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Abstract. Texture synthesis is one of the hottest areas in computer graphics,
computer vision and image processing fields, and video texture synthesis is one
subset of it. We bring forward a new method on video texture synthesis, in
which evolution computing technique is introduced into the processes of syn-
thesizing videos. In the method, by analyzing and processing a finite source
video clip, Infinite video sequences obtained can be played smoothly in vision.
Comparing with many existing video texture synthesis algorithms, this method
can not only get high-quality video results without complicated pre-processing
of source video, but also improve the efficiency of synthesis.

1 Introduction

Texture synthesis is of great importance in computer vision and graphics. Many
methods on texture synthesis were introduced in the last decade. Heeger & Bergen [1]
use color histograms across frequency bands as a texture description. Bonet[2], who
first brought non-parameter texture synthesis method, uses a multiresolution filter-
based approach to generate textures. Efors & Leung[3] are first to copy pixels directly
from input textures to generate new textures. Portilla & Simoncelli[4] use a synthesis
procedure by decomposing texture images to complex wavelets and synthesize new
images by matching the joint statistics of these wavelets. Wei & Levoy[5] have im-
proved Efros & Leung’s method by using a multiresolution image pyramid based on a
hierarchical statistical method. Liang [6] and Efors & Freeman[7] copy whole patches
from input textures to synthesize new textures.

The work described above mainly deals with static scenes. Recently has been ap-
peared many video texture synthesis methods. Arno Schodl creates long videos by
rearranging original frames from a short source video[8], and extends video textures
to allow for control moving objects in video[9]. Wang&Zhu[10] models the motion of
texture particles in source video to synthesize new videos. Doretto[11] uses Auto-
Regressive filters to model and edit the complex motion of fluids in video.
Kwatra[12] combines volumes of pixels along minimum error seams to create new
sequences that are longer than the original video. Bhat[13] analyzes the motion of
textured particles in the input video along user-specified flow lines, and synthesizes
seamless video of arbitrary length by enforcing temporal continuity long a second set
of user-specified flow lines.
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2 Evolution Computation-based Video Texture Synthesis

We suggest a video texture synthesis method using Genetic Algorithm[14], which is
inspired by Schodl’s algorithm[8]. Compared with other algorithm, this method uses
an appropriate fitness function in the processes of creating video sequences instead of
much complex pre-processing of source video clip. Additionally, constraints of selec-
tion operator, crossover operator and mutation operator ensure that this algorithm can
get high-quality video results quickly.

2.1 Video Textures Algorithm

The original idea of Video Texture Algorithm supposes that there are two similar
frames in a given video clip: frame i and frame j. Naturally, the switch from frame j
to frame j+1 is very smooth, we can gain the unaffected video from switching frame i
to frame j+1. Here i is called “transition” point. When the video is played frame i, the
next frame can be frame i+1 or frame j+1. If there are several such transition points in
the source clip, videos with arbitrary length can be synthesized from it by switching at
these points continuously.

The original procedure of Video Textures Algorithm is described as follows:

1. Calculate the similarities between all pairs of frames in the input sequence S.
Calculate frame-to-frame distances and stored them in the similarity matrix of D
with the following formula:

=SSl w(r,)-# ] o[o(r,)-o( )] [o(r) -
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Where PkiJ denotes the pixel of coordinates (,/) in the i-th frame with size mXn

in video sequence S. R(), G(), B() represent the RGB values of a pixel. And len is
the frame number of S;

2. Calculate the transition cost matrix between two frames. Transition cost is a sum
of image differences around a transition. Transition cost from frame F; to frame

Fj can be calculated as below and stored in a transition cost matrix of Dl.j :

' m—1

D= Z WDy s 0<i,j<len; )
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Where m=1 or 2, corresponding to a sum over 2 or 4 image differences with
weights wy (1 1) or (1 2 2 1), and /en is the frame number of S;

3. Avoid dead-ends and prune part of transitions. The former operation aim at pre-
venting the video from being lead to regions without transitions, and the latter
operation can save on storage space and improve the quality of result videos.
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4.  Calculate future cost for each transition using the following formula, that reflects
the expected average cost of future transitions and store it in future cost matrix

of D,;.
DU = (Dl_'j)f’ +0(mkin D;.k; 0<i, j,k <len; 3)

Here, p is a constant controlling the tradeoff between multiple good (low-cost)
transitions and a single poorer one. The constant ¢ is used to control the relative
weight of future transitions in the metric. In order to reach convergence, it should
be limited to (0,1). len is the frame number of S;

5. Create video loops, called compound loops, which can be combined to create
additional cyclic sequences. The final video sequences are composed of several
compound loops.

