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Abstract. The total replacement value of the US transmission lines alone 
(excluding land) is conservatively estimated at over $100 billion dollars [1] and 
triples when including transformers and circuit breakers. Investment in new 
transmission equipment has significantly declined over the past 15 years. Some 
of the equipment is well beyond intended life, yet is operated under increasing 
stress, as load growth, new generation, and economically motivated 
transmission flows push equipment beyond nameplate limits. Maintaining 
acceptable electric transmission system reliability and delivering electric energy 
at low energy prices requires innovations in sensing, diagnostics, 
communications, data management, processing, algorithms, risk assessment, 
decision-making (for operations, maintenance, and planning), and process 
coordination. This paper overviews a comprehensive approach to develop 
methods and processes in these areas, driven by the ultimate objective to 
develop a hardware-software prototype capable of auto-steering the 
information-decision cycles inherent to managing operations, maintenance, and 
planning of the high-voltage electric power transmission systems.  

1   Introduction 

In electric power transmission systems, the assets include transmission lines, support 
structures, transformers, power plants, and protection equipment. Condition 
information includes loading or operating histories, inspection data, periodic and as-
needed testing and diagnostic results, and continuous diagnostic measurements, the 
latter of which are typically collected via intelligent electronic devices (IED) and 
stored within substation servers. A single transmission company, each of which has 
their own centralized control center, has responsibility for many thousands of each 
equipment type. A single control area, represented by an Independent System 
Operator (ISO), oversees and coordinates activities of a number of different 
transmission companies. The eastern and western US interconnections are each 
comprised of a number of ISOs; the only other US interconnection, Texas, has only 
one. Failure of an asset may affect physical and economic performance of the entire 
interconnection and always increases likelihood of additional failures. Because 
economic performance (power supply allocation among power plants) affects 
transmission loading which affects failure likelihood and consequence, operational 



 Auto-steered Information-Decision Processes for Electric System Asset Management 441 

risk-reduction inevitably results in less economic power supply. Frequency and 
severity of blackout scenarios as observed on August 14, 2003 are affected by policies 
associated with equipment operation, maintenance, and planning.  

The objective in this work is to develop a hardware-software prototype capable of 
auto-steering the information-decision cycles inherent to managing operations, 
maintenance, and planning of the high-voltage electric power transmission systems. 
We focus on the needs of the most critical electric transmission equipment, including 
power transformers, circuit breakers, and transmission lines. Similar equipment exists 
at the distribution level, so the work will find direct application there. Figure 1 
illustrates the structure of the problem and facilitates description of how we intend to 
approach its solution. We overview intended implementation of the 5 different layers 
in what follows. 
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Fig. 1. The structure of the asset management problem 

Layer 1, The power system: The prototype will center on a continuously running 
model of the Iowa power system using network data provided by local utility 
companies using a commercial-grade (Areva) simulator.   
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Layer 2, Condition sensors: As indicated by the taller “Condition History” cylinder at 
the far right of layer, 3 campus substations will be equipped with sensors, 
communication equipment, and servers to provide a benchmark prototype for 
hardware implementation. Other substations will be represented virtually, each with 
its own unique database containing the condition data for that substation provided by 
the utility company.  
Layer 3, Data communication and integration: This will entail intra-substation 
communication using wireless between IEDs and substation server together with 
federated data integration to provide efficient, dependable, and secure mechanisms for 
interfacing Layer 4 data transformation algorithms with the data resources.  
Layer 4, Data processing and transformation: This layer will operate on the integrated 
data from layer 3 to produce, for each component/failure mode/time, an estimate of 
that particular component/failure mode deterioration level at the given time. This will 
require deterioration models, and we target such models for the chemical degradation 
processes in oil and cellulose (both of which provide insulation in power 
transformers). We will also need stochastic models to predict future degradation, and 
we further describe these models in Section 2. 
Layer 5, Simulation and decision:  This layer will utilize the component probabilistic 
failure indices from layer 4 together with short and long-term system forecasts to 
drive integrated stochastic simulation and decision models. These models will operate 
interactively, so that simulation and decision in each time frame utilizes information 
from simulation and decision within other time frames. Resulting operational policies, 
maintenance schedules, and facility reinforcement plans will then be implemented on 
the power system (as represented by the Areva simulator). The decision models will 
also be used to discover the value of additional information. This valuation will be 
used to drive the deployment of new sensors and redeployment of existing sensors, 
impacting Layer 2. This layer is further described in Section 3. 

2   Layer 4:  Data Processing and Transformation  

Component condition, deterioration level, or propensity to fail, is essential 
information for asset management decision problems. Our objective in this part of the 
work is to develop methods of computing component (or subsystem) failure 
probabilities. One unique aspect of this work is that in addition to steady-state failure 
probabilities that capture average behavior over a large number of components and 
over an extended period of time, we also require transient failure probabilities to 
capture instantaneous behavior for each specific component. 

