Techniques for Computing
Viewpoint Entropy of a 3D Scene

Pascual Castell6!, Mateu Sbert?, Miguel Chover!, and Miquel Feixas?

! Departamento de Lenguajes y sistemas Informdticos, Universitat Jaime I,
Campus Riu Sec, 12080 Castellén de la Plana, Spain
{castellp, chover}@lsi.uji.es
http://graficos.uji.es
2 Institut d’Informatica i Aplicacions, Universitat de Girona,
Campus Montilivi, 17071 Girona, Spain
{Mateu.Sbert, Miquel.Feixas}@ima.udg.es

Abstract. Viewpoint entropy is a metric that allows measuring the visibility
goodness of a scene from a camera position. In this work, we analyze different
software and hardware assisted techniques to compute the viewpoint entropy.
The main objective of this study is to identify which of these techniques can be
used in real time for 3D scenes of high complexity. Our results show that inter-
activity can be obtained with occlusion query technique and that for real time
we need a hybrid software and hardware technique.

1 Introduction

Recently, several methods have been developed to compute the goodness of a view-
point. These methods have in common the use of the viewpoint complexity concept
[2, 3,15, 7, 8,9, 13]. The notion of viewpoint complexity is used in several areas of
Computer Graphics such as scene understanding and virtual world exploration, radi-
osity and global illumination, image-based modelling and rendering, etc.

In scene understanding and virtual world exploration, viewpoint entropy is used to
automatically calculate suitable positions and trajectories for a camera exploring a
virtual world [2, 3, 6, 1, 12].

In Monte Carlo radiosity and global illumination, viewpoint complexity is used to
improve the scene subdivision in polygons and the adaptive ray casting [4, 5, 14].

In image-based modelling, viewpoint entropy is used to compute a minimum opti-
mized set of camera positions.

Among the metrics that have been introduced for the complexity calculation, the
viewpoint entropy has been the most fruitful metric up to date [10]. Recently, it has
been embedded to the field of volume visualization to compute the best n-views of a
volumetric object. However, the viewpoint entropy computation can be very expensive,
especially when a very complex scene and multiple viewpoints have to be evaluated.

In this paper, we will assess different alternatives for its calculation on several geo-
metric models with increasing complexity. For our calculation, we will make use of
the facilities of modern hardware cards such as OpenGL histogram and Occlusion
query as well as the new symmetric bus PCI Express [16, 17].

V.N. Alexandrov et al. (Eds.): ICCS 2006, Part II, LNCS 3992, pp. 263 2006.
© Springer-Verlag Berlin Heidelberg 2006

264 P. Castell6 et al.

2 Viewpoint Entropy

The viewpoint entropy, based on the Shannon entropy definition, was introduced in
[7, 9] and is a measure of the information provided by a point of view.

The Shannon entropy of discrete random variable X, with values in the set {a;, a,,
..., 4}, 1s defined as

H(X)==}_ p;logp;. (1)
=1
where p;=Pr[X=a,], the logarithms are taken in base 2 and 0 log 0 = O for continuity.
As -log p; represents the information associated with the result ag;, the entropy gives
the average information (or the uncertainty) of a random variable. The unit of infor-
mation is called a bit.
To define viewpoint entropy we use as probability distribution the relative area of
the projected faces (polygons) over a sphere of directions centered in the viewpoint.
Thus, given a scene S and a viewpoint p, the entropy of p is defined as

Ny

I(S,p)=— ilo ﬁ, 2
(S.p) g; Al 2)
where N;is the number of polygons of the scene, A; is an approximation on a plane of
the projected area of polygon i over the sphere, A, represents the projected area of
background in open scenes, and A, is the total area of the sphere. In a closed scene, the
whole sphere is covered by the projected polygons, and thus A,=0.

The maximum entropy is obtained when a certain point can see all the polygons
with the same relative area. So, in an open scene, the maximum entropy is log (N, + 1)
and, in a closed scene it is equal to log N. Among all the possible viewpoints, the best
is the one that has maximum entropy, i.e. maximum information captured.

3 Techniques for Computing the Entropy

In order to compute the viewpoint entropy, we need the number of pixels covered for
each visible triangle from a particular camera position. This number will give us the
projected area. Next we analyze several techniques that allow us to compute those areas.

3.1 OpenGL Histogram

The OpenGL histogram was first used to compute the entropy in [11]. The OpenGL
histogram let us analyze the colour information of an image. Basically, it counts the
appearances of a colour value of a particular component. However, we can also use it
to calculate the area of triangles that are visible from a viewpoint, without reading the
buffer. Since version 1.2, OpenGL includes an extension called glHistogram. This
extension is part of the image processing utilities. The OpenGL histogram is hard-
ware-accelerated, although there are just a few graphics cards that actually support it
(for instance, 3DLabs WildCat) and often is implemented in software.

