
V.N. Alexandrov et al. (Eds.): ICCS 2006, Part II, LNCS 3992, pp. 155 – 160, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Project Based Approach to Teaching
Parallel Systems

Alistair P. Rendell

Department of Computer Science, Australian National University
Canberra ACT0200, Australia

alistair.rendell@anu.edu.au

Abstract. For several years we have delivered advanced undergraduate courses
related to computational science using a traditional approach of lectures,
laboratory exercises and assignments. In recent years, however, we have moved
away from this towards project based approaches. In this paper we discuss our
attempts to structure a course in parallel systems around a group project that
required the students design, build and evaluate their own message passing
environment.

1 Introduction

In 2001 under a joint initiative between the Departments of Mathematics and Com-
puter Science, and with funding from the Australian Partnership in Advanced Comp-
uting (APAC) [1], an undergraduate degree in computational science was established
at the Australian National University. This degree involves students taking roughly a
quarter of their courses in computer science, another quarter in mathematics and the
remaining half in their chosen field of specialization [2]. Two courses that are offered
by the Dept. of Computer Science as part of this degree are a third year course in
“High Performance Scientific Computing” [3] and a fourth year course in “Parallel
Systems” [4]. In the last two years, and for both these courses, we have adopted a
project centered approach to course delivery. The aim is to give the students a better
understanding of the hardware and software that they are using, a sense of achieving
something significant, and to provide a natural springboard for in depth discussions
and subsequent research projects. In the high performance scientific computing course
this has involved getting the students to develop a simple parallel molecular dynamics
application code that they then run on a cluster that they have built. Some details of
the molecular dynamics case study, and how it relates to modern concepts in software
design, are given in reference 5. In this paper we focus instead on the parallel systems
course, and our efforts to build this course around a group project in which the
students write their own basic message passing environment.

2 COMP4300: A Course in Parallel Systems

Within the Australian system a science, IT or computational science degree can be
completed in three years full-time study. Students who achieve a mid-credit or above

156 A.P. Rendell

average (≥65%) are then permitted to study for one extra year and gain an honours
degree. In addition to this path some other degrees, such as software engineering, are
four year honours programs from the outset. The parallel systems course targets
undergraduate students who are in their fourth year, so by in large these are science,
IT or computational science honours students or software engineers in their final year
of study. Technically it is possible for a standard 3 year degree student to enroll in the
course, but this requires them to have undertaken a non-standard enrolment pattern, or
be a part-time student. Suffice it to say that the general standard of the students
embarking on this course is quite high, so the course is designed to be challenging.
 The course is offered in alternate years and aims to cover several aspects of parallel
systems, including hardware architecture, programming paradigms, parallel algo-
rithms and sample applications of parallel computers. It is based loosely on the text
book “Parallel Programming: techniques and applications using networked work-
stations and parallel computers”, by Barry Wilkinson and Michael Allen [6], aug-
mented with additional material covering, for example, one-sided communications in
MPI-2 [7] and Global Arrays [8]. It also usually includes one or two guest lectures
and a tour of the APAC National Facility [1]. The course has roughly 30 hours of
lectures distributed over a 13 week semester and includes 12 hours of supervised
laboratory work. Course prerequisites include a second year course in “Concurrent
and Distributed Systems” and a third year course in either “High Performance
Scientific Computing” (the course mentioned above) or “Algorithms”.
 In 2004 after having delivered the parallel systems course 2-3 times in a fairly
standard lecture format, the opportunity arose to trial a radical new format. Part of the
motivation for this was the fact that in this year the course would only be open to a
small group of 5 honours students; making it much easier to map out a new course
structure on the fly. And so it was decided to drive much of the course around a group
project where the students developed their own message passing environment based
solely on the use of simple UNIX utilities; essentially the students were required to
write their own limited version of the Message Passing Interface (MPI) [9].
 The project, codename mympi, began after 2 weeks of introductory lectures and
one laboratory session. It was broken down into five 2-week segments that were each
assigned to one of the students. Logistically the main lecture time was a block of 2
hours each Friday afternoon. In the first week of each 2-week segment the relevant
student was required to come and discuss their part of the project in private a few days
before the Friday lecture. At this meeting they were asked to outline what they
thought was required, and how they proposed to tackle it. After clarifying any
misconceptions, and ensuring that the student was on the right track, they made a
formal 10 minute presentation of their proposed work to the rest of the class during
the Friday lecture. This would invariably evolve into a class discussion and further
refinement of their ideas. In the second week the student would discuss their progress
in private before giving a formal presentation and demonstration of their code to the
class during the Friday lecture. The student was required to handover their work to the
next student before the following Monday. Both presentations were peer marked, with
more detailed marking and feedback given after the student had submitted a formal
write-up.
 The five project stages, their requirements and some comments on the objectives
and outcomes are given below:

