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Abstract. Modeling, designing and analyzing large scale multi-agent
systems (MAS) with anywhere from tens of thousands to millions of au-
tonomous agents will require mathematical and computational theories
and models substantially different from those underlying the study of
small- to medium-scale MAS made of only dozens, or perhaps hundreds,
of agents. In this paper, we study certain aspects of the global behavior
of large ensembles of simple reactive agents. We do so by analyzing the
collective dynamics of several related models of discrete complex systems
based on cellular automata. We survey our recent results on dynamical
properties of the complex systems of interest, and discuss some useful
ways forward in modeling and analysis of large-scale MAS via appropri-
ately modified versions of the classical cellular automata.

1 Introduction and Motivation

Multi-Agent Systems (MAS) are a research area where artificial intelligence and
distributed computing overlap [28]. Hence, research in MAS heavily draws on the
existing theories, tools and methodologies from both AI and distributed com-
puting. What we would like to contribute to the more thorough understanding
and better design of large-scale MAS are some ideas, paradigms and tools from
another scientific discipline, namely, complex dynamical systems. Among many
mathematical models of discrete dynamical systems, we find one class of models
particularly simple yet useful for addressing many fundamental issues in distrib-
uted computing in general, and in large-scale multi-agent systems in particular.
This class are the classical cellular automata and some of their graph automata
extensions.

Cellular automata (CA) [10, 11, 13, 29, 30] are discrete dynamical systems
whose individual components are rather simple, yet that can exhibit highly
complex and unpredictable behavior due to these simple components’ mutual
interaction and synergy. A CA is made of a finite or infinite regular one-, two-
or higher-dimensional grid of nodes, where each node behaves like a finite state
machine with a fixed, usually small, number of distinct states. The nodes are in-
terconnected together and can affect each other: the future state of a given node
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depends on the current states of some of its near-by nodes. The “program” that
tells a node how to update its state, based on the states of these neighboring
nodes, is deterministic and fixed; it is called the local update rule. All nodes
of a classical CA update (i) synchronously in parallel with each other, and (ii)
according to the same update rule.

What are the important properties of the large-scale distributed computa-
tional and communication systems that can be adequately captured by the CA-
like models? From distributed computing and multi-agent system perspectives,
studying the global dynamics of a CA translates into an exploration of the
global behavior of a multi-agent system when (i) the individual agent behav-
iors are fixed, (ii) the pattern of multi-agent interaction (“network topology”) is
fixed, and (iii) both the individual agent behaviors and the interaction patterns
among the agents are homogeneous across the entire system. However, CA-like
models do not allow for an individual agent’s deliberation or adaptation of any
sort: the individual agents are strictly reactive, and are characterized by a fixed,
nonadaptive behavior. Instead, the focus of studying such models is on various
emergent dynamical properties at the level of agent ensembles.

Several modifications of the basic CA model along different dimensions can
be argued to provide useful abstractions for loosely coupled distributed comput-
ing systems, and, in particular, for the large-scale MAS made of simple reac-
tive, autonomously executing agents. We identify the following four as the most
important:

– heterogeneity of the cellular/graph automata in terms of (i) the individual
agent behaviors and (ii) the inter-agent interaction pattern, in contrast to
the strict homogeneity of the classical CA in both these respects;

– model of inter-agent communication insofar as whether the agents locally
compute synchronously or asynchronously, and whether they interact with
one another synchronously or asynchronously;

– adaptability of the individual agents, i.e., are these agents capable of dynam-
ically changing their behavior via, e.g., reinforcement learning, or are their
individual behaviors fixed once the state of their environment is specified;

– dynamics of the MAS network topology, i.e., whether the underlying cellular
space of a cellular or graph automaton is allowed to change with time.

Among these four dimensions along which classical CA can be generalized,
our recent and ongoing research has been focusing on the first two. We analyze
some computational complexity implications of extending the classical CA model
by allowing a limited degree of heterogeneity in individual agent behaviors, as
well as in the underlying communication network, in [19, 20, 21, 23, 25]. We study
some implications of the nature of inter-agent communication in [22, 24]. The
purpose of the present report is to summarize some of our main findings, and to
propose interpretations of those results in the context of modeling and analyzing
large-scale MAS.
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2 Preliminaries

Classical cellular automata are made of a finite or infinite collection of identical
finite state machines (FSMs) that are interconnected in some highly regular
fashion (e.g., [13, 29, 30]) . Each copy of this FSM, called a node, updates its
state based on its own current state, and the current states of the nodes in
some pre-specified neighborhood, according to its local update rule [10, 24, 30]. All
nodes update perfectly synchronously in parallel. The underlying communication
network topology is called cellular space of a CA [10, 24]. For instance, the most
studied cellular spaces in one dimension (1D) are finite rings and infinite lines
of nodes.

