
V.N. Alexandrov et al. (Eds.): ICCS 2006, Part III, LNCS 3993, pp. 687 – 694, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Multi-dimensional Storage QoS Guarantees for
an Object-Based Storage System*

Fei Mu, Jiwu Shu, Bigang Li, and Weimin Zheng

Department of Computer Science and Technology, Tsinghua University,
100084, Beijing, P.R. China

mufei@mails.tsinghua.edu.cn

Abstract. The Object-based storage is an emerging storage architecture that
could easily fulfill multi-dimensional storage QoS requests. This paper focuses
on providing QoS guarantees under Object storage infrastructure along the three
most prevalent dimensions: capacity, bandwidth and latency through storage re-
source allocation and IO commands scheduling. Firstly we propose an algo-
rithm on storage resource mapping derived from Toyoda algorithm, which
achieves efficient resource utilization through consideration of the OSDs’ serv-
ing ability. Secondly we propose an object commands scheduling mechanism
and develop a prototype system based on the Lustre filesystem. Through adding
timestamp to each object command and scheduling the command queue by final
finish time, the system can efficiently fulfill the demands on latency from the
front applications.

1 Introduction

As becoming more and more complicated, storage applications urgently demand
Quality of Service (QoS) guarantees along multiple dimensions such as storage capac-
ity, data bandwidth, respond latency, reliability, security, etc [1][2][3]. For example, a
voice over IP service requires a short latency; a VOD service requires a large capacity
and a high bandwidth while an E-mail service may require a relatively lower capacity
and a lower bandwidth but a higher security. Among them, capacity, bandwidth and
latency are commonly regarded as most prevalent.

Object Storage Device (OSD) [4][5] is an emerging storage technology in recent
years. It offloads storage management from host operating systems to intelligent stor-
age devices and provides an object-level storage interface in contrast to the conven-
tional block-level storage interface. The OSD interface is focused on moving chosen
low-level storage, space management, and security functions into storage devices to
enable the creation of scalable self-managed, protected and heterogeneous shared
storage for storage networks.

The special architecture of Object-based storage systems achieves convenience in
providing storage QoS guarantees [6][7][8]. It has better scalability by separating the

* Supported by National Grand Fundamental Research 973 Program of China under Grant No.

2004CB318205.

688 F. Mu et al.

control path from data path, which makes the storage system be able to integrate large
quantities of devices to achieve a high bandwidth. Furthermore, the front applications
access data from the object storage devices through an object level interface. Accord-
ingly, we can use the concept of class to identify different storage applications and the
multi-dimensional storage QoS requests can be expressed as attributes attached to
each object. Hence, both the front clients and the end devices can be knowledgeable
of what the front applications demand. In object-based storage systems, the end stor-
age device has computational ability, which means that the object device can adjust
its object command queue to fulfill the application request.

Yiping Lu [6] and Joel C.Wu [7] proposed QoS frameworks for OSD-based stor-
age system, which showed that OSD-based storage system is an ideal platform to
provide QoS guarantees. Kevin KleinOsowski provided suggestions for improving the
OSD specification and its ability to communicate QoS requirements [8]. His work
concentrated only on bandwidth guarantee. StoneHenge [9] is a multi-dimensional
storage virtualization system, which is able to multiplex multiple virtual disks with a
distinct bandwidth, capacity, and latency attributes. But this work was based on a
conventional cluster environment using block-level storage devices.

The Lustre filesystem [10][11][12] runs today on many of the largest Linux clus-
ters in the world. At the root of Lustre is the concept of object storage. It is a good
platform for testing and validating OSD concepts such as storage QoS guarantees.

We propagate our research work in two steps to fulfill the QoS request along ca-
pacity, bandwidth and latency. Firstly we allocate the total storage resource for appli-
cation classes according to their QoS requirement. But for an actual storage system
the workload is quite complicated and only storage resource allocation can not assure
the access latency. Thus we also propose a scheme on command scheduling and
propagate a prototype system to provide latency guarantee based on Lustre filesystem.

