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Abstract. The paper shows how to combine together the Lattice Boltz-
mann Methods with the time splitting and the grid refinement tech-
niques, in order to solve reaction-diffusion processes including very fast
reaction dynamics, i.e. with time and length scales that vary in a wide
range of values. The method is applied to the reaction prototype prob-
lem: M0 ← M + L � ML with semi-infinite diffusion conditions and
in presence of an electrode where Nernst + flux balance conditions are
considered. Two important geometries are considered, planar and spher-
ical, and off-lattice boundary conditions are set up, for general irregular
and curved boundaries. We discuss the need, for some cases, of applying
the time splitting and the grid refinement approach to have a numerical
scheme more easily handled and to substantially reduce the computa-
tional time. Furthermore, we point out the physico-chemical conditions
to apply the time splitting and the grid refinement to optimise accu-
racy and performance. In particular, we stress: a) the range of values of
the relaxation BGK parameter to have the best performance in solving
the pure diffusive scheme and b) the best values of the grid refinement
factor to preserve a good accuracy and drastically reduce the time of
computation and the memory usage.

1 Introduction

Environmental physicochemical problems usually involve a large number of
processes that take place over a wide range of space and time scales. We will
consider, in this paper, the typical reaction-diffusion process as:

M0 ← M + L � ML (1)
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wherein a metal ion M can react in solution with a ligand L forming a complex
ML with given association and dissociation rate constants, ka and kd respec-
tively. Furthermore, the metal ion is reduced at an electrode surface into M0.
All the species diffuse with diffusion coefficients, DM, DL, DML and DM0 respec-
tively. Process (1) is a typical electrochemical problem and in environmental
systems is a typical multi-scale problem. In fact, the reaction rate constants and
the diffusion coefficients of the species can vary over a large range of values.
Typically, the reaction constants ka can take values between 10−6m3mol−1s−1

and 108m3mol−1 s−1, ranging from a complete inert to a fully dynamic case. On
the other hand, the diffusion coefficients usually take values from 10−12m2s−1

to 10−9m2s−1. As a consequence, the reaction and the diffusion may occur at a
different time and space scales. We shall focus the attention to the pure reaction-
diffusion process, by applying a potential E at the electrode surface. We take
E sufficiently negative relatively to the reduction-oxidation standard potential
E0. For instance, a value such that E − E0 = −0.3V is large enough in order to
consider the electrode surface acting as a perfect sink for M.

The space-time scales of the system are described by four key parameters.
The space scales of diffusion and reaction are described by the diffusion layer
thickness δ and the reaction layer thickness μ, respectively (see [1] for a complete
explanation). In many cases, δ, is expressed as [1]:

δ =
√

πDMt (2)

where t is the total time in which diffusion occurs.
The thickness μ depends on the ratio of the diffusion rate of M over its

recombination rate with L [1]:

μ =

√
DM

kac∗L
(3)

where c∗L is the bulk concentration of L.
The time scales of reaction and diffusion are described, respectively, by the

recombination rate of M with L:
1

kac∗L
(4)

and the diffusion rate of M
δ2

DM

(5)

Relevant cases are those where the concentration of the complex ML is rela-
tively large with respect to M. In fact, let us consider the typical set of values
wherein the bulk concentration of L, c∗L is in excess compared with the bulk
concentration of M, c∗M : c∗M = 10−3mol m−3, c∗L = 1mol m−3, DM = 10−9m2s−1,
kac

∗
L = 108s−1. By applying the potential E at the electrode surface, the reac-

tion is forced to be far from the chemical equilibrium and a diffusion gradient
is established close to the electrode surface. After one second, the above men-
tioned parameters take the following values: μ = 3.16 · 10−9m, δ = 5.6 · 10−5m,
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(kac
∗
L)

−1 = 10−8s and δ2/DM = 3.14s. Clearly, the reaction and the diffusion
processes take place at very different scales. In order to numerically solve this
kind of multi-scale process we use two numerical methods, the time splitting
which allows us to discriminate fast and slow processes and the grid refinement
which allows us to localise a fine grid only within regions wherein large variations
of the concentration profiles are expected.

