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Abstract. This paper revisits the intersection problems of two canal surfaces 
with a new quadric decomposition we proposed for canal surfaces. It reduces 
computing intersection curves of two canal surfaces to computing intersection 
curves of two revolute quadrics. Furthermore, Bounding Cylinder Clipping is 
proposed for efficient intersection determination. Compared to the existing 
method, our method can (i) run more robustly and efficiently; (ii) represent the 
final intersection curves as a piecewise closed-form RQIC; and (iii) give a sim-
ple shape analysis. 

1   Introduction 

Surface intersection is a fundamental issue in CAGD and geometric modeling. Ro-
bustness, accuracy and efficiency are used to evaluate surface intersection algorithms. 
Several important algorithms that were developed over few decades have been sum-
marized in [16]. To design accurate, robust and efficient algorithms of computing 
intersection curves of two surfaces, even two special surfaces, e.g. quadrics, cyclides 
and canal surfaces still remains an open challenge. Although methods for general 
surface intersections can be applied to special surface intersection problems, they are 
inefficient. Considering that special surfaces usually have good geometric properties, 
it desirable to develop more efficient intersection algorithms for them. Therefore 
many papers have addressed specific intersection problems for CSG primitives, e.g. 
plane, sphere, cylinder, cone, quadric and tori [1, 2, 3, 5, 13, 14, 17, 18, 19] and some 
potential geometric primitives e.g. cyclides, surfaces of revolution, ruled surfaces and 
ringed surfaces [4, 6, 7, 8, 9, 10, 11, 12, 17].  
    Canal surfaces are one of important geometric primitives in solid modeling, VR, 
CG, CAD and CAM. Examples of canal surfaces include natural quadrics, revolute 
quadrics, tori, Dupin cyclides, surfaces of revolution and pipe surfaces. Canal surfaces 
are very useful in representing long thin objects, for instance, pipes, poles, 3D fonts, 
brass instruments, internal body organs, and a variety of filleted surfaces. Therefore, it 
is essential to devise robust and efficient intersection algorithms for canal surfaces.  
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2   Related Works 

Subdivision is an important approach to solve surface intersection problems. Heo et al 
use circle decomposition to solve intersection problem of two canal surfaces in [6], 
which subdivides a canal surface into a dense set of characteristic circles, and reduces 
intersection problem of two canal surfaces to a zero-set searching problem of a bi-
variant function f(u,v) = 0, that is much simpler than the original intersection problem. 
However, (i) the numerical behavior of zero-set searching of f(u,v) = 0 is both time 
and memory consuming at high precision; (ii) it outputs the intersection curves with a 
set of discrete sampling points, that is not easy to concatenate; and (iii) no shape 
analysis is performed on the intersection curves, e.g. loops and singularity. 
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Fig. 1. Two quadric decomposition schemes of same canal surface: (a) Cone-sphere decompo-
sition; (b) RQ-sphere decomposition 

We revisit this problem by proposing more suitable subdivision scheme for canal 
surfaces. Except for circle decomposition, there are three other subdivision schemes 
for canal surfaces, cyclide [20], cone-sphere [15] and RQ-sphere [11]. The first one 
approximates a canal surface with a set of G1 truncated cyclides [20]. The second one 
approximates a canal surface with a series of sampling spheres and associated tangen-
tial truncated cones (see Fig. 1(a)). However, the density of cone-spheres increases for 
good approximation quality at high precision and easily causes self-intersection of 
two neighboring truncated cones when the spine curve has high curvature. The last 
one approximates canal surfaces with a series of sampling spheres and associated 
tangential revolute quadrics (see Fig. 1(b)), instead of truncated cones. Apparently, 
not only less RQ-sphere pairs are required than cone-sphere scheme for same ap-
proximation quality, but the self-intersection problem can be avoided as well. In fact, 
cone-sphere is a special case of RQ-sphere, cyclide decomposition reduces ca-
nal/canal intersection computing to cyclide/cyclide intersection, that has to solve 
order 8 polynomial equation numerically. Both cone-sphere and RQ-sphere can re-
duce computing canal/canal intersection curves to computing RQ/RQ intersection 
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curves, that has closed-form solutions [1, 2, 5, 16, 17, 19, 20]. However, cone-sphere 
may yield incorrect intersection curve if it has self-intersection. So we decided to 
employ RQ-sphere decomposition to solve canal/canal intersection problem. In this 
paper, we propose a new conception, canal valid intersection intervals (CVII), a good 
hierarchical data structure, cylindrical bounding volume (BCT), and a new method, 
bounding cylinder clipping for efficient intersection determination in Section 3. The 
rough idea of canal/canal intersection algorithm is described in Section 4. Experimen-
tal examples given in Section 5 show the robustness and efficiency of our method. 
Conclusions and future work are presented in Section 6. 