Consider a set of condition vectors c(t)=[c1(t),c2(t),…,cK(t)] for K similar 
components taken over an extended period of time t=0,1,…,T, where each vector ck(t) 
provides M different measurements ck1(t), ck2(t),…ckM(t),  on component k 
characterizing its condition at time t. The total possible number of measurements is 
less than K×T×M because there are different frequencies for which different 
measurements are taken. We will augment c(t) with operational and environmental 
information in building predictive failure models. For some system components, 
failure is closely related to a single condition measurement that can be measured over 
time and modeled in a manner that allows reasonably accurate prediction of failure 
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(e.g., extent of vegetation growth or the amount of chemical degradation). Let c(t,e;β) 
denote the expected level of degradation for a unit subjected to environmental 
conditions e, where β is a vector of unknown model parameters to be estimated from 
available data. The form of the function c may be suggested by physical-chemical 
theory, (see, for example, [2,3,4]), past experience, or the available data. A failure-
time cdf F(t) is induced by a specified model for c(t,e;β), the environment e, and a 
definition of failure (usually a specified value cf, beyond which failure is said to have 
occurred). Stochastic behavior in c(t,e;β) can be captured either by using a stochastic 
process model (e.g., [5]) or by driving a deterministic model with a stochastic 
environmental model (e.g., [6]). As new condition information is received for a given 
unit, it is possible to update the failure probability for that unit. For the special case in 
which all units are in a common and constant environment, [7] develops a model to 
describe the effect that nondestructive inspections will have on the failure probability. 
It is possible to generalize this “degradation analysis” approach to a vector of 
condition measurements, but statistical modeling of the joint distribution of a vector 
of condition measurements is more difficult, especially if the dimension exceeds 2. 
The Markov modeling approaches discussed next provide a useful alternative. 

We can often characterize boundary conditions separating J states of deterioration 
in component k in terms of the measurements ck(t), via a deterioration function 
g[ck(t)]. The deterioration function returns a deterioration level j identified by dj-

1<g[ck(t)]<dj, where the last state j=J represents the failed state. State J need not 
represent the rare “blue smoke” condition where the component has catastrophically 
failed (and for which little data is typically available). Rather, state J represents a set 
of measurement values for which engineering judgment indicates the component 
should be removed from service. This approach to computing failure probabilities is 
illustrated in Fig. 2, based on multistate Markov models, where each of J states is 
represented as a deterioration level. The representation of Fig. 2 shows J=4 
deterioration levels, and deterioration level j is reached only from deterioration level 
j-1. Yet, the model is flexible; any number of deterioration levels can be represented, 
and, if data indicates transitions occur between non-consecutive states (e.g., 1 to 3), 
the model can accommodate this.  
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Fig. 2. Computing contingency probability reductions 



444 J.D. McCalley et al. 

The model parameters capture the deterioration in equipment state as influenced by 
past loading and environmental conditions. To capture future effects of variation in 
such conditions on model parameters, one needs to model the dependency of the 
transition intensities on these parameters. To account for uncertainty in state 
identification through observation or indirect measurement, the variance of the 
conditional probability of observation given the state, referred to as σki for component 
k, state i is used. This parameter can also facilitate the analysis to identify investments 
to make for obtaining better or more information, described in Section 3.2. 

Once transition intensities are determined, state probabilities are obtained from the 
transition probability matrix and initial state vector. We denote this failure probability 
for the kth component as pk(c), a function of the time-dependent physical condition of 
the equipment c(t). This modeling provides the ability to predict the effect that 
maintenance will have on failure probability and expected time to failure, metrics that 
are important for a number of decision problems. The expected time to failure is 
captured by computing first passage times [8,9]. 

3   Layer 5: Simulation, Decision and Information Valuation 

Asset management decision problems are characterized by: (1) strong 
interdependencies between physical performance of individual assets, physical 
performance of the overall system, and economic system performance; (2) limited 
resources; (3) important uncertainties in individual component performance, system 
loading conditions, and available resources; (4) multiple objectives. We describe these 
decision problems in this section, together with our intent to solve them in an 
integrated fashion. 

3.1   Simulation and Decision 

Asset management decision problems can be classified into one of 4 types which all 
involve resource allocation with the objective to minimize cost and risk. These 
specific asset management decision problems include (a) Operations, (b) Short-term 
maintenance selection and scheduling, (c) Long-term maintenance planning, and (d) 
Facility planning.  