1.1 Definition of the Problem

The semi-infinite diffusion-reaction problem (1) is described by the following
system of partial differential equations defined in an open set Ω (∀t > 0):

∂cM(x, t)
∂t

= DM∇2cM(x, t) + R(x, t) (6)

∂cML(x, t)
∂t

= DML∇2cML(x, t) − R(x, t) (7)

∂cL(x, t)
∂t

= DL∇2cL(x, t) + R(x, t) (8)

where
R(x, t) = kdcML(x, t) − kacM(x, t)cL(x, t) (9)

For the planar case, Ω = (0, +∞), the electrode is placed at x = 0. For spherical
case, Ω = R

3 −S, the electrode is placed at S = r ∈ R
3 : |r| < r0 where r0 is the

radius of the electrode, usually 5-10μm. We shall refer to the electrode surface as
∂Ω for both planar and spherical geometries. In order to compact the notation,
we introduce the functions cX = cX(x, t), with X=M, L, ML to represent the
values of the concentrations of the species involved in the processes.
The equilibrium constant between the species of the reaction (1), K = ka

kd
is

defined by:

K =
c∗ML

c∗Mc∗L
(10)

where c∗X are the bulk concentrations of the species.
Initial conditions are the bulk values of cX:

cX = c∗X t = 0 (11)

The boundary conditions for semi-infinite diffusion are the following:

cX → c∗X x → ∞ (12)

ML and L are electroinactive, therefore no flux of ML and L is crossing the
electrode-solution interface (x = 0, ∀t > 0):

(∂cML(x, t)
∂x

)

x=0
= 0

(∂cL(x, t)
∂x

)

x=0
= 0 (13)

Finally, the Nernst and flux balance conditions at the electrode surface ∂Ω, in
the limit E − E0 << −0.3V, give:

cM(x, t) = 0 x = 0 (14)
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2 The Numerical LBGK Scheme

The problem stated in equations (6) - (8) is numerically solved by using the
Lattice Boltzmann (LB) method in the LBGK approximation [2, 3]. The LB ap-
proach is based on a mesoscopic description of the physical system. The space is
discretized by a grid or a lattice of spacing Δx and a discrete time step of dura-
tion Δt. The lattice is identified by its spatial dimension d and its coordination
number z indicating the number of neighbours of each lattice. Traditionally, the
lattice is then referred to as a DdQz lattice (D stands for Dimension and Q for
Quantities). Important quantities of a LB model are the mesoscopic velocities vi,
i = 0, ..., z, which denote the admissible velocities of the particles. The admis-
sible velocities reflect the chosen lattice topology so that, in one time step, the
particles can reach any of the z neighbouring lattice site. Following the model
proposed by [4], the LBGK dynamics of the system is described by the following
evolution equation:

fi,X(x + viΔt, t + Δt) = fi,X(x, t) + ωX(f (eq)
i,X (x, t) − fi,X(x, t)) + Δt

R(x, t)
2d

(15)

where fi,X(x, t) is the density distribution function, ωX is the relaxation param-
eter, f (eq)

i,X (x, t) is the equilibrium density distribution function and R(x, t) is
defined in (9). The second term in the rhs of equation (15) is the non-reactive
term, ΩNR

i,X. The third term in the rhs of equation (15) is the reactive term, ΩR
i,X.