2 Storage Resource Mapping Algorithm

This storage resource mapping algorithm concentrates on the dimensions of capacity
and bandwidth because various disk performance requirements can be readily trans-
lated into bandwidth requirements. According to reference [13], we have

B

L

B

L
T

i
i

maxmax ++≤ ω (1)

In equation 1, Ti is latency of application class i, ω is the data size in the waiting
queue, Lmax is the maximum size of a single command, B is the bandwidth for a cer-
tain physical device, which could all be acquired by experiment and experience. So
we can translate a request on latency into that on bandwidth. We adopt the bigger one
during resource mapping.

2.1 Problem Statement

Suppose there are N object devices in the storage system which provides M applica-
tion classes. Each storage application has a demand on both capacity and bandwidth
which is beyond the ability of a single object device. Commonly one application

 Multi-dimensional Storage QoS Guarantees for an Object-Based Storage System 689

should be evenly scattered into m Bj B parts till each part could be guaranteed by a single
object device. m Bj will be settle upon different policies according to different applica-
tion classes. Finally there will be K = mB1B+ m B2 B+…+ m BM B sub-applications in the storage
system, and our study focuses on how does one single object serve the scattered ap-
plications when K>N.

We use a two-dimension vector S={C, B} (C>0, B>0) to express a sub-application,
C indicates the capacity while B indicates the bandwidth. An object device could be
expressed by this vector too. In special, we use O, A, R to represent the original re-
source vector, allocated resource vector and reserved resource vector. We get
O=A+R. Then we assume that the at last object device i selects n BiB sub-applications to
serve and the result set is {SBij B, 0 < j <= nBiB}. Ideally there could be:

⎪
⎪
⎩

⎪
⎪
⎨

⎧

==

===

∑ ∑

∑

= =

=

N

i

M

j
ji

n

j
iij

Kmn

NiOSiA
j

1 1

1

),,2,1(L
vvv

(2)

This is a multi-dimensional bin-packing problem and we propose a greedy algo-
rithm derived from Toyoda algorithm [14].

We use <A, O> to present the included angle between vector A and vector O,
which is assumed to be lied between (]π,0 . There is:

><=
⋅
⋅

= ii

ii

ii
i OA

OA

OA
I

vv
vv

vv

,cos
||||||||

 (3)

2.2 Storage Resource Mapping Principle

The resource mapping should adapt to the devices’ serving ability. In virtualization
work, the physical devices are always logically divided into storage slices for differ-
ent virtual storage applications. The resource vector of a single slice has the same
direction as that of the whole storage device. So we should minimize the included
angle between the allocated resource vector and the original resource vector. Through
equation 3, our goal is to maximize Ii. Nowadays many storage systems adopt replicas
to enhance reliability and performance, so the resource utilization needn’t be strictly
maximized.

We concentrate on the O, A, R of a certain object device. We calculate I for every
received sub-application. If ||A+S|| < ||R-S||, then <O, A+S> is larger than <R-S, O>,
we calculate I by equation 4; while if ||A+S|| > ||R-S||, <O, A+S> is smaller than
<R-S, O>, we calculate I by equation 5. Finally, the sub-application which has the
largest I should be chosen to be mapped on the certain object device.

||||||||

)(

OSR

OSR
I vvv

vvv

⋅−
⋅−=

(4)

||||||||

)(

OSA

OSA
I vvv

vvv

⋅+
⋅+=

(5)

690 F. Mu et al.

Fig. 1. ||A+S B1B|| < ||R-S B1B||, then ∠2 is smaller than < A+SB1, BO >; ||A+S B2B|| > ||R-S B2B||, then ∠1 is

smaller than < O, R-SB2B >. ∠1 is smaller than∠2, so at last we choose S B2B.

2.3 Algorithm Description

The single object device allocation algorithm could be described as below:

{SBj B}: the sub-application set.
{O Bi}B: the object device set.
N: the number of object devices.
O BiB: the original resource vector of the object device i.
A BiB: the allocated resource vector of the object device i.
R BiB: the left resource vector of the object device i.

