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Abstract. Florida State University has recently launched a new pro-
gram in Computational Science. In this paper, we describe the need for
computational science, how we defined computational science, and ex-
plain the rational behind our computational science curriculum.

1 Introduction

Over the last few decades, computations have joined theory and experimentation
to form the three pillars of scientific discovery and technological design. More-
over, in many cases scientific computations have superseded both theory and
experimentation. Thus, whether one is studying subatomic particles or galaxies,
whether one is designing minute nano-composites or huge skyscrapers, whether
one is sequencing the human genome or protecting fragile ecosystems, whether
one is studying the flow of blood in capillaries or predicting the winds in a hurri-
cane, computations play a central role. The computations that enable these and
a myriad of other studies depend on the invention, implementation, and testing
of algorithms and software that computers use to solve scientific and engineering
problems. This is the work of computational scientists.

The public has little awareness of the important and ubiquitous role of com-
putational science in their everyday lives. Especially here in Florida, people hear
on the Weather Channel that computer models predict that hurricane X will
make landfall at city Y at time Z as a category W storm but they are com-
pletely unaware that CAT (computer aided tomography) and MRI (magnetic
resonance imaging) scans are completely reliant on the contributions of compu-
tational scientists that allow for the transformation of measurements taken by
the scanning device into images that a radiologist can read and interpret. Nor
do they realize as they look out the window of a Boeing 777 that the wing they
see was designed using algorithms developed by computational scientists that
predict both its aerodynamical and structural behavior, with experiments used
just to ensure the computations were right. Nor do they know that large retail
companies such as Walmart and Target use sophisticated computational algo-
rithms to manage the distribution and delivery of goods to their many stores
in an efficient manner so that costs are kept down. In these and countless other
settings, computational scientists are indispensable contributors.
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The high national priority of computational science is amply illustrated by the
fact that the President’s Information Technology Advisory Committee (PITAC)
in 2003 chose it, along with health care information technology and cyber se-
curity, as the three areas of greatest national importance related to information
technology. The Committee’s June 2005 report on Computational Science [2]
states that the most scientifically important and economically promising re-
search frontiers in the 21st century will be conquered by those most skilled with
advanced computing technologies and computational science applications.

Based on this and earlier trends, Florida State University has established the
School of Computational Science with the following missions:

1. Develop innovative interdisciplinary graduate training programs in scientific
computing and its applications;

2. Foster research in scientific computing and its applications in a variety of
disciplines;

3. Provide a supportive environment for high performance computing on the
providing the best possible education and training in computational science
should be an item of high priority at any research university.

In this paper, we concentrate on the first mission.

2 What Is Computational Science

There is no accepted definition of computational science. Many institutions
equate computational science with computational frameworks, problem solving
environments, etc. While that is certainly viable, we define it somewhat differ-
ently. At Florida State University (FSU), we state that Computational Science
lies at the intersection of Mathematics, Computer Science, Applied Science and
Engineering. Thus, the common themes that thread all these areas constitutes
computational science (see Figure 1). Examples of such commonalities include
algorithm development, multiscale techniques, transform methods, an apprecia-
tion for frameworks and problem solving environments, scientific visualization,
stochastic methods, optimization, and others. Each of these subject areas encom-
pass techniques that are used in almost all applied areas of science. Advances in
multiscale algorithms and theory will further the development of the physics of
turbulence, improve understanding of geological and climate processes, lead to
better modeling of biological processes in the human body, etc. This definition is
consistent with the following quote from the PITAC report[2]: ”While it is itself
a discipline, computational science serves to advance all of science.”

Many of the important problems facing society today can only be solved
by teams of individuals from several disciplines. Among these teams, one or
more computational scientists, according to our definition, will serve as the glue
that will help members from these different teams communicate with each other,
translate each others languages, and facilitate the transfer of technology, whether
algorithmic or deliverables.
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Fig. 1. The interdisciplinary nature of computational science

3 Multi- and Inter-disciplinary Research

In the past, the inter- and multi- disciplinary nature of computational science has
been largely ignored in the training of computational scientists. That training
has been mono-disciplinary in nature, with students largely confined to courses
and research within just one of the many disciplines that intersect with the
world of computational science. Thus, despite the fact that the need to improve
the training of computational scientists is universally recognized and despite
the fact that numerous reports (see references within [2]) have stated that the
United States is facing a national crisis due to the its diminishing leadership role
in computational science, not much has been done to improve the situation. A
list of existing graduate programs in computational science is available at [I].