In order to obtain the area of each visible triangle, we need to assign a different
colour to each triangle. An important limitation is that histograms have a fixed size,

Techniques for Computing Viewpoint Entropy of a 3D Scene 265

normally of 256 different values. This is the most common value in many graphics
cards. The glGetHistogram command returns a table that counts each colour value
separated into channels. If we use the 4 RGBA colour channels, a 256 item table of 4
integer values will be returned, where each integer is the number of pixels this com-
ponent has. Thus, if we want to detect a triangle, this should be codified using one
single channel. This gives us a total of 1020 different values. That is to say, for chan-
nel R (1,0,0,0) up to (255,0,0,0), for channel G (0,1,0,0) up to (0,255,0,0), for channel
B((0,0,1,0) up to (0,0,255,0) and finally for channel A (0,0,0,1) up to (0,0,0,255). The
value (0,0,0,0) is reserved for the background.

Obviously the main drawback of this technique is that we need several rendering
passes for objects with more than 1020 triangles. In each pass, we will obtain the area
of 1020 different triangles. Using histograms with a higher number of items and mak-
ing a rendering off-screen, will increase the number of colours and therefore making
necessary less rendering passes. However, this possibility is outside the OpenGL
specification and is hardware dependent. It was not possible for us to use a larger size
histogram in the several graphics cards tested.

3.2 Hybrid Software and Hardware Histogram

The OpenGL histogram allows us to obtain the area of each visible triangle. However,
as we said in the previous section, several rendering passes are needed for objects
with more than 1020 triangles. Currently, new symmetric buses have appeared such
as the PCI Express. In this new bus the buffer read operation is not as expensive as
before. Therefore, it is possible to obtain a histogram avoiding making several render-
ing passes. The way to get it is very simple. A different colour is assigned to each
triangle and the whole object is sent for rendering. Next, a buffer read operation is
done, and we analyze this buffer pixel by pixel retrieving data about its colour. Using
a RGBA colour codification with a byte value for each channel, up to 256*256*
256%*256 triangles can be calculated with only one single rendering pass. In Figure 1
we show an example of the entropy calculation using this method.

(a) Iy =2.668125 (b) I, =2.609323

(c) I, =2.557857

(d) I; =2.387822 (e) I, =1.964738 () Is = 1.224885

Fig. 1. Entropies from 6 different viewpoints for the Dragon model obtained with the Hybrid
Software and Hardware Histogram. The maximal entropy viewpoint corresponds to (a).

266 P. Castell6 et al.

3.3 Occlusion Query

This OpenGL extension is normally used to identify which scene objects are hidden
by others, and therefore we shouldn’t send them to render. In fact, what we do is just
to render the bounding box of an object and, if it is not visible, the object is not sent
for rendering. However, it can also be used to compute the area of the triangles that
are visible from a particular camera position.

The OpenGL ARB_occlusion_query extension returns the number of visible pix-
els. In order to compute the area of each visible triangle from an object with this tech-
nique we will proceed as follows. First, the whole object is sent for rendering and the
depth buffer is initialized. Second, we independently send each triangle for rendering.
With this procedure it is necessary to make n + 1 rendering passes, n being the num-
ber of triangles in an object. We must mention that only in the first pass the whole
geometry is rendered. In the following passes, one single triangle is rendered. How-
ever, a high number of renderings can significantly penalize this technique. In order to
improve the results, this extension can be used asynchronously in contrast to its
predecessor HP_occlusion_query. That is to say, it does not use a “stop-and-wait”
execution model for multiple queries. This allows us to issue many occlusion queries
before asking for the result of any one. But we must be careful with this feature
because, as we mentioned above, this extension was not designed to deal with thou-
sands of multiple queries. Thus, we can have some limitations depending on the
graphics card.

4 Comparison

We calculated the viewpoint entropy from 6 camera positions, regularly distributed
over a sphere that covers the object, using the different techniques we described
above. In order to compare them, we measured the time needed to compute the en-
tropy from those cameras. As test models, we used several models of different com-
plexities (see Figure 2). All models were rendered in a 256x256 pixels resolution
using OpenGL vertex arrays. We used two different PCs: a Xeon 2.4 GHz 1GB RAM
with an ATI X800XT 256MB and a Pentium IV 3.0 GHz 2 1GB RAM with an
NVIDIA GeForce 6800GT 256MB. We must emphasize that between the two ana-
lyzed GPUs, only the NVIDIA card supports the OpenGL histogram.

