
Teaching the Foundations of Computational
Science on the Undergraduate Level

C. Freundl, H. Köstler, and U. Rüde

Chair for System Simulation, University of Erlangen-Nürnberg, Germany
Christoph.Freundl@informatik.uni-erlangen.de
Harald.Koestler@informatik.uni-erlangen.de
Ulrich.Ruede@informatik.uni-erlangen.de

Abstract. This paper describes a new course introduced at University
of Erlangen-Nürnberg to teach the foundations of computational sci-
ence for undergraduates at the end of their second year. The course is
a mandatory part of the curriculum in three different computer science-
related degree programs. The paper discusses the motivation for intro-
ducing the course, the topics chosen for it, and the teaching scheme
developed for this unique course.

1 Motivation

The University of Erlangen-Nürnberg offers programs in Computational Engi-
neering (Bachelor, Master, PhD), Computer Science (Diplom Informatik), and
Information and Communication Technology (Diplom). All three programs rely
on a joint set of core course modules for the first two years of study. Begin-
ning this year, a new required course was introduced for students in the fourth
semester of these programs, entitled Data Structures and Algorithms for Con-
tinuous Systems.

The birth of this new course originates form a discussion within the depart-
ment that many current computer applications deal with objects that are fun-
damentally of continuous nature. Example applications include the analysis and
synthesis of images, processing of audio signals and movie sequences, and simu-
lation. Arguably, these topics are gaining in importance for computer scientists
and computational engineers. However, these topics were not covered in the cur-
riculum of the first two years of any of these programs.

Continuous models have also become important to model extremely large data
sets and are being used for data mining or web search engines. Many modern
algorithms in this area depend on intricate techniques from numerical linear
algebra and numerical analysis.

This, however, stands in contrast to the state to which our computer science
curriculum had evolved over the past two decades. Topics, such as numerical
linear algebra had essentially disappeared from the undergraduate curriculum
and would only appear within optional courses for higher semesters, e.g. as part
of taking a minor in mathematics.

V.N. Alexandrov et al. (Eds.): ICCS 2006, Part II, LNCS 3992, pp. 185–192, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

186 C. Freundl, H. Köstler, and U. Rüde

Of course, advanced classes on computer graphics, visualization, image pro-
cessing, pattern recognition, signal processing, and simulation require these top-
ics as a prerequisite, and therefore many of these courses included introductory
material to cover their mathematical prerequisites. Clearly, this setup did not
exploit that there is a shared theoretical basis. As a consequence, this had lead
to a significant overlap in advanced level courses.

The new course Data Structures and Algorithms for Continuous Systems has
been designed to address this problem and to make the overall curriculum more
efficient by teaching the foundations in a unified form, with the goal of saving
time and enable the higher level courses to progress more quickly to advanced
material.

An early analysis of the desired topics for the course showed that a simple
revitalization of a conventional numerical analysis course would not satisfy our
requirements (see [1, 2, 3]). We have therefore decided to develop a completely
new course based on the material extracted from existing advanced courses in
pattern recognition, computer graphics, and simulation.

This approach was also chosen in the hope that it would be easier in this way
to motivate students to study topics that many of them perceive as difficult and
highly abstract. On the other hand, the designer of the course and its instructors
face a challenge to balance the presentation of fundamental theory with the
motivation through practical examples.

In summer 2005, the new course was given for the first time. Since no text
books for such a unique course were available, the course has been taught based
on a set of self-developed power point presentations which were made available
to the students as a substitute for lecture notes and as a guideline to find the
relevant material from the various textbook sources.

The remainder of this paper reports on our first experience with teaching this
course. It is organized as follows. In section 2 we will outline the material taught
in the lecture itself. Section 3 describes the design of the exercise classes, selected
assignments are presented in section 4. A concept for instructing unexperienced
tutors is shown in section 5. Finally, section 6 discusses evaluation results for
this course.

2 Contents of the Lecture

The course Data Structures and Algorithms for Continuous Systems1 consisted
of a set of 26 two-hour lectures corresponding to the typical length of the summer
semester in Germany.

The course began with an introduction to continuous data sets with examples
such as audio or video signals, covering topics such as quantization, discretiza-
tion, the curse of dimensionality, rounding, floating point arithmetic, stability,
and the condition of a problem.