Applying Video Textures Algorithm to process not only random textures but also
structured textures can obtain high-quality result video. However, the pre-processing
to source clip before creating video sequences is too much and complex. Furthermore,
the Dynamic Programming Algorithm(DPA) used to create video sequences only
allows backward transition so that its synthesizing results have less diversity. We find
that creating of video sequences can be considered as a combinatorial optimum prob-
lem and solved by Genetic Algorithm. Using Genetic Algorithm to synthesize videos
only need an appropriate fitness function to preserve dynamics and continuity instead
of much complex pre-processing. In addition, the GA-based algorithm allows not only
backward transition but also forward transition so that its synthesizing results have
better diversity.

2.2 Genetic Algorithm (GA)

GA is based on the biological phenomenon of genetic evolution. The GA maintains a
set of solutions which is known as a population or a generation. GA operates in an
iterative manner and evolves a new generation from the current generation by applica-
tion of genetic operators. The process of basic Genetic Algorithm is as below:

1. Generate random population of n chromosomes (suitable solutions for the problem)
Evaluate the fitness f(x) of each chromosome x in the population
3. Create a new population by repeating following steps until the new population is
complete
3.1 Select two parent chromosomes from a population according to their fitness.
For each chromosome, the better fitness it has, the bigger chance it would
be selected;
3.2 Cross over the parents to form new offspring with a crossover probability. If
no crossover was performed, offspring is the exact copy of parents.
3.3 Mutate new offspring at each position in chromosome with a mutation prob-
ability;
3.4 Place new offspring in the new population
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If the end condition is satisfied, stop, and return the best solution in current popula-
tion; otherwise, go to step 2.

2.3 Evolution Computation-Based Video Texture Synthesis

Now we apply GA to Synthesize videos:

Encoding. Given a video sequence S with [ frames, S={F;, F,...F;}, a solution to
video texture synthesis will be represented as an ordered list of numbers. Define each
decimal number i(i€ [1,/])as a gene and let it denote a frame F’;. For instance, (345 1
2 3 6 7) is the chromosome representation of video sequence {F3, Fy, Fs, F), F5, F3,
Fg, F7}. In the following algorithm description, we assume that there are m chromo-

somes in the population and each chromosome C i (k€ [1,m]) denotes a solve to video

texture synthesis. The simple permutation representation is a common and popular
representation for solving the order-based problems.

Fitness. In order to make new video sequence continuous in vision, we should
compute similarities among frames and cost of transitions. First we should calculate

similarity matrix of D and transition cost matrix of Y. Then we use formula(4) to
. . FE o, iy
calculate mathematical expectation % and standard error ~ ¥ of transition cost for

each chromosome % .

n-1

'
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Here, n is the number of frames in C « » C; represents the j-th(j € [1,n]) gene of C 1
For each chromosome C . 1f its Ek is small and its O, is large, there are less transi-
tions with high transition costs in the video sequence corresponding to C, . And thus
there are some obvious abruptions in the video sequence; if its E, is large and its O,
is small, there are more transitions with low transition costs in the video sequence
corresponding to C, . The video sequence is regarded as repeatedly playing a small
clip. It seems that when its Ek and O, are both relative small, chromosomes have
better continuity and diversity. Therefore, we can define fitness function as a
weighted sum of £, and O, . Furthermore, considering that £, and O, may be not at
the same quantity-level, we should normalize them at first. Formula of fitness func-
tion is as below:

—~ -1
Fit(C,)=| o, + gL 5)
(0
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— m—1 — m—1
-1 -1
Where £ = ZE, Xm , O= ZO', Xm  and 0(+ﬂ=1
=1 t=1

m is the number of chromosomes in the population. & and 3 are weight coefficients.
In our experiments, we obtain the best result videos in vision when & =0.7 and

£ =03.

Selection Operator. Selection Operator gives preference to better individuals, allow-
ing them to pass on their genes to the next generation. In our experiments, we use

roulette wheel method for selection operation. Survivable probability Ps of each
individual C is directly determined by its fitness.

Fit(C)
3 Fir(C,)

Ps =
(6)

Here, m is the amount of individuals in population. C, means the k-th individual in

population.

