
principle above because under some circumstance replicas of a SG have to be placed at
a same disk if faithful distribution is satisfied firstly.

698 K. Liu et al.

So an approximation algorithm is proposed. Assume PD= }...,{ 21 nPDPDPD ; the

data set to be placed is { }mSGSGSGS ..., 21= and each iSG has a certain number of

replicas. For each iSG , iSG is placed by WIA at 1PD for example. Then the first

replica of iSG is distributed to PD-{ 1PD } by WIA, assume the result is 2PD . The

rest replicas are distributed to PD-{ 1PD , 2PD } in the same way.

Assume the number of data objects is N and each has a replica. Then the number of

data objects placed at iPD is
w

w
NS i

oi = ; the number of replicas placed at iPD

is ∑∑
≠≠ −

=
−

=
ij j

ji

ij j

ij
ci ww

w

w

w
N

ww

w

w

w
NS * . So the total number of data objects

placed at iPD is)1(∑
≠ −

+=+=
ij j

ji
cioii ww

w

w

w
NSSS .

Let ∑
= −

=
n

i i

i

ww

w
w

1
0 , then)1(0

i

ii
i ww

w
w

w

w
NS

−
−+= . This means this

method trends to place data in disks with small capacity. The ratio of space utilization

of iPD is)1(0
i

i

i

i

ww

w
w

w

N

w

S

−
−+= and the difference of ratio between disks is

decided by iw . In a massive storage system, 0w and w are much bigger than iw . So

the difference is trivial.

5 Implementation of the Data-Placement System

5.1 Weight, Hotspot Replication and Load Balance

The weight in WIA is a significant parameter to determine the number of data objects
placed at a disk. Generally speaking, two main parameters depicting a disk are the
capacity and throughput. Throughput is not a good choice of weight. Firstly, the
throughput of disk is determined by the disk interface, average seeks time, rotational
speed and access pattern so it is not a constant. Secondly, the development of disk
throughput is much slower than that of disk capacity and if objects are placed according
to throughput, a lot of disk space will waste. Finally, under practical environment
hotspot does exist so the weight of throughput can not ensure maximal bandwidth. The
space utilization of each disk is the same if the weight is disk capacity. But because of
the existence of hotspot, the load of each disk will be unbalanced.

Based on our analysis of the HP trace [6] such as cello 92, we observe that disk
access has a high degree of space locality and very often less than 20% data objects
serve more than 90% access. So, if replicas of hotspot, named hotspot replicas, are
created and placed on the disk with light relative load, then this can not only improve

 Design and Implementation of a Random Data-Placement System 699

performance but also balance access load. The relative load is defined as the ratio of
disk access frequency to disk bandwidth.

We update the replicas and the original data object synchronously to ensure the
consistency of data. The number of hotspot replicas has a great influence. If the replicas
number is too small, access load of disks can balance to some degree but there is still
some space to go on. If the replicas number is too large, though the access load balances
well, because every write should update many disks synchronously, the additional load
can outweigh the advantage of load balance and the total performance of the system
would degrade. So we calculate the number of hotspot replicas in the following way.
Record the access frequency of each SG and calculate the average access frequency
(AAF for short). Define a parameter threshold, which is an adjustable number. If the
access frequency of a SG is more than the product of average access frequency and the
threshold, then this SG is a hotspot and replicas should be created. The number of

replicas is determined by 1hreshold*
_log +⎥⎦

⎥
⎢⎣
⎢

）（ tAAF
frequencyaccess

. The

reason why logarithm is used is that logarithm can ensure that the number of hotspot
replicas is moderate.

5.2 Reliable Replicas and Overhead

Besides balancing load, replicas can improve reliability [7], [8]. In an ideal data
placement system, the crash of a physical disk can degrade the service of the whole
storage system dramatically. Then replicas, named reliable replicas, can be created for
each SG to improve reliability. These replicas can be placed by the algorithm in 4.3,
and if C replicas are created for SG, the system can still work well when no more than C
disks fail. The number of reliable replicas for a SG is determined by the importance of
SG and how to get the importance is out of the scope of this paper.

Replication introduces two kinds of overhead. Firstly, excess space is needed to
store replicas. In practice, the data stored at disks are much more valuable than the
medium storing them. And with the fast increase of disk capacity and rapid decrease of
disk price, we consider the additional disk space is worthy and an example is Google
File System [14]. The second overhead is caused by synchronous update for writing
replicas, which is unavoidable but can be alleviated. Firstly, not all hotspot are suitable
for replication. When the majority of access to a hotspot is writing, then replication of
that hotspot will degrade performance. Secondly, since hotspot replicas can also act as
reliable replicas, if hotspot already has reliable replicas, then these reliable replicas can
be changed to hotspot replicas.

6 Experiment Evaluation

6.1 Evaluating Data Placement

Figure 1 illustrates the ratio of data objects to be migrated when additional storage capacity
is added to AXUM. Striping achieves scalability at a very high cost; almost every data
object has to be moved. The number of data objects moved by WIA is very close to the

700 K. Liu et al.

Percent of Data to Be Migrated

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

WIA Striping

Series1

Series2

Series3

Fig. 1. Percent of data to be migrated when additional storage capacity is added to AXUM. Series
1 shows that 13.42% of storage capacity is added; series 2 shows 20.13% is added and series
shows 33.55% is added.

optimal ratio. Our experiment also shows that WIA performs better for random I/O
while striping is better for sequential I/O. This is consistent with the results in [4].