In Table 1, we show the results obtained with the OpenGL histogram. These times
are too high to allow an interactive calculation, even for objects with a low complex-
ity. This is fundamentally due to the several rendering passes of the whole object that
we make when we use objects of several thousand triangles. The main cost compo-
nent is the OpenGL histogram operation.

Table 2 shows the results with the hybrid software and hardware histogram. In this
table we can see that the measured times are quite low even if the complexity is in-
creased, mainly because we make one single rendering pass and the buffer read opera-
tion has a very low cost.

In Table 3, we show the results obtained with the Occlusion Query technique. In
this table we can clearly observe that the measured times increase proportionally in

Techniques for Computing Viewpoint Entropy of a 3D Scene 267

Octopus Roman
.\‘.f
(A
£
Sphere Bunny Dragon

Fig. 2. Models used in our experiments

Table 1. Results obtained for the viewpoint entropy calculation with the OpenGL Histogram

Model Vertices Triangles Rendering OpenGL Histogram(ms)
passes GeForce Radeon
6800 GT X800 XT
Teddy 1,598 3,192 4 2,811.45 -
Cow 2,904 5,804 6 4,227.28 -
Teapot 3,644 6,320 7 4,927.65 -
Octopus 4,242 8,468 9 6,339.67 -
Unicycle 6,973 13,810 14 9,886.66 -
Roman 10,473 20,904 21 14,888.38 -
Sphere 15,314 30,624 31 22,136.10 -
Bunny 34,834 69,451 69 50,445.86 -
Dragon 54,296 108,588 107 80,029.94 -

relation to the complexity of the analyzed model. In the same way as the previous
technique, the ratio remains unchanged here because the number of rendering passes
is proportional to the number of triangles. A complete rendering of the object is only
done at the first pass.

Finally, in Figure 3 we show as a summary a performance comparison among the
different techniques. These results were obtained with the previously described
NVIDIA card. We used an NVIDIA card because it fully supports all the techniques.

268 P. Castell6 et al.

Table 2. Results obtained for the viewpoint entropy calculation with the Hybrid Software and
Hardware Histogram

Model Vertices Triangles Rendering SW+HW Histogram(ms)

passes GeForce Radeon
6800 GT X800 XT
Teddy 1,598 3,192 1 11.66 16.62
Cow 2,904 5,804 1 13.36 19.10
Teapot 3,644 6,320 1 14.84 19.37
Octopus 4,242 8,468 1 17.28 20.69
Unicycle 6,973 13,810 1 18.53 23.24
Roman 10,473 20,904 1 24.12 29.85
Sphere 15,314 30,624 1 36.65 38.09
Bunny 34,834 69,451 1 5791 67.04
Dragon 54,296 108,588 1 79.35 88.75

Table 3. Results obtained for the viewpoint entropy calculation with the Occlusion Query

Model Vertices Triangles Rendering Occlusion Query(ms)
passes GeForce Radeon
6800 GT X800 XT

Teddy 1,598 3,192 3,193 26.88 25.19
Cow 2,904 5,804 5,805 47.49 44.41
Teapot 3,644 6,320 6,321 50.88 48.31
Octopus 4,242 8,468 8,469 67.17 64.48
Unicycle 6,973 13,810 13,811 109.88 100.78
Roman 10,473 20,904 20,905 162.75 151.31
Sphere 15,314 30,624 30,625 238.09 221.42
Bunny 34,834 69,451 69,452 553.36 460.74

Dragon 54,296 108,588 108,589 829.75 665.33

100000

—e— Occlusion Query
—#— SW+HW Histogram

10000 1 OpenGL Histogram

1000

Times (ms)

5]
=)

P R

Teddy Cow Teapot Octopus Unicycle Roman Sphere Bunny Dragon

Fig. 3. Comparison of results obtained with the different analyzed techniques

Techniques for Computing Viewpoint Entropy of a 3D Scene 269

Anyway, if we examine the proportions among the techniques with the ATI card, we
can see that they are practically the same as with the NVIDIA card.

These results show clearly that by using the hybrid software and hardware histo-
gram we can calculate the entropy in real time and even for complex objects (100,000
triangles), because times increase very slowly as complexity goes up. The next best
technique is the Occlusion Query. Note that its cost grows as the object complexity
increases, being unapproachable for complex objects for real time. Lastly, the
OpenGL histogram technique is worst than the two others. This technique is useless
for real time, unless we use objects of low complexity (1,000 triangles).