When it comes to the very large CA, perfect synchrony of the classical CA
parallel node updates is difficult to justify on either physical or distributed com-
puting grounds. Hence, researchers have also studied various models where this
perfect synchrony assumption is dropped [10, 11, 15]. For the complete formal
definitions of cellular automata, their cellular spaces, and their various variants
with respect to the model of inter-node interaction, we refer the reader to [24].

We next define two classes of discrete dynamical system models that result
once some heterogeneity is allowed in the parallel and sequential CA models.
More formal and elaborate definitions, as well as a detailed discussion of the mo-
tivation behind these models, can be found in our earlier work (e.g., [20, 21, 25]).
Sequential Dynamical Systems (SDSs) are proposed in [3, 4, 5] as an abstract
model for computer simulations. This model has been applied in the context of
modeling and simulation of large-scale socio-technical systems; an example is
the TRANSIMS project at the Los Alamos National Laboratory [6]. An SDS
S = (G, F, Π) consists of three components. G(V, E) is an undirected graph
with |V | = n nodes, where each node has a 1-bit state. F = (f1, f2, . . . , fn)
is the global map of S, with fi denoting a Boolean function associated with
node vi. Π is a permutation of (or a total order on) the nodes in V . If the per-
mutation Π is dropped out, and all the nodes update synchronously in parallel
(the way the nodes of classical, parallel CA update their states), we arrive at
the definition of Synchronous Dynamical Systems (SyDSs).

A configuration of a Boolean SDS S = (G, F, Π) or an SyDS S′ = (G, F )
is a vector (b1, b2, . . . , bn) ∈ {0, 1}n, where bi is the value of the state of node
vi, for 1 ≤ i ≤ n. A configuration C can also be thought of as a function
C : V → {0, 1}n. A single S(y)DS transition from one configuration to another is
obtained by updating the state of each node vi using the corresponding Boolean
function fi. In case of SDSs, these node updates are carried out in the order
specified by the permutation Π .

The global map computed by an S(y)DS S, denoted F = FS , specifies for
each configuration C the next configuration FS (C) = C′ reached by S after
carrying out the updates of all the node states, whether in parallel or in the order
given by Π . Thus, the map FS : {0, 1}n → {0, 1}n is a total function on the set
of global configurations. This function therefore defines the dynamics of S. We
say that S moves from a configuration C to a configuration FS(C) in a single
transition step. Assuming that each node update function fi is computable in
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time polynomial in the size of the description of S, each transition step will
also take polynomial time in the size of the S(y)DS’s description.

The configuration space (also called phase space) PS of an SDS or SyDS
S is a directed graph defined as follows. There is a vertex in PS for each
global configuration of S. There is a directed edge from a vertex representing
configuration C to that representing configuration C′ if FS(C) = C′. Since an
SDS or SyDS is deterministic, each vertex in its phase space has the out-degree
of 1.

Definition 1. A configuration C of an S(y)DS S is a fixed point (FP)
configuration if FS (C) = C, that is, if the transition from C is back to C
itself.

Definition 2. A configuration C of an S(y)DS is a cycle configuration (CC) if
there exists an integer t ≥ 2 such that (i) FS

t(C) = C; and (ii) FS
q(C) �= C,

for any integer q, 0 < q < t. Integer t is called the period or length of the
temporal cycle.

Definition 3. A configuration C of an S(y)DS is a transient configuration
(TC) if C is neither a fixed point nor a cycle configuration.

Thus, a fixed point is its own predecessor. A cycle configuration is reachable
from itself in two or more transitions, but not in a single transition. Both FPs
and CCs are recurrent configurations, whereas TCs are never revisited. Fixed
point, cycle and transient configurations for the classical, parallel CA are defined
identically to the definitions for SDSs and SyDSs. In case of arbitrary sequential
CA, however, the above definitions need to be modified since one first has to
specify what is meant by a single computational step. We refer the reader to our
prior work [22, 24] for more details.

