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Abstract. The subject of this paper is the theory of fault distinguishable discrete 
event systems. Any such system is modelled by a live, bounded, and reversible 
place-transition net. The notions of D-partition of the set of places P of a given 
place-transition net N and net k-distinguishability are first introduced. The 
system k-distinguishability measure is obtained in a unique way from the place-
invariant matrix. For a large value of k, the system model is extended by using 
some set of additional places called test points. It is shown that the test point 
placement process will not change the above-assumed original net properties. 
Several examples are given. 

1   Introduction 

The use of Petri net models in diagnosis and reliable design of event-driven systems is 
a subject of interest to researchers since more than twenty years. In general, the most 
of the studies in this area focus attention on dynamical analysis concerning 
specification and implementation of some fault detection, fault diagnosis and/or fault 
recovery procedures, e.g. using partially stochastic Petri nets [1], or also using trace 
analysis [5], etc. The study of the system fault indistinguishability properties seems to 
be important because of the following two reasons. First, we have an additional 
possibility of describing the critical components of the considered system. Second, 
there exists a possibility of using some simple and at the same time exact tools for 
improving the system (self-) diagnosis capabilities in the early stages of its design 
[2,8,9,10,11,12].     

The subject of this paper is the theory of fault distinguishable discrete event 
systems. Any such system is modelled by a live, bounded, and reversible place-
transition net. The notions of D-partition of the set of places P of a given place-
transition net N and net k-distinguishability are first introduced. Next these two 
notions are extended to the set of all vertices, i.e. places and transitions of  N . So the 
problem of fault identification of the vertices of  N  is transformed  as a problem of 
fault identification of the places of a new net  N´ called a net simulator of  N . Any 
transition in  N´ is assumed to be fault-free. Then the corresponding net place 
invariants are computed. The system k-distinguishability measure is obtained in a 
unique way from the place-invariant matrix. For a large value of k, the system model 
is extended by using some set of additional places called test points. It is shown that 
the test point placement process will not change the above-assumed original net 
properties. Several examples are given. 
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2   Basic Notions 

In general any place-transition net  N  =df   (T,P,A,M0,K,W),  where   (T,P,A)   is a 
finite net containing sets of transitions , places, and arcs called also edges,   K :  P  → 
( INω  −  {0})   and   W :  A  → ℕ   are the corresponding  place capacity  and  edge 
multiplicity (called also weight) functions, respectively. The initial marking vector  
M0 : P  →   INω , where  ℕ   denotes the set of all natural numbers,   IN   =df   ℕ ∪  
{0},  IN ω  =df  IN   ∪  {ω},   and  ω   is an  infinite   number  such  that:    ω  +  k   =   
ω   and    k   <  ω  (for any k ∈ IN )  [6,7]. The forward marking class of  N, i.e.  [ M0 
>  =df   { M   ∈  IN ω P  /  ∃ τ  ∈  T∗ ( M0[τ >M ) }.  

In the next considerations we shall assume  N  is  a pure, live and bounded net. In the 
case of manufacturing systems the net reversibility property is also required. The net  P-
invariants are computed using   N ⋅ i  =  0, where  N  is the PN-connectivity matrix  of  
N. The support of any P-invariant  i  with respect to N (in short: wrt N)  is defined as 
follows:   supp(i)  =df  {p  ∈  P / i(p)  ≠  0 }  ⊆  P . Let I   be the set of all (positive) P-
invariants of  N   and  J    ⊆ I   is a  subset. The  P-invariant matrix of  N  wrt J   is 
introduced as follows:  J  : J   ×  P  → IN , where  J (i,p)  =df  i(p)  ∈ IN  . For 
convenience only, we shall assume below that the P-cover J   of  N  is a set of all positive 
and minimal P-invariants. Also we shall use the notion of the revised P-invariant matrix 
of N, defined as:  ρ : J   ×  P  → {0,1}, where  ρ(i,p)  =df  1  iff  i(p)  ≠  0  [2]. For 
simplicity, it is assumed below  N  have a P-cover. Otherwise, this method is also 
applicable. In the last case some additional test points is necessary to be introduced. 