6.2 Evaluating Replication

If we define coefficient of relative load as the ratio of the difference between maximal
relative load and minimal relative load to maximal relative load, then that value for
AXUM without hotspot replicas is 78.09%, while the optimal value is 0. This shows the
necessity of hotspot replicas.

Figure 2 is the result after hotspot replicas are created. The horizontal line in the
figure is the average response time when there are no hotspot replicas. The result is the
same as the discussion in section 5.1.

Fig. 2. Threshold and the corresponding average response time. The unit of time is microsecond.
This experiment makes it clear that threshold has a great influence on the performance, and 10 is
a good choice.

The coefficient of relative load is 47.46% after hotspot replicas are created with the
threshold of 10. Of course we can create more hotspot replicas by decreasing threshold
to make the coefficient of relative load drop to 0, but this will increase overhead of
synchronous update and degrade the performance.

 Design and Implementation of a Random Data-Placement System 701

As to reliable replicas, in our experiment, we create 2 reliable replicas for each SG
and pull out one and two disks from disk array and test the function and measure the
average response time of AXUM. The result is that every request gets a perfect
response which means the integrity of data objects is guaranteed and the average
response time increases by 12.5% when a disk fails.

7 Conclusion and Future Work

This paper proposes Weight Interval Algorithm for data placement, which is simple,
flexible and can be applied to any case. Through it is not optimal in theory, the
experiment data shows that in practice it can obtain a satisfying result. Based on this
algorithm, we build a data-placement system. And to balance disk access and improve
reliability, reliable replicas and hotspot replicas are introduced into this system. By
experiment, we prove that this data-placement system is of high scalability, reliability
and performance.

Data placement is about the issue of how to distribute data objects to different disks
to improve performance and scalability. And the issue of data layout, which is about
how to place data objects in a disk to reduce seek time and rotational delay, is one
direction for further research. On the other hand, data placement can be easily extended
to information lifecycle management, which places data not only according to the
characteristic of storage medium but also the importance of data.

References

1. R. J. Honicky and E. L. Miller. A fast algorithm for online placement and reorganization of
replicated data. In Proceedings of the 17th International Parallel & Distributed Processing
Symposium, Nice, France, Apr. 2003.

2. Andre Brinkmann, Kay Salzwedel, and Christian Scheideler. Compact, Adaptive
Placement Schemes for Non-Union Capacities In Proceedings of the 14th ACM
Symposium on Parallel Algorithms and Architectures (SPAA), pages 53-62, Winnipeg,
Manitoba, Canada, Aug. 2002.

3. Beomjoo Seo. Survey on Data Placement and Migration Algorithms in Distributed Disk
Systems, In Proceedings of 2004 International Conference on Parallel and Distributed
Processing Techniques and Applications (PDPTA'04), Las Vegas, Nevada, USA, June
21-24, 2004.

4. Jose, Richard, Berthier. Comparing Random Data Allocation and Data Striping in
Multimedia Servers In Proceedings of the 2000 ACM SIGMETRICS international
conference on Measurement and modeling of computer systems , Santa Clara, California,
United States, Pages: 44 - 55 .

5. Roger Zimmermann Shahram Ghandeharizadeh. Continuous Display Using Heterogeneous
Disk-Subsystems In Proceedings of the fifth ACM international conference on Multimedia
Seattle, Washington, United States Pages: 227 – 238.

6. Chris Ruemmler and John Wilkes. UNIX disk access patterns In Proceedings of the
Winter'93 USENIX Conference, January 1993, Pages 405-420.

702 K. Liu et al.

7. John Wilkes, Richard Golding, Carl Staelin, and Tim Sullivan. The HP AutoRAID
hierarchical storage system In ACM Transactions on Computer Systems, Pages: 14
(1):108-136.

8. Akitsugu WATANABE Haruo YOKOTA. Adaptive Overlapped Declustering: A Highly
Available Data-Placement Method Balancing Access Load and Space Utilization 21st
International Conference on Data Engineering (ICDE 2005).

9. W. Litwin, J. Menon, and T. Risch. LH* schemes with scalable availability. Technical
Report RJ 10121 (91937), IBM Research, Almaden Center, May 1998.

10. W. Litwin, M. Neimat, G. Levy, S. Ndiaye, T. Seek and T. Schwarz. LH*s: a
high-availability and high-security scalable distributed data structure. In proceeding of the
7th International Workshop on Research Issue in Data Engineering. 1997, Birmingham,
UK, Apr. 1997. IEEE, Pages 141-150.

11. W. Litwin and M.-A Neimat. High-availability LH* schemes with mirroring. In proceeding
of the Conference on Cooperative Information Systems, 1996, Pages 196-205.

12. W. Litwin, M-A. Neimat, and D. A. Schneider. LH*-a scalable, distributed data structure.
ACM Transactions on Database Systems, 1996, Pages: 21(4):480-525.

13. Yong-Sook Park, Jeong-Won Kim, Ki-Dong Chung. A Continuous Media Placement using
B-ZBSR on Heterogeneous MZR Disk Array In Proceedings of International Workshops
on Parallel Processing, 1999,Pages: 482-487.

14. Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The Google File System, In
Proceedings of the nineteenth ACM symposium on Operating systems principles Bolton
Landing, NY, USA, Pages: 29 – 43.

	Introduction
	Related Work
	AXUM: An In-Band Virtualization System
	Weighted Interval Algorithm
	The Model and the Criterion
	Weighted Interval Algorithm
	The Placement of Replicas

	Implementation of the Data-Placement System
	Weight, Hotspot Replication and Load Balance
	Reliable Replicas and Overhead

	Experiment Evaluation
	Evaluating Data Placement
	Evaluating Replication

	Conclusion and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