Crossover Operator. This process recombines portions of good existing individuals
to create even better individuals, it leads population to move towards the best solu-
tion. Single-point crossover is adopted and each time two genes from different indi-
viduals are exchanged. Crossover probability is set as a random float in [0.5,1].

Mutation Operator. The purpose of Mutation Operation is to introduce new gene
and maintain diversity within the population and inhibit premature convergence. Se-
lection of Mutation probability is much important for GA. If its value is too great, the
population will not be converged, if its value is too small, the population may be led
to premature convergence. In this paper, we set the value to 0.05.

During each iteration of GA, the individual having the largest fitness within all
individuals in every generation is selected and checked whether its fitness is larger
than a given threshold value of convergence V,. If the fitness is larger or the number
of generations is beyond a specified value G,,,, the algorithm stops iterations and
reports the individual having the largest fitness as the best solution.

3 Results and Analysis

3.1 Results

The current video synthesizing system is implemented in Visual C++6.0. Some video
clips designed using the system are shown in the following figures. The system main-
tains reasonably smooth frames on a PC (Pentium4 2.0GHz). These video clips dem-
onstrate several different video textures produced by the above-mentioned methods.
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Fig. 1. a 63-frame source video of a man
speaking, result video synthesized by the
algorithm in this paper maintains continuity
of his head and mouse moving.
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Fig. 3. a 61-frame source video of waterfall,
result video synthesized by the algorithm in
this paper maintains continuity of water

Fig. 2. an 89-frame source video of flame,
result video synthesized by the algorithm in
this paper maintains continuity of flame
jumping

Fig. 4. a 63-frame cartoon source video,
result video synthesized by the algori-thm in
this paper maintains flying regularity of hair

flowing. and scarf in the source video.

3.2 Analysis of Population Size

Population size is a main key to influence the efficiency and quality of our results. If
its value is too small, the algorithm may fail to give us a satisfied solution of video
texture synthesis; On the other hand, if its value is too large, the algorithm may waste
much of calculating time. Therefore, it is more important to set a proper population
size for the efficiency and quality of our algorithm.

In our experiments for each source clip, we set different population sizes to test.
When processing the example in Fig.1, we set the number of chromosomes to 30, 50,
100, 150, 300, 500, 800, 1000 and 1500 respectively. Results of our experiments
show that the algorithm quickly converges to an unsatisfied solution when the number
of chromosomes is tiny; while the number of chromosomes is 500, the algorithm is
able to do a fairly work; as the population size is larger than 500, fitness of the best
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solution has unobvious change. For the rest figures, satisfactory solutions can be ob-
tained when the population sizes are 800, 500 and 500 respectively.

3.3 Analysis of Max Generation Number

Number of Max generation is another main key to influence the efficiency of our
results. When processing the example in Fig.1, we specify that the population size is
500, and set the number of Max generations to 150, 300, 500, 800, 1000, 1500, 2000
and 3000 respectively. Results of our experiments show that when the number of Max
generations is 1000, satisfied solutions can be obtained. For the rest Figures, we spec-
ify that the three population sizes are 800, 500 and 500 respectively, satisfied solu-
tions can be obtained when the number of Max generations are 1500, 1000, and 1000.

3.4 Analysis of Computation Complexity

In Schodl’s algorithm[8], the computation complexity of pre-processing is much more
than that of creating video sequence. Without computing the part time of pre-
processing, the total computation complexity of Video Textures Algorithm is
O(L’N?), where L is the length of result video sequence and N is the number of transi-
tions. However the total computation complexity of our GA-based algorithm is
O(CG) ,where C is the population size and G is the number of Max generation. Only
when the computation complexity of pre-processing is ignored, the two algorithms
have comparable efficiency. Obviously, GA-based method is more efficient.

4 Conclusions

In this paper, evolution computation technique is introduced into the processes of
synthesizing videos, and a new video texture synthesis method is suggested. This
method uses an appropriate fitness function instead of much complex pre-processing
of source video clip. Additionally, constraints of selection operator, crossover opera-
tor and mutation operator can ensure this algorithm to get high-quality video results
quickly. Compared with other existing representative video texture synthesis algo-
rithms, this algorithm has less computational complexity and improves the efficiency
of synthesis.

Although we put more emphasis on the continuities and regularities of video se-
quences in our algorithm, we need to care for the structures of them. A more appro-
priate fitness function is anticipated to be found in future research work.
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