The Computational Science program at Florida State University is commit-
ted to improving the training of future computational scientists at the Ph.D.
level through an innovative curriculum with courses designed to function across
disciplines rather than within a single discipline.

Computational methods for solving problems in science and engineering are
ubiquitous within the University. The vast majority of the natural and social
science and engineering departments, centers, schools and institutes in the Uni-
versity include faculty, postdoctoral associates, and students who use computa-
tional methods in their research. Moreover, several non-scientific departments
such as the film, dance and business departments have a need for generic tools,
e.g., for the creation of animated films, for choreographing dances, for market-
ing and finance decision making, etc. Even the athletic department makes use of
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(although does not develop) advanced software with feature detection algorithms
to extract important information used to help improve their athletes.

The University also has considerable strengths in those aspects of computa-
tional science that involve the invention, development, and testing of new com-
putational methods. Faculty engaging in such activities are scattered throughout
the campus, certainly including many mathematical and physical science depart-
ments and engineering departments. The research of the SCS is primarily devoted
to these activities as well. Furthermore, the SCS, by its very mission, seeks to
exploit, explore, and develop, with faculty and students both within the SCS
and throughout the University, interdisciplinary connections that synergistically
can enhance algorithmic development and deployment.

These different research programs often develop algorithms in isolation, al-
though they might have strong overlaps in terms of concepts and even imple-
mentation. Working within a interdisciplinary framework can lead to algorithms
that are more general and useful to a wider range of disciplines. The training pro-
vided to our future computational scientists must therefore impart the knowledge
in those areas of science that are common most of the ongoing research activies
in Applied Sciences, Engineering, and even the social sciences.

Programs at other universities also try to emphasize the interdisciplinary na-
ture of computational science. For example, the Institute for Computational
Engineering and Sciences (ICES) at the University of Texas at Austin is a con-
sortium of research centers and groups that includes nine university based centers
and programs ranging from Computational Materials to Computational Finance.
George Mason University has a School of Computational Sciences organized into
several semi-autonomous units with their own faculty and chairs. In both cases,
the idea is to foster an environment that invites students to develop graduate
students to do develop skills across multiple disciplines.

4 SCS Program

The stated goal of the Ph.D. program in Computational Science is to train of
graduate students in the art of computational science and provide them with
the opportunity to acquire expertise in a particular area of applied science or
engineering. Thus the degree provides the student with breadth as well as depth.
Graduates should be able to successfully collaborate with scientists in other dis-
ciplines. Ideally, students should learn to develop and analyze new computational
procedures for use in a variety of fields.

The identifying characteristic of a Ph.D. degree is the ability of its graduates
to perform independent research in a selected field rather than just accumulating
credit hours. Although, there is much to learn, and some feel that more course-
work is indicated, we have chosen to impose a number of credit hours consistent
with the University’s residence requirements. As a result, our primary emphasis
is breadth across topics rather than depth in a given scientific discipline.

Students entering our degree program have a strong desire to do computa-
tional science. We broadly classify the students into two groups. The first group
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is more interested in developing and analyzing scientific algorithms for problems
arising in a wide range of application areas, developing techniques for managing
large volumes of digital information regardless of the application area, or per-
haps in visualizing their data from areas as vastly different as medical imaging or
weather prediction. The second group is interested in similar goals except that
the students have already identified a science or engineering area of interest, in
which they want to concentrate their research.

We offer two computational tracks within the SCS Ph.D. program: 1) a major
(computational) track for students of the first group, and 2) computational tracks
with a specialization within one of the disciplines from either the applied sciences
or engineering for students in the second group. All tracks have the same number
of course hours and the required (core) courses are identical. A specialization
degree requires that the student register for a minimum of 9 credit hours in
the specific area of specialization. Students in the first group are free to choose
credits in more than one applied field. Based on the current expertise at the SCS,
we currently offer major tracks in Computational Science, and Computational
Science tracks with specialties in the areas of Atmospheric Science, Biochemistry,
Biological Science, Geological Science, Materials Science, and Physics.