5 Conclusions

The viewpoint entropy is a metric that has been mainly used to determine the best
viewpoint of a 3D object. In this paper we studied several hardware assisted tech-
niques to allow computing the viewpoint entropy in an efficient way. Among the
different analyzed techniques, the viewpoint entropy calculation with the hybrid soft-
ware and hardware histogram has the best performance, followed by the occlusion
query based technique. By using the hybrid software and hardware histogram tech-
nique we can practically achieve the entropy calculation in real time even for complex
objects, while occlusion query technique allows us to obtain only interactivity.

We must take into account that the performance of the hybrid software and hard-
ware histogram technique depends on the analysis of pixels done by the CPU and the
read operation of the PCI Express bus. We also did some tests using higher resolu-
tions, for example: 960x960, and we observed that the times for the occlusion query
are constant, but even in higher resolutions the hybrid software and hardware histo-
gram technique gets better results than occlusion queries. The proportion is not as
higher as before but still is significantly better. For our goal, we think that the resolu-
tion used in our experiments (256x256) is enough to obtain accurate results in the
viewpoint entropy calculation.

References

1. C. Anddjar, P. P. Vazquez, M. Fairén, Way-Finder: guided tours through complex walk-
through models, Computer Graphics Forum (Eurographics 2004), 2004

2. P. Barral, G. Dorme, D. Plemenos. Scene understanding techniques using a virtual camera.
Eurographics 2000, Interlagen (Switzerland), August 20-25, 2000, Short papers proceed-
ings

3. P. Barral, G. Dorme, D. Plemenos. Visual understanding of a scene by automatic move-
ment of a camera. International Conference GraphiCon'99, Moscow (Russia), August 26 —
September 3, 1999

4. V. Jolivet, D. Plemenos, M. Sbert, A pyramidal hemisphere subdivision method for Monte
Carlo radiosity, Eurographics 99 Short Papers proceedings

5. M. Feixas, An Information Theory Framework for the Study of the Complexity of Visibil-
ity and Radiosity in a Scene. PhD thesis, Technical University of Catalonia, 2002

6. D. Plemenos. Exploring Virtual Worlds: Current Techniques and Future Issues. Interna-
tional Conference GraphiCon'2003, Moscow (Russia), September 5-10, 2003

270

7.

11.

P. Castell6 et al.

P. P. Vazquez, M. Feixas, M. Sbert, and W. Heidrich. Viewpoint Selection Using View-
point Entropy. Vision, Modeling, and Visualization 2001 (Stuttgart, Germany), pp. 273-
280, 2001

P. P. Vazquez, M. Feixas, M. Sbert, and A. Llobet. Viewpoint Entropy: A New Tool for
Obtaining Good Views for Molecules. VisSym '02 (Eurographics - IEEE TCVG Sympo-
sium on Visualization) (Barcelona, Spain), 2002

P. P. Véazquez, PhD thesis, On the Selection of Good Views and its Application to Com-
puter Graphics. Technical University of Catalonia, 2003

. P. P. Vazquez, M. Feixas, M. Sbert, and W. Heidrich. Automatic View Selection Using

Viewpoint Entropy and its Application to Image-Based Modeling. Computer Graphics Fo-
rum, December 2003

P. P. Véazquez, M. Sbert. On the fly best view detection using graphics hardware 4th
IASTED International Conference on Visualization, Imaging, and Image Processing
(VIIP 2004)

. P. P. Vazquez and M. Sbert. Automatic indoor scene exploration. In International Confer-

ence on Artificial Intelligence and Computer Graphics, 31A, Limoges, May 2003

. J. Rigau, M. Feixas, and M. Sbert. Information Theory Point Measures in a Scene. IliA-

00-08-RR, Institut d'Informatica i Aplicacions, Universitat de Girona (Girona, Spain),
2000

. J. Rigau, M. Feixas, and M. Sbert. Entropy-Based Adaptive Sampling. Graphics Interface

2003 (Halifax, Canada), June 2003

. M. Sbert, M. Feixas, J. Rigau, F. Castro, and P. P. Vazquez. Applications of Information

Theory to Computer Graphics. Proceedings of Sth International Conference on Computer
Graphics and Artificial Intelligence, 31A'02 (Limoges, France), pp. 21-36, 2002

. M. Segal, Kurt Akeley. The OpenGL Graphics System: A Specification (Version 2.0 — Oc-

tober 22, 2004). Silicon Graphics, Inc., 2004

. A.Wilen, J.Schade, R.Thornburg. Introduction to PCI Express. A Hardware and Software

Developer's Guide. Intel Press, 2003

	Introduction
	Viewpoint Entropy
	Techniques for Computing the Entropy
	OpenGL Histogram
	Hybrid Software and Hardware Histogram
	Occlusion Query

	Comparison
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