3 Parallel vs. Sequential CA: Comparison and Contrast

In this section, we summarize some of the major implications of the interaction
or communication model in a multi-agent system that can be abstracted as
a collection of communicating finite state machines (CFSMs). The two main
models of interaction in CFSMs studied in the literature on cellular automata,
as well as Hopfield networks [14], are (i) the perfectly synchronous, parallel node
updates, and (ii) the sequential, “one-node-at-a-time” node updates. The latter
model of inter-node interaction in a CA or a Hopfield network is also often
referred to as asynchronous (e.g., [15]), although we argue in [24] that this use
of terminology is somewhat inaccurate.

It has been discovered in the contexts of discrete Hopfield networks (DHNs),
parallel and sequential CA that, for the node update rules that are required to
be linear threshold functions [8, 27], the node updates carried out synchronously
in parallel allow for a possibility of temporal cycles. In contrast, sequential node
updates do not allow temporal cycles, but only transient and fixed point con-
figurations. That is, in a finite CA or a DHN whose nodes update in parallel,
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and according to linear threshold rules, dynamical evolution starting from an
arbitrary initial configuration either converges to a temporal two-cycle or to a
fixed point. In contrast, configuration spaces of the corresponding sequential CA
and DHNs cannot have any CCs.

The standard proof of these two properties that contrast the paral-
lel/synchronous and the sequential/asynchronous models of interaction among
the nodes of a CA or a Hopfield network, when the number of nodes is finite,
can be found, e.g., in [10]. When the linear threshold update rules are also re-
quired to be monotone [22, 27], we have slightly extended the fundamental result
from [10] along two lines (as well as considerably simplified the original, energy
function based proof) in [24]. First, we have introduced an appropriate notion
of fairness applicable to any CFSM model with sequential/asynchronous inter-
action among the nodes. Under the fairness assumption, we have provided a
guarantee that, starting from an arbitrary initial configuration, a sequential CA
(or any other graph automaton or DHN) is guaranteed to finitely converge to one
of its proper fixed points [24]. Second, insofar as the finite convergence of parallel
or sequential CA computations on infinite cellular spaces is concerned, we have
characterized the circumstances under which such convergence is guaranteed on
any finite subconfiguration of such an infinite CA. We summarize this charac-
terization of the fundamental configuration space and convergence properties of
sequential and parallel CA in the Proposition below:

Proposition 1. Let a parallel CA or a sequential SCA be defined over a finite
or infinite 1D cellular space, with an arbitrary finite rule radius r ≥ 1. Let this
cellular automaton’s local update rule be a monotone linear threshold function.
Let’s also assume, in the sequential cases, that an appropriate fairness condition
holds.1 Then for any starting configuration C0 ∈ PS(A) whatsoever, and any
finite subconfiguration C ⊆ C0, there exists a time step t ≥ 0 such that

F t+2(C) = F t(C) (1)

where, in the case of fair SCA, the equation (1) can be replaced with

F t+1(C) = F t(C) (2)

Insofar as the practical implications of these results are concerned, assume a
distributed computational infrastructure can be approximated as a ring network
of communicating finite state machines. If (i) each node in this infrastructure
executes autonomously and (ii) changes its local state according to a monotone
linear threshold rule, and (iii) there is a finite bound on the ratios of computa-
tional speeds of different nodes, and (iv) there is a finite bound on the inter-node
communication delays, then this infrastructure is guaranteed to converge to a
stable or steady state after a finite amount of time. In contrast, if the nodes (i.e.,
agents) execute mostly autonomously but so that global synchronization is ex-
ternally imposed on the nodes insofar as when are the individual nodes allowed
1 See [24] for a concrete such fairness condition, that is proven to be sufficient for the

assertions about sequential CA in the Proposition to hold.
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to change their local states, then the global state of this system may fail to ever
stabilize and may, instead, wind up endlessly oscillating between two periodic
configurations.

4 On the Hardness of Counting Fixed Points of Boolean
S(y)DSs

Various configuration space properties of Boolean SDSs and SyDSs, as well as
the computational complexity of determining those properties, have been exten-
sively studied since the two models were introduced in the late 1990s. Barrett,
Mortveit and Reidys [3, 4, 17], as well as Laubenbacher and Pareigis [16], have in-
vestigated mathematical properties of sequential dynamical systems. Barrett et
al. have studied the computational complexity of several problems about config-
uration spaces of S(y)DSs, such as the Predecessor existence and Permu-

tation existence problems (see, e.g., [1]). Problems related to the existence of
fixed point configurations are studied in [2]. Our own subsequent work further
builds on the results in [2] by addressing the problems of exact and approximate
enumeration of various structures such as the fixed points, the predecessor
configurations, and the garden of Eden configurations [19, 20, 21, 23, 25]. Due to
space constraints, we will only summarize the main findings related to the com-
putational complexity of enumerating FP configurations for the two restricted
classes of S(y)DSs – those whose nodes update according to (i) monotone and
(ii) linear threshold Boolean-valued functions.