3   Net k-Distinguishability and Test Points  

Let  [ M0 >α =df [ M0 > ∪ { Mα}, where M0  is the initial marking and Mα is a marking 
of  N  such that Mα ∉ [ M0 > . We shall say Mα is a faulty marking. Since M  i = M0  i 
(for any M ∈ [M0 > and i ∈ J  ) [6] then ∆M i = 0 , where ∆M =df  M − M0. The last 
property is satisfied for any P-invariant i ∈ J . Hence we can obtain J   ∆MT = 0. 
Therefore for M ∈ [M0 >α the above equation may be violated. Thus we have: J  ∆MT  
= a ∈ {0,1}⎜J   ⎜ (for any M ∈ [ M0 >α, obviously a = 0 iff M ∈ [M0 > ). Without losing 
any generality, below (a)s ≠ 0 are interpreted as (a)s = 1 ( s ∈ {1,..., ⎜J   ⎜} ). Hence, in 
accordance with [4], any (a)s =1 will correspond to some subset of places supp(is) ⊆ P 

having a (potentially) faulty behaviour. Let P ⊇ Ω(a) =df  ∩ supp(is) / (a)s =  1 ∩ ∩ 
supp(is)´ / (a)s = 0 , where supp(is)´ =df  P − supp(is) is the corresponding set 
complement operation. So, like  [3] the notion of D-partition can be introduced. 
Below are used some basic notions given in [8]. 

Definition 1  

By a D-partition of the set of places  P  of a given place-transition net  N  wrt  the P-
cover J   of  N , denoted by  Ω(N,J ) , or   Ω   if   N  and J    are understood ,  we shall 
mean the (multi) family  Ω  =df  { Ω(a) / a   ∈  {0,1}⎜J   ⎜}. 
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Proposition 1 [8] 
(a)  Ω(0)  =  ∅ , 
(b) ∀ a,b  ≠  0  ( a  ≠  b   ⇒   Ω(a)  ∩  Ω(b)  =  ∅ ) ,  and 

(c)  ∪ Ω(a) / a   ∈  {0,1}⎜J   ⎜  =   P.              □ 

The notion of a k-distinguishable place-transition net under a D-partition of the set of 
places  P  of  N  is given in the next definition. 

Definition 2 

The Petri net  N  is a  k-distinguishable net  under  Ω   iff 

(i)     ∃ Ω(a)  ∈ Ω  (  ⎜Ω(a) ⎜  =  k)   and        

(ii)   ∀ Ω(a)  ∈ Ω  (  ⎜Ω(a) ⎜ ≤  k). 

The support  of any D-partition is defined as follows:  supp(Ω)  =df { Ω(a) ∈  Ω / 
Ω(a)  ≠ ∅ }. Let  π(P)  be the partition generated by the set of subsets of places (i.e. 
classes), such that each class consists of places having identical columns in the revised 
P-invariant matrix  ρ of N. The following proposition is satisfied (a more formal proof 
is given in [11]). 

Proposition 2 [2] 

supp(Ω)  =  π(P).               □  

Definition 3 
Let N be a place-transition net. Then  N  is a  k-distinguishable net   iff  ∃ N´ ( N´ is a 
net simulator of  N   and   N´  is a  k-distinguishable net under  Ω´ ). 

Definition 4 

Let  
0kp ∈  P  be a given place of  N  such that the pre-set i 

0kp   =df  {t1}  and  the 

post-set  
0kp i =df  {t2}, where  t1  and  t2  are two different transitions of  N.  The 

additional place   'k0
p   ∈  it1  ∩   t2i   is said to be a test point associated with  

0kp  

iff the initial marking  0M̂  of the obtained net  N̂   is specified as follows: 0M̂ (p)  =df  

if  p  =  'k0
p   then   max{M(

0kp ) / M  ∈ [ M0 >}  −  M0(
0kp )  else  M0(p)  fi  (for any  

p  ∈  P̂   =df  P  ∪  { 'k0
p } ). 