1 Website of the course: http://www10.informatik.uni-erlangen.de/Teaching/
Courses/SS2005/AlgoIII/

http://www10.informatik.uni-erlangen.de/Teaching/Courses/SS2005/AlgoIII/

Teaching the Foundations of Computational Science 187

As a second major topic area, the course covered basic algorithms from numer-
ical linear algebra, like the LU- and Cholesky factorization, QR decompositions,
and also data structures for matrices, including sparse matrix formats. For itera-
tive methods, it was decided to present only elementary relaxation methods, and
neither Krylov space methods nor multigrid methods. This part of the course
also included a review of norms for vectors and matrices.

Wherever possible, this material was motivated by applications as mentioned
in Section 1, e.g. by emphasizing the geometric interpretation of rotations, re-
flections, and orthogonalization. When possible, the use of these methods in
applications was explicitly worked out, e.g. the use of linear algebra for the co-
ordinate transformations in computer graphics. Similarly, the lecture on least
squares methods was given in the context of examples from pattern recogni-
tion and a more involved example was taken from the algebraic reconstruction
technique within computed tomography, including a brief excursion to Tikhonov
regularization. An introduction to vector space techniques for text retrieval and
the page rank model of Google was also presented.

Generally speaking, the linear algebra part of the lecture was driven less by
the mathematical analysis of the algorithms, but rather by their application.
Nevertheless, the goal of the lecture was to present these techniques as a general
toolbox for a wide variety of problems and to make the students aware of issues
like the algorithmic complexity or numerical stability. Additionally, the course
attempted to give guidelines for the practical implementation of the algorithms
by discussing data structures and tools such as Matlab.

The next topic in the class revolved about data structures and algorithms for
geometric objects, such as curves, surfaces, and volumes. Consequently, this part of
the course started from polynomial approximation and interpolation, to introduce
spline functions and Bézier curves. From there the lecture progressed to (tensor-
product) surfaces, transfinite interpolation, andBézier surfaces, andfinally volume
models, such as Octrees or constructive solid geometry, as used in computer aided
geometric design. This part also included basic methods for numerical quadrature,
motivated by computing volumes and weights of geometric objects.

A further topic covered in the course was optimization, and nonlinear equa-
tions. This included bisection, Newton’s method, the Nelder and Mead sim-
plex method, and steepest descent. Because of their practical importance, the
course also covered some methods for discrete optimization, such as dynamic
programming, backtracking (with heuristics), simulated annealing, and genetic
algorithms.

Finite differences and finite elements were covered briefly in a two hour lecture
each, and together with the discussion of the FFT algorithm, they concluded the
course.

3 Design of the Exercise Classes

Typical for the German system, the course had the format of a lecture (given to
the whole class of about 150 students) and was accompanied by tutorial sessions

188 C. Freundl, H. Köstler, and U. Rüde

(exercises) which were broken up to limit the number of students to at most
twenty in each group. These exercises consisted of two parts:

– class room sessions where the mathematically oriented assignments were
presented and discussed, and

– programming assignments.

Organizing the exercise sessions required a major effort. As another peculiar-
ity of the German university system, the active participation in the exercises
cannot be required of the students, since they only need to pass the final exam
successfully. The success of the students is solely determined by their grade in the
final exam which is formally independent of the lecture, and which — as another
anachronism of the system — is given at earliest two months after the end of the
semester. As an option the students can even choose to take this exam even at
a later time, e.g. eight months after the end of the course. This ridiculous situa-
tion is one reason for the poor motivation of many students in such courses and
the ineffective learning of students lacking a sufficient degree of self-discipline
and self-motivation. As an example, more than a third of the participants of our
course have chosen to defer the exam by more than half a year.

These constraints led us to develop a special strategy to motivate students:
the exercises had to be sufficiently interesting and self-motivating as possible.
On the other hand, with only limited teaching capacity and the high student
numbers, the exercises had to be given in an efficient way.

3.1 Classroom Exercise Sessions

The exercise classes were given weekly as two-hours sessions and in groups
of at most twenty students. The assignments were handed out and posted on
the web in the week prior to the classes. Students were expected to prepare the
assignments, but — as described above — were not formally required to do the
assignments. Therefore, in the class itself the solution of the tasks was presented,
but some time in each session was reserved for the students to work out the so-
lutions on their own with the additional possibility of asking the exercise tutors
for help. Depending on the difficulty of a task, the solution was then presented
by either a student or the tutor on the whiteboard.