 A Project Based Approach to Teaching Parallel Systems 157

2.1 Stage 1 – Basic Process Creation and Communication

Requirements: Develop an elementary message passing capability using UNIX pro-
cesses created using the fork and exec system calls with inter-process commu-
nication performed using TCP/IP sockets. Demonstrate operation on a multiprocessor
shared memory system with simple byte stream data transfers. The environment
developed should be similar to other MPI implementation with program initiation
taking place via the following command:

mympirun -n n_proc a.out

where n_proc is the number of copies of the executable (a.out) that will be
created. The program that gave rise to executable a.out should include calls to
functions mympi_init and mympi_finalize that are part of the mympi library
and are responsible for initializing and terminating the message passing environment.

Comments: As mentioned above a second year course in concurrent and distributed
systems is a prerequisite for enrolment. This provided the students with a basic
understanding of process creation using fork and exec, and some exposure to
buffered asynchronous message passing using pipes (not sockets). Fundamental
design decisions relating to performance, extensibility and understandability were
discussed, with particular attention given to the topology of the connections between
the processes. In lectures the latter was related back to the more general issue of
network topology on parallel computers. For simplicity a completely connected
network was chosen, although this was highlighted as a potential bottleneck for very
large process count. How to communicate the various socket port numbers between
the different processes was discussed, as was ensuring that the network of processes
was established in a deadlock free manner. These issues were solved by augmenting
the command line arguments that were passed to the user program in the exec call
and by imposing a specific ordering when the connections were established. From this
work the roles of MPI_Initialize and MPI_Finalize in a real MPI
implementation were immediately apparent to the students. The final demonstration
involved sending a simple byte stream around a ring of processes – a so called
“communication snake” or “com-snake” program.

2.2 Stage 2 – Rank, Size, Typed and Tagged Communication with Multihosts

Requirements: Write the equivalent of MPI_Comm_rank, MPI_Comm_size,
MPI_Send, and MPI_Recv, but without the use of communicators and requiring the
send and receive calls only to support int, double, and byte data types.
Specifically, the send and receive calls should be tagged, and there should be wild
cards that permit receive calls to match messages from any sending process or any
incoming tag. Extend the original implementation to run on multiple platforms of the
same type.

Comments: Inclusion of message types and tags requires some additional information
beyond the message content to be transferred between processes. The concept of a
message header naturally follows from this. The ability to receive a message from any
process prompts discussion of non-determinism, busy waiting, and use of the

158 A.P. Rendell

select system call. How to match a message with a specific tag requires the
receiver to interrogate an incoming message, read its header, and then potentially
receive the message. This clearly shows the need for buffers to store header
information (and maybe more) for messages that have been interrogated but found not
to match the required message tag. The transition from asynchronous to synchronous
message passing that occurs in most MPI implementations as the message size
increases (and can no longer be held in the intermediate buffer) is now very obvious.
Expanding mympi to involve multiple hosts requires thought as to how the hosts will
be specified (e.g. via command line list, environment variable, or other means) and
how to create processes on remote machines. In particular the option of having
daemons on each host responsible for creation of application (a.out) processes,
versus direct remote initiation was discussed. Different policies for mapping a.out
processes to available hosts were considered, introducing concepts like round-robin
and blocked allocation. Some security issues associated with the creation of processes
on remote machines was also discussed. The final demonstration was a modification
of the com-snake demo, but with typed data and across multiple hosts.