While {SBj B} != φ or there exists a available object device

For each available element in {O BiB}
 For each elements in {SBj B}
 {
 If R BiB couldn’t guarantee S, continue；
 For a certain S, calculate I B Bby equation 4 and 5.
 }
 If all SBj Bcan not be served by O BiB, mark O BiB as unavailable, continue. B B

 Select the S for object device i according to chapter2.2.
A BiB:=A BiB+ S, R BiB:=R BiB- S, {SBj B}={SBj B}-{S}

}
}
If the OSD mapping process ends when none OSD is available, new object devices

should be added into the OSD storage system.

2.4 Simulation Results

We generate N random object device vectors {O} , NP

2
Prandom sub-application vectors

{S} and run the mapping the OSD mapping algorithm for 500 times to get an average.

 Multi-dimensional Storage QoS Guarantees for an Object-Based Storage System 691

Table 1 indicates that our algorithm achieve better adaptation to physical device’s
serving ability than Toyoda Weighted algorithm when achieving a good resource
utilization.

Table 1. Simulation results1

N 5 10 50 100
The algorithm
presented here

5.516 3.633 1.580 1.174 <A,O>
(degree)

Toyoda Weighted
algorithm

5.737 3.713 1.812 1.293

resource utilization
(when resource is used up)

74.65% 83.90% 94.17% 96.30%

3 Command Scheduling Scheme

In this chapter we focus on command scheduling to provide access latency guarantee
for a front application under Lustre filesystem.

3.1 Latency Guarantee System Architecture

The latency guarantee system is designed and implemented under the Lustre filesys-
tem, which is consisted of three parts: Clients, Metadata Servers (MDS) and Object
Storage Targets (OST). Lustre clients run the Lustre filesystem and interact with
OSTs for file data I/O and with MDS for namespace operations.

Timestamp
 Module

I/O interface

Command queue
scheduling

Module

Statistic Module

OST1

I/O
 queue

QoS configuration
module

Client

Statistic Module

Command queue
scheduling

Module

OST2

I/O
 queue

Statistic Module

Time
Synchronize

Module

Fig. 2. The architecture of latency guarantee system

692 F. Mu et al.

As shown in figure 2, the latency guarantee system is made up of four main com-
ponents. The timestamp module receives the front object commands, recording their
arrival time. It also responds for retrieving latency attributes from the objects accord-
ing to various kinds of operations and adding which to the object command request.
The command queue scheduling module adjusts the command queue through the
information of the object command provided by the timestamp module. The statistic
module will concentrate on the actual latency of the certain application and interact
with the QoS configuration module. The QoS configuration module can set important
parameter of the system such as common latency, coefficient for a given latency re-
quest, etc. It could indicate if the system resource is sufficient, and if the latency at-
tributes specified by users are appropriate.

3.2 Key Technologies

Extended object commands. Between Lustre clients and the object storage targets
the basic communication unit struct ptlrpc_request contains Lustre request message
and Lustre reply message, which are all of the type struct lustre_msg. It is the most
fundamental unit of the Lustre network protocol. This data structure is logically asso-
ciated with the object command. In our implementation, the latency information is
integrated into the lustre_msg while the arrival time of a certain command is inte-
grated into the ptlrpc_request.

Command queue scheduling. In current Lustre system, the new arrived command
request is directly added to the tail of the command queue. For a certain command
request, its finish time should not be later than TPFP:

latencyarrival
F TTT += (6)

Because TBarrivalB and TBlatency B could be acquired precisely, we use TP

F
P to adjust the com-

mand queue. For the commands without QoS demand, we assume their TBlatency B to be
the longest TBlatency B required in the whole storage system. This value could be modified
according the statistic information. We calculate TP

F
P when receiving a new command,

then search along the command queue from the tail to find the first command which
has a smaller TP

F
P and insert the new coming command behind it. During this process, if

we meet a command having the same IO object ID with the new arrival command,
then just insert the new command right behind it. Hence, the commands in the queue
are nearly sorted by their TP

F
P. The sequence of the commands which come from the

same application or access the same destination has been maintained too.

3.3 Testing Results

In our testing environment, the client, MDS and OST are located in the same server.
We run two applications with high workload. We give a shorter latency guarantee to
application 1, while a longer one to application 2. Our statistics module counted that
the latency guarantee ratio for application 1 and application 2 are 95.6% and 99.1%.