3.2 Programming Assignments

To additionally motivate students to do the work intensive programming assign-
ments, they were cast in the form of a contest. To reduce the teaching load,
students were grouped in teams of three. There were only four, but then some-
what larger programming assignments. Furthermore we set up a system based
on the versioning software Subversion [4] which allowed the students to hand in
their solutions electronically. Using Python [5] scripts, we provided mechanisms
to evaluate the correctness of a solution automatically such that the students
got immediate feedback on the quality of their solution. All the tasks required
solving a numerical problem so the correctness of a solution could be determined

Teaching the Foundations of Computational Science 189

by measuring norms of residuals or errors. Also, we rewarded an efficient pro-
gramming style by incorporating the runtime of a program into the score. The
system provided a high score of the best solutions on the course’s web site, thus
promoting a competition among the strongest student teams. This did help to
keep the contest interesting and has proven quite effective in giving especially
the good students an additional motivation.

3.3 Results and Insights

The classroom exercise sessions were frequently and steadily attended by many
students. This may also have been caused by the fact that we did not hand out
or post master solutions. In all classes, at least some of the students showed high
effort and enthusiasm in solving the given assignments. Nevertheless, as any of
the more mathematically demanding classes, the course was found quite difficult
by a majority of the students and many of them gave up early on finding their
own solution.

The programming assignments showed different results. Although the level of
participation was quite high in the beginning (34 groups with a total of about 75
students), only four groups (with nine students altogether) handed in solutions
for all of the given tasks. Given the effort to create and present these assign-
ments, this is of course quite disappointing. We believe that this unsatisfactory
participation was caused by:

1. Since each assignment was quite work intensive, many students were dis-
couraged from working on them.

2. The evaluation software initially had some technical problems, and was not
always quick enough to provide feed back to the students, especially when
the deadline was approaching.

Summarizing, the system used for the course was favoring the strong students
who put into the course a large effort and who then commented favorably on the
learning experience. The disadvantage was that many of the average and below
average students were quickly getting frustrated and — not quite unexpectedly
— essentially gave up on many of the assignments.

This could of course be corrected most easily by making participation in the
exercises a requirement for passing the course, but the mentioned peculiarities of
the German university system currently prohibit a more effective teaching setup.
This anachronism is partly inherited from the traditional German university
structure, and is additionally aggravated by the yet unfinished Bologna reform2.

4 Selected Assignments

Over the whole semester the students had to do four programming assignments.
For a somewhat more detailed exposition, we pick here the third one that was
2 The Bologna Process aims at introducing a Europe-wide unification of the various

national University systems. Besides introducing a Bachelor/Master degree structure
it also requires the introduction of a standardized credit point system by year 2010.

190 C. Freundl, H. Köstler, and U. Rüde

motivated from medical image processing. The goal was to register two non-
aligned images from the same patient e.g. in order to locate the position of a
tumor in each image. This led us to use a variational approach for non-rigid image
registration and thus mathematically to a system of nonlinear partial differential
equation representing the deformation between the images [6]. The students were
given parts of a Matlab program that performs the image registration for a simple
test case. Their task was to implement the registration algorithm in C or C++
and to present some results for arbitrarily chosen images. The assessment in
this case was on the one hand done by measuring the error of the registration
algorithm and on the other hand every group had to hand in a video sequence
showing the transformation from one image into the other. These sequences
were then rated by the other students. The best ten groups got additional bonus
points. Figure 1 shows the image sequence of a deformation process to register
the first with the last image in the sequence.

Fig. 1. Reference images (top) and template images (bottom) after the deformation

5 Supervised Teaching

Usually several student tutors from higher semesters are employed to teach some
of the exercise classes. These students are supervised by regular university staff
— e.g. an advanced graduate student or post doc. Within the context of the
Elite Network of Bavaria [7] we have recently been awarded special funds to do
this in a more systematic way and to introduce a scheme to teach the teachers.

The student tutors were participating in the elite program and thus they
could earn credit for participating in our setup of supervised teaching. For this,
they were required to prepare each assignment set and the corresponding exer-
cise class fro presentation and discuss this before they gave the class with their
supervisor. The supervisor additionally sat in the class itself and provided feed-
back to the instructor after each class. Typical discussions included e.g. how the
instructor managed to explain the material to the audience or to what extent
he or she could motivate the younger students to participate actively in the
class.

Teaching the Foundations of Computational Science 191

Supervised teaching additionally included a one-day seminar given by the head
of the Didaktikzentrum Nürnberg [8]. Here the focus lay again on general teach-
ing skills, e.g. a discussion of several presentation techniques and types of lead-
ership. Many practical tips and tricks for teaching were given, e.g. how to deal
with students who try to disturb a lesson or how to motivate them.