It can be observed that in some cases the considered Petri net may be maximally 
indistinguishable, e.g. a net which is a state-machine net and a marked graph at the 
same time. Then the corresponding P-cover will contain only one P-invariant having 
all components equal to one.  

Proposition 3 
Let  N  be a directed elementary cycle having  m  places (m  >  1). Then  N  becomes  
(2m  −  r)-distinguishable if r additional test points are placed  ( 1  ≤  r  ≤  2m  −  1). 
                                                                                                                   {Df.3, Prop.2}□ 



Fault Distinguishability of Discrete Event Systems 171 

A generalisation of Definition 3 for non-ordinary place-transition nets (i.e. nets 
having some edges a  ∈  A   with weights  w(a)  ≠  1) is omitted here. Any such 
generalisation of the last definition for place-transition nets, which are not ordinary, 
would require an isomorphism between the corresponding reachability graphs  RG(N) 

and  RG( N̂ ) (see Example 1 and Theorem 2 given below). Let  Pa  =df  Ω(a)   (for any  
a   ∈  {0,1}⎜J   ⎜). Obviously  Pa ∈  supp(Ω)  if   Pa  ≠  ∅.  

Definition 5 
Let  Pa  ≠  ∅,  Ta  =df  iPa  ∪  Pai  and   Aa  =df  A   ∩   (( Ta  ×  Pa )  ∪  ( Pa  ×  Ta)) .  
The corresponding subnet Na  =df  (Ta , Pa, Aa)  of  N  is called a graphical 
representation of  Pa . We shall say   Na  is a marked graph component  (or MG-
component)   iff   ∀p  ∈  Pa  ( ⎜ip ⎜   =    ⎜pi⎜   =   1). The subset of places   Pa  is 
said to be a MG-component generator. 

Theorem 1[10] 

Assume that  N  a live and bounded place-transition net having   ⎜P ⎜   ≥   2  and  

supp(Ω)  =df  {
1aP ,

2
aP , ... , 

n
aP },  where  1  ≤  n  <  ⎜P ⎜.  If any  Pa  ∈ supp(Ω)  is a 

MG-component generator then  N can be transformed into a 1-distinguishable net by 
using (⎜P ⎜ −  n)  test points.             □ 

It is obvious that any P-invariant in  N  can be extended  as a P-invariant in  N̂  by 
assuming  0’s relating to the corresponding test point components, i.e. the following 
proposition is satisfied. 

Proposition 4 

If i is a P-invariant in  N  then  î  =df  (i,0) is a P-invariant in N̂ , where the vector size 

of  0  is related to the number of used test points.           □ 

Proposition 5 

If  
0kp ´ is a test point associated with 

0kp  ∈ P in N then 
0kî is a P-invariant in N̂ , 

where supp(
0kî )  =  {

0kp , k0
p ´ }. 

Proof 

Assume that 'k0
p  is a test point associated with 

0kp ∈ P in N. According to Definition 4 

'k0
p   (

0kp )  is at the same time an input (output) place to  t1  and an output (input) place 

to  t2. By definition, a vector  x  is a P-invariant iff N̂ ⋅ x =  0. Hence iff  t̂ ⋅ x =  0 (for 

any row-vector  t̂  of  N̂ ). And so, there exist exactly two equations related to t1 (t2) of 

the following form:  ... − 'x
k0p  ( + 'x

k0p ) ... + 
k0px  ( − 

k0px ) ... =  0.  The P-invariant  

0kî  is obtained by assuming  
k0px =   'x

k0p =  1  and   xi  =  0  (for any  xi  ≠  
k0px , 

'x
k0p ).               □ 
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Proposition 6 

If J   is a P-cover of   N  then  ˆ   =df   J   ∪  {
0kî }  is a P-cover of  N̂ .          {Prop.5} □ 

In a natural manner, the last two propositions can be extended for non-ordinary place-
transition nets. This is illustrated in the next example. 