Experiment results show that the quantity of command requests is approximately
linear to the total recommended data buffer size, so we use IOPS to evaluate the effect

 Multi-dimensional Storage QoS Guarantees for an Object-Based Storage System 693

Fig. 3. Testing results of the latency guaranty system. The x axis presents the seconds and the y
axis presents the IOPS.

of latency guarantee system. We focus on application 1, its IOPS without latency
guarantee system and that with latency guarantee system are showed as Fig 3.

4 Conclusion and Future Work

This paper aims at providing multi-dimensional storage QoS guarantees for an Object
Storage System. We focus on the three most prevalent dimensions: capacity, band-
width and latency. We propose a storage resource allocation algorithm based on the
principle of adapting to physical devices’ serving ability when achieving efficient
storage resource utilization. Considering the complicated application workload, we
also propose a command scheduling scheme under Lustre filesystem. Testing result
from the prototype system shows that the command scheduling scheme is impactful.

We will go on to study the load balancing between object devices. Command
scheduling within the object devices is also challengeable. We will also concern about
the emerging storage QoS dimension such as reliability, security, etc.

References

1. C. R. Lumb, A. Mrchant, G. A. Alvarez: Façade: virtual storage devices with performance
guarantees, In Conference on File and Storage Technology (FAST 03), 2003

2. Z. Dimitrijevic and R. Rangaswami: Quality of service support for real-time storage sys-
tems, in Proc. of Intl. IPSI-2003 Conference, 2003.

3. M. de Miguel, J. Ruiz, and M. Garcia. QoS-Aware Component Frameworks. In Tenth
IEEE International Workshop on Quality of Service, pages 161-169, May 2002.

4. M. Mesnier, G. R. Ganger, E. Riedel: Object-Based Storage. IEEE Communications
Magazine, Vol. 41, No.8, pp 84-90, August 2003

5. R. O. Webster. Information Technology - SCSI Object-Based Storage Device Commands
(OSD). February 2004. Rev 9.

6. Yingping Lu,David H.C. Du, Tom Ruwart: QoS Provisioning Framework for an OSD-
based Storage System. NASA Goddard Conference on Mass Storage Systems and Tech-
nologies (MSST'05), 2005

694 F. Mu et al.

7. Joel Wu and Scott A. Brandt, "QoS Support in Object-based Storage Devices," Interna-
tional Workshop on Storage Network Architecture and Parallel I/O (SNAPI 05), held in
conjunction with the International Conference on Parallel Architectures and Compilation
Techniques (PACT 2005), Saint Louis, Missouri, September 17–21, 2005

8. Kevin KleinOsowski, Tom Ruwart, David J. Lilja:Communicating Quality of Service Re-
quirements to an Object-Based Storage Device. NASA Goddard Conference on Mass Stor-
age Systems and Technologies (MSST'05), 2005

9. Lan Huang, Gang Peng, and Tzi-cker Chiueh. Multi-dimensional storage virtualization.
SIGMETRICS Perform. Eval. Rev., 32(1), 2004, 14~24

10. P. Schwan. Lustre: Building a file system for 1000-node clusters. In Proceedings of the
2003 Linux Symposium, July 2003

11. Lustre project, http://www.lustre.org
12. P. J. Braam. The Lustre storage architecture, 2002
13. A. K. Parekh, R. G. Gallagher. A generalized processor sharing approach to flow control

in integrated services networks: the multiple node case. IEEE/ACM Transactions on Net-
working, 2(2), 1994, 137~150

14. Y. Toyoda: A simplified algorithm for obtaining approximate solutions to zero-one pro-
gramming problems. Management Science, 21(12):1417–1427, Aug. (1975).

	Introduction
	Storage Resource Mapping Algorithm
	Problem Statement
	Storage Resource Mapping Principle
	Algorithm Description
	Simulation Results

	Command Scheduling Scheme
	Latency Guarantee System Architecture
	Key Technologies
	Testing Results

	Conclusion and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