3   Bounding Cylinder for Canal Surfaces 

Compared to traditional bounding volumes, bounding box and bounding sphere, 
bounding cylinder BC is chosen for canal/canal intersections because (i) it can en-
close canal surfaces more closely; (ii) it can be constructed rather easily; (iii) more 
important, intersections of two BCs can be computed geometrically [4]. 

3.1   Hierarchical Construction of Bounding Cylinder Tree  

It is uneasy to construct a smallest BC for canal surfaces theoretically. In practice, it is 
acceptable to construct a near BC for canal surfaces, as long as it can reasonably close 
to the smallest BC. 

 

Fig. 2. A binary bounding cylinder tree BCT for a canal surface 

Considering that canal surfaces have good geometric properties, they should have 
simpler but more efficient BC construction methods. We use a hierarchical BC con-
struction method for canal surfaces. In our RQ-sphere decomposition, a canal surface 
is subdivided as a set of n G1 RQ-spheres. It is easy to construct a bounding cylinder 
BC for each RQ. For two neighboring RQ0 and RQ1, we can have two bounding cylin-
ders BC0 and BC1 in a straightforward way, and as shown in Fig. 2, a bigger bounding 
cylinder BC2 can be constructed geometrically to enclose BC1 and BC2. In the same 
manner, a binary tree of bounding cylinders HBCT can be organized hierarchically. 

3.2   Canal Valid Intersection Intervals (CVII) 

Suppose that two canal surfaces are subdivided into n and m RQ-sphere pairs respec-
tively. A brute force method for canal/canal intersection would require invoking n*m 
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RQ/RQ intersection computations. However, it becomes quite inefficient when two 
canal surfaces only intersect each other within a small overlapping region (see Fig. 
3(1)), in this case, only few RQ/RQ pairs of the two canal surfaces within their over-
lapping regions need to be examined. Therefore, by filtering out those RQ/RQ pairs 
outside the overlapping regions, the expected performance of the algorithms should 
improve. To describe it conceptually, canal valid intersection intervals CVII is de-
fined as the interval pairs (u-interval, v-interval) corresponding to the overlapping 
regions of the two canal surfaces, hereafter denoted by (CVIIu, CVIIv). The idea, 
bounding cylinders clipping, hereafter denoted by BC clipping, is also proposed to 
detect (CVIIu, CVIIv), or to find all those potential intersecting RQ/RQ candidates for 
more efficient intersection determination. 

 

VIIu 

VIIv 

 

 

VII11

VII12

VII22

VII21 

BC12

BC11

BC22 

BC21

R2 

R1 

 
 (1) (2) 

Fig. 3. The valid intersection intervals of two canal surfaces: (1) Definition of VII of two over-
lapping canal surfaces; (2) Two consecutive rounds of BC clipping 

3.3   Clipping of Two Bounding Cylinders  

It is difficult to determine the exact interval (CVIIu, CVIIv) of two canal surfaces R1 
and R2 directly by solving complicated equations numerically. Therefore, it is accept-
able to estimate (CVIIu, CVIIv) of R1 and R2 only approximately but more efficiently.  

Similar to computing RVII of two surfaces of revolution [9, 10], we propose BC 
clipping to estimate (CVIIu, CVIIv) of two canal surfaces approximately by computing 
the overlapping regions of their respective bounding cylinders BC11 and BC12, then 
refining the regions recursively as shown in the right part of Fig. 3(b). The first round 
of BC clipping for BC11 and BC12 yields the initial intersection interval (CVII11, 
CVII12). It is a very rough approximation to the real CVII, within which there are still 
some RQ-sphere pairs of R1 and R2 that have no intersection, since BC11 and BC12 
enclose R1 and R2 rather loosely. Furthermore, two smaller bounding cylinders BC21 
and BC22 are constructed respectively for those RQ-sphere pairs within CVII11, and 
CVII12, then, the second round BC clipping is taken on BC21 and BC22 as shown in 
the left part of Fig. 3 (b) (amplified version of second round of 2nd BC clipping), giv-
ing a smaller intersection interval pair (CVII21, CVII22). Usually, very few rounds of 
such BC clipping output very close to the real (CVIIu, CVIIv) of two canal surfaces. 



346 J. Jia, A. Joneja, and K. Tang 

4   Computing Intersections of Two Canal Surfaces  

The intersection curve of two canal surfaces, hereafter denoted CSIC, is computed in 
three steps: (i) computing CVII (CVIIu, CVIIv) of the two canal surfaces; (ii) comput-
ing all the intersection curve segments of all potential RQ/RQ pairs, RQIC, within 
(CVIIu, CVIIv) by using Goldman’s method [5]; (iii) concatenating all the individual 
RQIC into CSIC as a set of independent components (open branches or closed loops). 