These problems differ primarily in their time scale but are linked by a common 
focus on the interactions between the condition of equipment and the decisions taken. 
The operational decision problem of how to meet demand in the next hour to week 
treats facilities available and their deterioration levels as given (though the 
deterioration is not known precisely). The contribution here is to use condition 
measurements to more accurately estimate short-term failure probabilities along with 
the deterioration effects of loading each piece of equipment at various levels, and to 
integrate these improved estimates into the dispatch and unit commitment decisions. 
The tactical decision problem to allocate resources for maintenance in the next 6-24 
months suppresses detail about hourly operations but considers an aggregate 
description of equipment loading when deciding how to allocate resources to best 
manage the condition of the equipment. Our approach will use historical data to better 
judge the combined effects of maintenance and loading on the equipment 
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deterioration and use this information to improve maintenance scheduling. The long-
term maintenance problem examines tradeoff between maintenance expense and 
equipment life to find inspection and maintenance policy to minimize expected long 
run cost of keeping the equipment in service reliably. The strategic decision problem 
to both expand capacity and replace equipment over the next 2-20 years takes as input 
distributions of equipment life lengths resulting from adopted maintenance policies 
and determines when to replace existing equipment and invest in additional assets. 
Unlike previous models for equipment replacement and capacity expansion, we 
consider the cumulative effect of power flow on equipment life and take advantage of 
better data-driven life length predictions.  

When we integrate these optimization problems having different time-scales 
together, we will treat the quantities that vary much more slowly as static and model 
quantities that vary much faster in a way that ignores the details of their variations, 
such as by replacing fast-moving quantities by their averages. A similar strategy is 
used in hierarchical planning of manufacturing systems [10]. 

3.2   Information Valuation and Sensor Deployment  

A last but critical decision problem to be addressed is how to extract from data 
transformation (Layer 4) and decision (Layer 5) algorithms identification of 
economically sound opportunities for obtaining better information, thereby reducing 
uncertainty and improving decision-making capability. A simple case is when an 
abrupt measurement change causes immediate suspicion that a failure is imminent. 
The response is to inspect the equipment. Additional more specialized measurements 
may be done, and if those measurements confirm a problem, the equipment is 
removed. Such situations are addressed via alarms. A decision to obtain information is 
clear in this case, because imminent failure poses high capital loss and physical harm 
to humans. 

Decision to gather information is more difficult for maintenance and planning 
problems because the payoff (or avoided loss) is not so pronounced. We address this 
problem via a two-stage information valuation approach [11,12,13,14]. In the first 
stage, we determine candidate components for which additional information may be 
of interest. Denoting the value of the objective function at the solution as Γ, we 
compute an index giving sensitivity in Γ due to component k, as σki(∂Γ/∂pk) where pk 
is the failure probability of component k and σki (see end of Section 2) is the deviation 
in the observation for component k given that it is in state i. Components having high 
index are candidates to consider in the information valuation stage. Other selection 
criteria can be considered, e.g., we could identify components that are almost or 
barely selected by the decision algorithm. We denote additional information 
associated with candidate component k as rkm, which indicates component k is in state 
m. Such information may be obtained by installing more or better sensors at a cost. 
For example, a 50 year-old transformer that is a clear candidate for replacement may 
be operating with no monitoring equipment, yet installation of such equipment, 
providing information rkm, may result in decision to operate the unit for more years. 

Following [13], states in which component k may reside are identified by 
i={1,…,S}, with each state having probability πi obtained from procedures described 
in Section 2. Simulation and decision algorithms are then repeated once for each 
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possible state of component k, generating solutions with corresponding objective 
values. Denote identified solutions (alternatives) by a={1,…,A}. Thus, for each 
combination of state and alternative we have a consequence c(a,i). Denoting the utility 
of an alternative as u(a) and of a consequence as v(c), we desire to choose the 
alternative to maximize expected utility u(a,π)=∑i=1,S[πiv(c(a,i))]. The decision to 
obtain additional information is based on expected utility gains from shifting to better 
choices among the set of actions. Denote a0 as the optimal alternative with no 
additional information, identified using prior probabilities πi, and am as the optimal 
alternative with the additional information rkm. Then the value of information rkm is 
given by Δ(rkm)=u(am, πi,m)-u(a0, πi,m)=∑i=1,S[πi,mv(c(a0,i))]-∑i=1,S[πi,mv(c(am,i))], where 
the posterior probabilities πi,m are given by πi,m=Pr{rkm|i}πi/Pr{rkm}. However, the 
decision to seek the additional information must be done ex-ante to be useful, and so  
 

 
* Current measurement. 

Fig. 3. Illustration of information valuation and sensor deployment 

we cannot know that we will obtain rkm, i.e., that we will learn that component k is in 
state m. But we can assess (subjectively, or from historical data) the probability of 
learning from the new information that the component is in state m, which is Pr{rkm}. 
Then we may compute the expectation of the value associated with the new 
information as E{Δ(rkm)}=∑m=1,SPr{rkm}[u(am,πi,m)-u(a0,πi,m)]. We will use this 
approach to interface with Layers 4 and 5 procedures for assessing where and when to 
obtain additional information. 

4   Conclusions 

This paper gives a framework of a hardware-software prototype capable of auto-
steering the information-decision cycles inherent to managing operations, 
maintenance, and planning of the high-voltage electric power transmission systems. 
The framework is divided into 5 layers and described in this paper accordingly. 
Although each layer represents an essential and substantive part of the framework, the 
paper focuses on the data transformation (in layer 4) and decision (in layer 5) 
elements. 
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