Monotone Boolean functions, formulae and circuits [27] have been extensively
studied in many areas of computer science, from machine learning to connection-
ist AI to VLSI design. Cellular and other graph automata with the local update
rules restricted to monotone Boolean functions have also been of a considerable
interest (e.g., [2, 19, 22]). The problem of counting the FPs in monotone Boolean
SDSs and SyDSs is originally addressed in [19]. In general, counting FPs of
monotone Boolean S(y)DSs either exactly or approximately is computationally
intractable. This intractability holds even for the graphs that are simultaneously
bipartite, planar, and very sparse on average [19]. An example of such graphs
are the star graphs, in which a single central node is connected to everyone else,
and each non-central node is linked only to the central node. We recall that
2CNF stands for Boolean formulae in Conjunctive Normal Form such that each
clause contains exactly two literals [9].

Lemma 1. Exactly enumerating the fixed points of a monotone Boolean SDS
or SyDS defined over a star graph, and such that the update rule of the central
node is given as a monotone 2CNF formula of size O(|V |), is #P-complete.

We now turn attention to S(y)DSs whose nodes update according to linear
threshold functions [2, 22, 24]. In particular, we assume that each node of such
an S(y)DS has its update rule given not as a Boolean formula, but as a tuple
of integers that encode the appropriate weights and the threshold; for more on
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some important complexity-theoretic implications of the exact encoding of the
nodes’ update rules, we refer the reader to our detailed discussion in [21].

Lemma 2. Exactly enumerating the FPs of an arbitrary S(y)DS all of whose
nodes use Boolean linear threshold update rules with small integer weights is
#P-complete.

Moreover, the computational hardness of enumerating FPs still holds even when
the following additional restrictions simultaneously hold: (i) the update rules are
also monotone (i.e., in particular, when no negative weights are allowed), (ii) the
underlying graph of an S(y)DS is uniformly sparse so that every node has only
O(1) neighbors, and (iii) there are only two different update rules, i.e., there are
only two possible different local behaviors among the nodes.

Proposition 2. Exactly enumerating the fixed point configurations of monotone
Boolean SDSs and SyDSs is #P-complete, even when all of the following restric-
tions simultaneously hold:

– the monotone update rules are linear threshold functions;
– at most two different positive integer weights are used by each local update

rule;
– each node has only O(1) neighbors in the underlying graph of this S(y)DS;
– only two different monotone linear threshold rules are used by the S(y)DS’s

nodes.

5 Concluding Remarks

We propose using cellular automata (CA) and their graph automata extensions
for modeling large-scale multi-agent systems made of reactive, autonomously
executing agents. We focus on two particular aspects of CA. One is the issue
of (a)synchrony of the node updates, as an abstraction of communication (or
other forms of inter-agent interaction) among robotic, software or other kinds of
autonomous agents. We analyze some important implications of (a)synchrony of
the inter-agent interactions in terms of the collective dynamics of an ensemble
made of simple reactive agents. In particular, we show that, if the agents update
their states according to monotone linear threshold rules, then the asynchronous
local updates have an advantage of guaranteeing that the global state of the
entire multi-agent system would eventually stabilize.

The second issue addressed are some implications for the global system be-
havior when some heterogeneity is introduced into (i) the communication net-
work topology and (ii) the individual agent behaviors. In that context, we show
that enumerating all stable global configurations of a MAS abstracted as an ap-
propriate graph automaton, and therefore all its possible dynamical evolutions,
is computationally intractable – even if the underlying network topology is uni-
formly sparse and each agent’s behavior rather simple. Thus, even a very modest
amount of heterogeneity in the individual agents’ behaviors, coupled with some
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non-uniformity in the inter-agent interaction pattern, can make the fundamental
properties of such multi-agent system’s global dynamics infeasible to predict.

In summary, classical cellular automata and their appropriately tuned ex-
tensions provide a simple, yet elegant and useful setting for formally reasoning
about collective dynamics of large-scale multi-agent systems made of reactive
autonomous agents.
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