4.1 Curriculum

Since computational science is an interdisciplinary program, programs of study
can be quite varied. Without a flexible Ph.D. program, it will be difficult to
adapt to the fast-paced change in the scientific research community. For exam-
ple, opportunities will surely exist in the future to combine nano-technology
or material science with biological sciences, or imaging with structural biology.
With the flexibility built into our program, it becomes possible to respond to
these trends in a rapid and flexible manner. This translates directly into a ro-
bust set of course requirements, to be determined on an individual basis by the
curriculum committee and the advisory committee of the student. The former
has knowledge of the large course base available and can offer advise to the stu-
dent and his advisory committee, while the later has detailed knowledge of the
student goals and can offer advice and how to achieve them.

Every student must take three core courses, for a total of 11 credit hours (see
next section). These courses are designed to cut across disciplines. A second set
of courses, called core electives, provide training in computational science, in
more detail. Students choose three courses among the electives. Three examples
are scientific visualization, numerical solution of partial differential equations,
numerical methods for earth and environmental sciences. Finally, 9 additional
credit hours are selected from existing departmental courses in computer science,
engineering, mathematics or an applied science. The department is chosen based
on the stated specialization of the student (second group). There are a total of 29
credit hours of coursework in addition to a minimum of 9 credits of dissertation
hours. Additional credit hours may be obtained through dissertation hours, or
coursework, under the guidance of the student’s supervisory committee.
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4.2 The backbone of SCS: The Core Courses

The required core elements in our program are three new courses that provide
the student with the programming skills, tools and algorithms necessary to tackle
a wide range of real world problems. After completion of these courses, students
are expected to have mastered the course content, and more importantly, under-
stand the inter-relationships between the various concepts and feel comfortable
utilizing the tools discussed. The goal we seek to achieve is to have students de-
velop the instinct to choose the appropriate computational methods when faced
with a new task.

The primary course on which the others depend is Scientific Programming,
offered for the first time in Fall 2005. Programming languages form the backbone
of virtually all areas of scientific research involving computers. Although many
students have an elementary knowledge of a single compiled language such as
C/C++ or Fortran, or an interpreted language such as Matlab, this knowledge
is not sufficient for the development of large-scale scientific codes. Indeed, these
programs are usually strewn over multiple files, multiple languages, and multiple
operating systems. Students are confronted with these realities from the onset
of the course. In addition, they are exposed to benchmarking, profiling and
documentation. These concepts are integrated into the language concepts from
day one and must be used in all their projects. The hope is that by the time
the students are involved in their own research projects, these skills will be
integrated into their work habits during program development, rather than as
an afterthought. This course covers the common elements of Fortran 90, C++
and Java, three languages of widespread use in scientific computing. The students
are taught to solve problems at the conceptual level using mainstream object-
oriented programming ideas. The course has been well received with fourteen
students evenly distributed across four departments (Mechanical Engineering,
Physics, Mathematics, and Meteorology). SCS is planning to offer the course on
an ongoing basis, both as a service course to science students in general and as
a required course to the students enrolled in our program.

The remaining two required courses, Applied Computational Science I & 11,
are innovative new courses that combine classwork (4 hours) with a weekly com-
putational lab (4 hours). We have already established that researchers in an in-
terdisciplinary environment must possess a working knowledge of a wide variety
of tools and algorithms. Even more important is the researcher’s to combine these
tools and understand their inter-relationships. These tools span the domains of
computer science, mathematics and applied science. A major goal behind these
courses is to foster a frame of mind where the student’s first instinct is to use
tools in combination rather than in isolation. We hope to achieve this through a
combination of more conventional lectures, in which algorithms, software, tools
are described and demonstrated, and laboratory work where the students get
the chance to try the tools out and apply them to practical problems. They will
also be required to write the software for some simple tools.