4.1   Computing Intersection Curves of Two Canal Surfaces 

The procedure, Find_CVII (BCT1, BCT2), is to compute (CVII11, CVII12) of two canal 
surfaces. There are three possible cases which should be treated differently: 

procedure FindCVII (BCT1, BCT2) 
begin 

If both BCT1 and BCT2 are only two bounding cylin-
ders (0-level BCT) [Case 1] 

compute their CVII (CVII11, CVII12); 
return (CVII11, CVII12);  

If one of them is a bounding cylinder [Case 2] 
assume it be BC1; 

If both of them are BCT [Case 3]  
assume the lower one of them be BC1; 

if BC1 and the root BC of BCT2 do not overlap 
return an empty CVII;  

else   
[check if BC1 and two children BCT21 and BCT22 
overlap recursively] 
Find_CVII(BC1, BCT21);  
Find_CVII(BC1, BCT21);  
add all the individual sub-CVIIs to CVII; 

end if; 
return (CVIIu, CVIIv); 

end. 

The main idea of our computing intersection curves of two canal surfaces CSIC based 
on RQ-sphere decomposition can be sketched as follow:  

program ComputeCSIC (BCT1, BCT2) 
begin 

(CVIIu CVIIv) = FindCVII (BCT1, BCT2);  
assume CVIIu be shorter one;  
for each RQui (BCui) within CVIIv  

construct BCTvj for all the RQs within CVIIv; 
CVIIij = Find_CVII (BCui, BCTvj); 
for each RQvj within CVIIij  

if RQui and RQvi overlap  
RQICij = ComputeRQIC (RQui, RQvi);  
if RQICij is a closed loop itself 

output it as a new loop; 
else 
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Check coincidence of RQICij and prior 
RQICi-1,j along their common bounding 
circle Ci-1; 
Check coincidence of RQICij and prior 
RQICi,j-1 along their common bounding 
circle Cj-1; 
if no coincidence between them 

output it as a new branch; 
else 

concatenate RQICi,j with RQICi-1,j and 
RQICi,j-1 respectively;  
if a closed loop is formed,  

output it as a new closed loop; 
end if; 

end if; 
end if; 

end. 

4.2   Computing Self-intersections of a Single Canal Surface 

Similarly, self-intersection of a single canal surface R can be solved. Assume that the 
bounding cylinder tree of R is BCT0, R is decomposed n RQ-sphere pairs RQSi (i = 1, 
2, …, n), BCT0 has two sub-trees BCTLeft (enclosing the first half RQSi, i = 1, 2, …, 
[n/2]) and BCTRight (enclosing the other half RQSi, i = [n/2], [n/2]+1, …,n). If BCTLeft 
and BCTRight overlap, then, R may intersect itself and its self-intersection curves can 
be computed by calling CSIC(BCTLeft, BCTRight). Otherwise, conquer each half (sub-
tree) recursively. This idea is sketched roughly as follows.  

procedure Canal_Self_Intersection (BCT0) 
  begin 
    if BCTleft and BCTright, two children of BCT0 overlap 

ComputingCSIC(BCTLeft, BCTRight); 
else 

        Canal_Self_Intersection(BCTLeft); 
Canal_Self_Intersection(BCTRight); 

Output all the open branches or loops; 
end. 

5   Illustrative Examples  

The proposed algorithms have been implemented with C++ and OpenGL under Win-
dows XP and PC (Pentium III, 512M RAM, 512M HZ). Two examples are given in 
Fig. 4, one is for computing general CSIC, the other is for self-intersection. Their 
spine curves and radii are represented with cubic Beizer form. Both of them are com-
puted within one second. 

Comparing determination method of global self-intersection for a single pipe sur-
face in [16], it is simpler algorithmically, easier for implementation and also more 
robust, since both fundamental intersection computations of BC/BC and RQ/RQ have 
closed form solutions. 
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Fig. 4.  Intersection Curves on canal surfaces: (1) The intersection curves of two canal surfaces; 
(2) Self-intersection curves of a single canal surface 

6   Conclusion 

Robustness is one of most important factors for surface intersection algorithms. We 
have shown and analyzed the instability of the method [6] in our previous work [9]. 
Our RQ-sphere decomposition based method reduces computing intersections of two 
canals to computing intersections of two RQs, which can be solved by Goldman’s 
method [5] robustly and efficiently. Further, BC clipping makes computing the CSIC 
relatively efficient. In fact, the efficiency, accuracy and robustness of two revolute 
quadrics RQ/RQ intersection can be further enhanced by more recent algorithms [1, 2, 
18, 19]. Also, RQ-sphere decomposition facilitates tracing the intersection curves 
because it is easy to recognize the closed loops and singular points on the intersection 
curves. Therefore, both theoretical analysis and practical implementation show the 
robustness and efficiency of our proposed method. 

The RQ-sphere decomposition of canal surfaces also can be extended to solving 
other geometric problems of canal surfaces, e.g. collision detection, isophotes, silhou-
ette, bisector, distance computing and so on. 
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