Example 1 

Consider the hypothetical fragment shown in Figure 1(a) below. Let  p´  be a test point 

associated with   p  ∈  P  in  N  and  î  be a P-invariant in N̂  such that supp( î )  =df  

{p, p´}. Using N̂ ⋅ î  =  0  (assuming  î (q)  =df  0, for q  ∈  P − supp( î )) the following 

two equations can be obtained: 
 

 

                            (a)                                                        (b) 

 

                 (c)  RG(N)                                          (d)  RG( N̂ ) 

Fig. 1. A hypothetical fragment of non-ordinary place-transition  net (a), an example test point 

placement (b), and the corresponding reachability graphs  RG(N)  and  RG( N̂ ) (c and d, 
respectively) 

a⋅ î (p) 
 

− d⋅ î ( p´) 
 

= 
 

0 

− b⋅ î (p) 
 

+ c⋅ î (p´) 
 

= 
 

0 

Since the edge multiplicities  a  and  b  of  N  are a priori given then  d  and  c  can 

be defined in a unique way by assuming î (p)  =  î ( p´)  =  1. Hence:  d  =df  a  and  c  

=df  b. The obtained  P-invariant  î  is  minimal and positive. 

An example test point placement is shown in Figure 1(b) where an example live, 
bounded, and reversible place-transition net is presented. Assume that  T  =  {t1,t2}  is 
a fault-free. According to Proposition 2 the considered net  N  is   2-distinguishable 
wrt the P-invariant  i  =  (1,1)  having two identical columns. Let  p3  =df   p2´ be a test 

point such that 0M̂ (p3)  =df  max{M(p2) / M  ∈ [ M0 >}  −  M0(p2)  =  3  −  0  =  3. 

J
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According to Proposition 4  î  =df  (1,1,0)  is a P-invariant in  N̂ . Using N̂ ⋅ x =  0  

the following two equations can be obtained: 

− 2⋅x1 + 2⋅x2 − d⋅x3 = 0 
    x1 −    x2 + c⋅x3 = 0 

Let x1 = 0, x2 =  x3  =  1. Then  d  =  2  and  c  =  1. In accordance with Proposition 

6  2î  =df  (0,1,1)  is another P-invariant where supp( 2î )  =  {p2, p3}. In fact, we have  

M̂ (p2)  +  M̂ (p3)  =  3 (for any M̂ ∈ [ M̂ 0 >  in  N̂ ). The obtained  P-invariant 

matrix   ˆ    =  ⎥
⎦

⎤
⎢
⎣

⎡
110

011
has all columns different and  N̂  is 1-distinguishable. 

The corresponding reachability graphs  RG(N)  and  RG( N̂ )  are shown in the above 
Figure 1(c) and (d), respectively. It can be observed that any  M  of  N  is a prefix of 

the corresponding M̂  of  N̂  and the last two reachability graphs are isomorphic. 
Hence, the original boundedness, liveness, and reversibility properties of  N  are 

preserved in  N̂ .               □ 

Example 2 

 

                                    (a)  N                                        (b) N̂  

Fig. 2. A system consisting of one write- and three read-authorised processes (a) and a net 
distinguishability improving using test points p8,p9 and p10 (b) 

Consider  N of Figure 2(a) describing the behaviour of a system consisting of one 
write- and three read-authorised processes [4,6,7]. The following P-cover can be 
obtained:  J   =  {i1,i2,i3} , where: i1  =  (1,1,1,0,0,0,0), i2  =  (0,0,0,1,1,1,0)   and    i3  
=  (1,4,1,0,1,0,1).. According to Proposition 2,  N  is  3-distinguishable. The obtained 
test point improving is shown in Figure 2(b).  The net N becomes 2-distinguishable 
for J   =  {i2,i3,i4}  or also J   =  {i1,i2,i4}, where i4  =  (0,3,0,0,1,0,1). In the last case 
the number of test points can be reduced to 2 (e.g. by removing p9).   {Df.2, Prop.2, T1} □ 

Theorem 2 

Let  N  be live, bounded, and reversible place-transition net and  'k0
p    be a test point 

associated with  
0kp .Then  N̂  is also live, bounded, and reversible.  