Achieving this objective necessitates a delicate balance between theory and
practice. In the theory section of the course, the students are exposed to a



The School of Computational Science at Florida State University 183

wide range of algorithms in fields the span differential equations, visualization,
stochastic methods, imaging, optimization, eigenvalues, clustering, etc. While
not describing each of these fields in every detail detail (after all, each of the
aforementionned fields is easily a course onto itself, which in many cases can
be taken as part of course electives), representative algorithms are described,
pseudo-code is given, and the students are expected to generate working code
that executes the algorithm. The novel part of the course is that whatever the
project the student is working on, the results generated are analyzed/visualized,
or further processed with other tools (visualization, clustering, etc.). These
"other” tools are provided to the student (either obtained from the web or de-
veloped by students in the courses given in previous years). Naturally, code
benchmarking and profiling are mandatory, regardless of the project underway.
Some of the helper tools might themselves be developed from first principles dur-
ing later sections of the course. Thus, to run a PDE solver, the student might be
required to first generate a grid with some existing grid generation package. The
lab work provides an environment to put theory into practice under the guid-
ance of the instructors. This is where coding, debugging, and tool exploration
happens. The lab exercises are designed to expand knowledge of many existing
tools. In a fast changing world, it is unrealistic to teach students to use individual
tools. More importantly, students must learn to adapt to new tools, learn how
to use tools in isolation, and most importantly with each other. The course will
teach students to understand the tools, construct the tools, and use the tools.
In addition, they will learn to explore the web to find new tools knowing only
some of the required specifications.

4.3 Support Courses: Electives

Elective courses are existing departmental courses and courses under develop-
ment that relate to computational science, and serve to complement the core
courses and provide more in depth of computational science concepts. Currently
these courses are Computational Biophysics 1&I1, Computational Evolutionary
Biology, Computational Finite Element Methods, Introduction to Bioinformat-
ics, Molecular Dynamics, Monte Carlo/Markov Chain Simulations, Numerical
Linear Algebra I&II, Numerical Methods for Earth and Environmental Sciences,
Parallel Programming, Algorithms and Architectures, and Survey of Methods for
Numerical PDEs. Additional courses, on topics that cut across disciplines will be
added as needed. Examples might include Grid Generation, Multi-Scale Anal-
ysis, Transform Methods, Wavelet Algorithms, Applied Database Techniques,
and more.

5 What Is Different?

Within any new degree program (and ours is no exception), the question arises:
why could a student enrolled in our degree program not obtain essentially the
same degree from an existing department. The reason is simple: computational
science cuts across departments, concentrating on the sub-disciplines that are
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common to all: programming, algorithm development, visualization, statistics,
just to give three examples. Providing students with knowledge in these vari-
ous disciplines generates breadth rather than breadth. Both types of scientists
are in demand in today’s world. The computational scientist serves as a buffer
between domain experts who have most of their knowledge in a single field. he
also serves as a conduit to transfer technology from one discipline to another.
Without our program, a student in a science or engineering degree program is
only trained in computational methods appropriate to their chosen discipline.
In the SCS, students are more involved with algorithm development across dis-
ciplines, rather than with the use of an existing numerical method to solve an
outstanding problem in some applied area. While computations do play a large
role in the training of a least some students in the Mathematics or Computer
Science departments, algorithm development usually plays a minor role. It is the
application itself that drives the research. In our school however, it is the need
for algorithms that are applicable across disciplines that is the driver. Nonethe-
less, we recognize the need to expose students to one or more applied disciplines
to gain an appreciation for the algorithms being developed: to keep a foot on the
ground rather than get lost in abstractions. The SCS is not in competition with
existing programs. Rather, the objective is to train students in the emerging
discipline of computational science, which combines aspects of computational
mathematics, computer science, computational statistics as well as application
areas in science and engineering.

6 Conclusions

We aim to train students for careers that focus on interdisciplinary research on
the invention, development, and testing of new computational methods. Thus,
it builds on the existing strengths, found within narrower disciplinary avenues,
in the use and development of such methods. The program also recognizes the
truly interdisciplinary nature of computational science and the need to train
future generations of computational scientists in ways that take advantage of that
nature. Our program does not intend to replace the training of computational
scientists in a specialized discipline within a department. Rather, it aims to
offer students a novel and needed type of training with a broadness that they
cannot provide. Instead the departments inculcate any additinal specialization
not provided by the SCS.
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