2.3 Stage 3 – Heterogeneous Hosts and Global Operations

Requirements: Use XDR (external data representation) to extend the above code to
run between heterogeneous UNIX computers (specifically between UltraSPARC/
Solaris and x86/Linux systems). Using the mympi rank, size, send and recv routines
developed above construct higher level functions for performing collective operations
equivalent of MPI_Barrier, MPI_Bcast, MPI_Reduce, MPI_Allreduce,
MPI_Gather and MPI_Scatter (again without communicators and only for
reduction calls involving summation). Provide theoretical and observed performance
characteristics for all of these functions.

Comments: Moving to a heterogeneous environment requires different binaries to be
run on each system type, and considering how these locations should be specified.
The difference between big and little endian, learnt during earlier courses, was now
very obvious. While use of XDR was mandated, its impact on performance was
discussed, as was the use of lighter weight alternatives. Various alternative appro-
aches to constructing barriers and other collective operations were discussed and the
cost analyzed as a function of number of processes and length of message. (For the
student the primary objective was to implement correct collective operations and
understand their performance characteristics. This invariably resulted in binary tree
type implementations, although more elaborate schemes such as those outlined by
Rabenseifner [10] were discussed in class.) The demonstration involved running the
com-snake program over a heterogeneous environment, and then using other pro-
grams to perform a variety of collective operations.

2.4 Stage 4 – Shared Memory

Requirements: Modify the code to use UNIX shared-memory segments and sema-
phores for message transfers that occur between processes on the same shared-memory
node. Compare performance using shared-memory transfers with socket-based
transfers.

 A Project Based Approach to Teaching Parallel Systems 159

Comments: The students had at this stage completed a laboratory class that covered
basic use of shared-memory segments. They were also familiar with the concept of a
semaphore through the second year course in concurrent and distributed systems,
although this had not specifically covered UNIX semaphore arrays. To enable easy
switching between use of shared-memory and socket based intra-node commu-
nications, a command line option was added to mympirun. The concept of a group of
processes, defined as all processes running on the same host, comes naturally when
using clusters of shared-memory processors. The number of shared-memory segments
and semaphore arrays to be used was discussed in the context of contention (for shared
resources) and possible system wide limits. In the end a model that used one shared-
memory segment divided up to provide unique read and write buffers for each pair of
processes on the same host was used. How to handle wild card options that may
involve data being received either in the shared memory segment or on a socket was
solved, rather inefficiently, using a busy wait loop that monitored all possible sockets
and semaphores in a round robin fashion. Superior performance was demonstrated by
running a simple ping-pong benchmark with and without shared-memory transfers.

2.4 Stage 5 – Performance Evaluation and General Critique

Requirements: Perform extensive performance evaluation for all functions in mympi.
Consider possible TCP/IP tuning options [11]. Download and install at least one other
version of MPI (eg LAM-MPI or MPI-CH [12]) and compare its performance with
that of mympi. Give consideration to issues raised by your fellow developers during
the earlier stages of this project and comment on where mympi might go from here.

Comments: Since the performance evaluation was undertaken on a rather noisy student
computing environment no performance data will be given here, just details of what
was evaluated. The Nagle algorithm, used to concatenate small messages on a TCP/IP
network, was identified as a possible performance bottleneck raising latencies for small
message transfers. Some tests were run to compare transfers with and without the
Nagle algorithm invoked. The effect of changing the size of the shared-memory
buffers, identified in stage 4 as a performance issue, was investigated. MPI-CH was
installed and its performance compared to mympi for simple ping-pong transfers and
for collective operations. Results both within a shared-memory node and between
nodes were obtained. While MPI-CH was found to be slightly faster, the students were
pleased to find that it was not hugely faster (noting that this conclusion was drawn
from experiments run on a non-dedicated environment). Error handling and error
detection (e.g. when a remote process dies) were identified as the two areas that most
urgently required further work.