J
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Proof 

Without losing any generality, assume that  J   is a P-cover of   N.  Then  ˆ   =df   J   ∪  

{
0kî }  is a P-cover of  N̂ .Otherwise,  a P-cover of  N  can be obtained by assuming 

additional test points. According to Definition 4  0M̂  is bounded. Hence  N̂   is 

bounded. 

Let  M   =df   max{M(
0kp ) / M  ∈ [ M0 >}  and  T(M)  =df  {t  ∈  T / t  is  M-

enabled in  N}. Assume that   t1  ∈  T(M). Hence   t1  ∈  T( M̂ )  iff   M̂ (
0kp )  +  a   ≤  

M  and  M̂ ( 'k0
p  )  ≥  a  (see the above Figure 1(a) assuming  p  =df  

0kp  and  p´ =df  

'k0
p  ). However, in accordance with Definition 4   M̂ (

0kp )  =   M(
0kp )    (for any  

M ∈    [ M0 > ). Hence  M̂ (
0kp )  +  a   =   M(

0kp )  +  a  ≤  M . Moreover,  
0kî is a 

Boolean vector. Then  M̂ (
0kp )  +  M̂ ( 'k0

p )  =  M  (for any M̂ ∈ [ M̂ 0 >  in  N̂ ). 

Hence:  a  +  M̂ (
0kp )  +  M̂ ( 'k0

p )  =  M  +  a.  Since  a   +  M̂ (
0kp )  ≤  M  then  

M  +  M̂ ( 'k0
p )  ≥  M  +  a. Hence  M̂ ( 'k0

p )  ≥  a  and  t1  ∈  T( M̂ ). 

Assume now that  t2  ∈  T(M). Hence  t2  ∈  T( M̂ )  iff  M̂ (
0kp )  ≥  b  and  

M̂ ( 'k0
p )  +  b  ≤  M .Since  M̂ (

0kp )   =   M(
0kp )  the first condition  M̂ (

0kp )  ≥  b  

is satisfied. Hence, using  M̂ (
0kp )  +  M̂ ( 'k0

p )  =  M  we can obtain:  b  +  

M̂ ( 'k0
p )  ≤  M .  

Hence:  t  ∈  T(M)  iff  t  ∈  T( M̂ ) (for t  ∈  {t1,t2} ).And so, the liveness and 

reversibility properties of  N  are preserved in  N̂ .                              {Df.4, Prop.5, Prop.6} □                                                       

Test points can be placed independently each other. Hence Theorem 2 can be 
generalised for any finite subset of such points.  

5   Conclusions 

The above-considered approach gives a possibility of fault isolation in concurrent 
systems. This process is realised by using the Petri net model of the considered 
system. The degree of accuracy to which faults can be located, i.e. the diagnostic 
resolution is given in unique way by the obtained k-distinguishability measure. The 
complexity of the proposed method depends on the efficiency of the existing 
algorithms for computation of the P-cover, i.e. the set of P-invariants covering N. The 
choice of diagnosis strategies, i.e. combinational or also sequential is depending on 
the used time requirements for testing. Moreover, an additional cost-minimisation can 
be obtained by assuming the considered test point set as a “hardcore”. This approach 

J
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can be extended for higher level Petri nets, e.g. such as coloured nets or also to design 
self-diagnosable circuit realisations of Boolean interpreted Petri nets.  
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