In addition to to the individual supervison and the seminar, we had arranged a
professional coaching of one of the exercise classes by a professional trainer. Here,
one class session by the student tutor was videotaped and discussed in detail after
class. The goal of this was to help young instructors with technical teaching
skills like the right use of the blackboard, but also to systematically develop
their teacher personality and to improve their interaction with the students.

The feedback from the first student participating as an instructor in ”super-
vised teaching” was very positive. He felt that he himself had learned intensively
since teaching required a high level of abstraction and a deep knowledge of the
underlying material in order to be able to teach it well for the younger students.
He felt that the responsibility to express material technically correctly and pre-
cisely presented a special challenge in itself, and he has found that he could
already profit from these skills on several other occasions.

It remains to note that also the participants in the classes taught by student
tutors were very positive, since this may have lead to better prepared exercise
sessions overall.

6 Evaluation

The Faculty of Engineering Sciences of the University Erlangen-Nürnberg con-
ducts a systematic evaluation of all courses through a web-based questionnaire
of all enrolled students.

We cite a few student comments.

– “Mr Rüde tries hard to arouse interest in the fairly complex subject, and this
with success. Particularly, I enjoyed the references to practical applications
in image processing and the shown videos.”

– “Absolutely interesting, I will probably choose this as a major subject. The
lecturer is very capable, friendly, and stands relatively close to us students.
Points out, what his subject is, what you can do with it, and which perspec-
tives it offers.”

– “Subject is way too difficult, very many topics. Better leave out a few issues
and go more into details, give more examples or else comprehension will be
a torture.”

Altogether, the evaluation showed average ratings compared to similar classes.
Since this class was given for the first time and was still in a prototype stage,
we believe that this is a sign that we are on the right track to develop a good
course. More in detail, the students have strongly acknowledged and commented
positively on our effort as instructors both for the central lecture and for the
exercise sessions. Some of their constructive suggestions, such as an encourage-
ment to work more practical examples on the blackboard during in the central

192 C. Freundl, H. Köstler, and U. Rüde

lecture (as compared to using only power point slides) could even be realized in
the ongoing semester and this was generally well received. However, the students
commented in their majority quite critically on the topical composition of the
course as too theoretical and too mathematical, and generally as too difficult.
The disappointing turnout in the programming exercises together with this feed-
back will require a re-evaluation of the course goals and possibly an adaption of
its contents.

Acknowledgments

The authors wish to thank Dr. Ch. Alberternst for the professional coaching of
the supervised teaching students, Dipl.-Päd. J. A. Wendorff for giving the sem-
inar of didactics and Q. Meyer for giving feedback on the supervised teaching.

References

1. Rüde, U.: Computational Engineering Programs at University Erlangen-Nuremberg.
In: Proc. of the 2002 International Conference on Computational Science
(ICCS2002), Part III. Volume 2331 of Lecture Notes in Computer Science., Am-
sterdam, The Netherlands, Springer (2002) 852–857

2. Bungartz, H.J.: Some remarks on CSE education in Germany. In: Proceedings of
the 2004 International Conference on Computational Science: ICCS 2004. Volume
3039 of Lecture Notes in Computer Science., Heidelberg, Springer (2004) 1180–1187

3. Fabricius, U., Freundl, C., Köstler, H., Rüde, U.: High performance computing
education for students in Computational Engineering. In Sunderam, V., Albada,
G., Sloot, P., Dongarra, J., eds.: Computational Science - ICCS 2005. Volume 3515 of
LNCS., Springer (2005) 27–35 ISBN-10 3-540-26043-9, ISBN-13 978-3-540-26043-1,
ISSN 03-2-9743.

4. CollabNet: Subversion version control system (2000–2005) http://subversion.
tigris.org.

5. Python Software Foundation: Python (2001–2005) http://www.python.org.
6. Modersitzki, J.: Numerical methods for image registration. Oxford University Press

(2004)
7. Bavarian State Ministry of Sciences, Research and Arts: Elite Network of Bavaria

web page (2005) http://www.elitenetzwerk-bayern.de.
8. DiZ: Zentrum für Hochschuldidaktik der bayerischen Fachhochschulen (2005)

http://www.diz-bayern.de.

http://subversion.tigris.org
http://subversion.tigris.org
http://www.python.org
http://www.elitenetzwerk-bayern.de
http://www.diz-bayern.de

	Motivation
	Contents of the Lecture
	Design of the Exercise Classes
	Classroom Exercise Sessions
	Programming Assignments
	Results and Insights

	Selected Assignments
	Supervised Teaching
	Evaluation

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