3 Discussion

The group project as outlined above constituted 25% of the students final course
mark. Another 25% was associated with a more conventional assignment requiring
parallelization of a 1-D fast Fourier transform using MPI on a cluster and pthreads or
OpenMP (the student could chose) on a shared memory system. The final exam was
worth 50%. With just 5 students in the course feedback was informal, and along the

160 A.P. Rendell

lines of the course being hard and requiring considerable work, but that they all
greatly enjoyed the challenge and the effort made to run a very different style of
course. Of the five students who completed the course, 3 went on to obtain first class
honours, while 2 ended up leaving university to take up full-time employment before
they had completed their honours year. Of the students who obtained first class
honours one is now pursuing a PhD in work related to cluster computing.
 As with any group project that comprises an incremental set of steps the danger is
that someone in the chain fails to deliver. Fortunately this did not occur, and what the
students actually achieved was quite impressive. Likewise for any software develop-
ment project it is also important that the first student makes wise design decisions, as
this will intricately affect all later students.
 Having trialed this project once with a small group of able students it would be
relatively easy to adapt it to a much larger diverse class by, e.g. dividing the students
into groups of mixed ability and having each group work on their own version of
mympi. The exercise could then be run as a challenge between groups to produce the
best performing message passing software.
 Perhaps the biggest limitation in the project as carried out was the lack of a
dedicated teaching cluster so that the students could obtain reliable performance data.
In future, however, this will not be a problem, since due to the success of this course
and related project work in the high performance scientific computing course we were
awarded in mid 2005 a teaching grant that has enabled us to purchase an 8 node dual
core Athlon 64 cluster.

Acknowledgements. The author gratefully acknowledge support from the Compu-
tational Science Education Program of the Australian Partnership in Advanced
Computing.

References

1. The Australian Partnership in Advanced Computing, see http://www.apac.edu.au
2. ANU Bachelor of Computational Science degree, see http://bcomptlsci.anu.edu.au/
3. COMP3320: High Performance Scientific Computing, see http://cs.anu.edu.au/student/

comp3320
4. COMP4300: Parallel Systems, see http://cs.anu.edu.au/student/comp4300
5. J. Roper and A.P. Rendell, Introducing Design Patterns, Graphical User Interfaces and

Threads within the Context of a High Performance Computing Application, LNCS 3515,
18 (2005).

6. Parallel Programming: techniques and applications using networked workstations and
parallel computers, Barry Wilkinson and Michael Allen. Prentice Hall 1999. ISBN 0-13-
671710-1.

7. Using MPI-2: Advanced Features of the Message-Passing Interface, William Gropp,
Ewing Lusk and Anthony Skjellum, MIT Press, 1999; ISBN 0-262-57132-3.

8. Global Arrays, www.emsl.pnl.gov/docs/global
9. Message Passing Forum, see http://www.mpi-forum.org

10. R. Rabenseifner, Optimization of Collective Reduction Operations, LNCS 3036, 1 (2004)
11. See for example: Enabling High Performance Data Transfers http://www.psc.edu/

networking/projects/tcptune/
12. LAM-MPI, see http://www.lam-mpi.org, MPI-CH, see http://www-unix.mcs.anl.gov/mpi/

mpich

	Introduction
	COMP4300: A Course in Parallel Systems
	Stage 1 – Basic Process Creation and Communication
	Stage 2 – Rank, Size, Typed and Tagged Communication with Multihosts
	Stage 3 – Heterogeneous Hosts and Global Operations
	Stage 4 – Shared Memory
	Stage 5 – Performance Evaluation and General Critique

	Discussion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