The equilibrium density distribution and the relaxation parameter in equation
(15) are [4]:

f (eq)
i,X (x, t) =

cX

2d
ωX =

2
1 + 2dDXΔt

Δx2

(16)

2.1 The Time Splitting Method

In order to perform simulations when the time scale of diffusion and reaction are
very different, we will use the time splitting method, following the work presented
in [1] wherein the time splitting method has been applied to the LBGK numerical
scheme. The complete numerical scheme (15) is now split into its pure diffusive
and reactive parts in the following way [1]:

f̄i,X(x + viΔt, t + Δt) = f̃i,X(x, t + Δt) + ΩNR
i,X(f̃(x, t + Δt)) (17)

and
f̃i,X(x, t′ + ΔtK) = f̃i,X(x, t′) + ΩR

i,X(f̃(x, t′)) (18)

Here we have assumed that the time variable t′ for the reaction equation runs
faster than t, the time variable of the diffusion equation. This means that
ΔtK << Δt. In addition, the initial condition of equation (18) is f̃(x, t′) =
f̄(x, t). For a detailed description of the technique and of the symbols intro-
duced, see [1]. However, the time splitting method alone is not sufficient to
completely solve processes with very large reaction rates. In the next subsection
we will explain with a simple example, that applying the time splitting, also
requires to adjust the grid size according to the reaction rate.
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2.2 The Reason to Refine the Grid

Let us consider a simple reaction diffusion problem with only one species, say
M, and let us vary the rate k. For a one dimensional problem, considering the
initial and the boundary conditions (11) and (12) and the perfect sink condition
on ∂Ω, the time splitting exact solution reads [5] in the time interval [0, t]:

cM(x, t) = c∗Mekterf
( x

2
√

DMt
) (19)

If we consider the exact solution in two points, x and x + Δx, we can write:

cM(x + Δx, t) − cM(x, t) = c∗Mekt
[
erf

(x + Δx

2
√

DMt

)
− erf

( x

2
√

DMt

)]
(20)

The first order Taylor series expansion around x of an amount Δx, with Δx → 0,
allows us to write:

cM(x + Δx, t) − cM(x, t) = c∗MektΔx
e
− x2

2
√

DMt

√
πDMt

(21)

In general, we expect that cM(x, t) will vary smoothly in space to ensure numeri-
cal accuracy. So, if we require that |cM(x+Δx, t)−cM(x, t)| < θ , then we obtain
the condition:

Δx < e−kt

√
πDMt

c∗M
exp

( x2

2
√

DMt

)
· θ (22)

Inequality (22) says that: a) Δx has to be bounded and b) if we consider two
rates k1 and k2 such that k1 > k2, then Δxk1 < Δxk2 . Therefore, for very fast
reaction dynamics, in order to get a variation between x and x+Δx less than θ,
the grid size Δx has to be chosen small enough, accordingly to inequality (22).
Furthermore, it is not necessary to use the restriction (22) in all the domain.
It is advisable to restrict its usage only to region where this is really needed.
In fact, the initial conditions on the concentration profiles cX are chosen such
that equation (10) is fulfilled. This fact suggests to use a grid size that satisfy
condition (22) only close to the electrode surface and more precisely within the
region comparable to the reaction layer thickness μ (∼ 2 − 3μ).

2.3 The Time Splitting - Grid Refinement - LBGK Scheme

To simplify the description, we will refer only to the simpler refinement made by
just two sub-grids. Let us divide the domain Ω into two sub-domains Ω1 and Ω2.
Let us build two grids, G1 , with discretization parameters Δx1 and Δt1, and
G2, with discretization parameters Δx2 = gΔx1 and Δt2 = gΔt1, where g is the
grid refinement factor. The grid G1 covers the set Ω1, while the grid G2 covers
the set Ω2. The strategy suggested is based on the conservation of the function
cX and of its first derivative ∂cX

∂x at the subgrids Γ = G1 ∩ G2. If we define c
(1)
X
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and c
(2)
X as the concentrations defined in the subgrids G1 and G2 respectively,

the conservation conditions are:

c
(1)
X = c

(2)
X

∂c
(1)
X

∂x
=

∂c
(2)
X

∂x
x ∈ Γ (23)

which ensures the continuity of the concentration profiles and of the fluxes of
the species X. Following [1], the coupling conditions at x ∈ Γ are obtained by
solving the following system in the unknowns f

(2)
1,X and f

(1)
2,X:

(
1 −1

−Δx1 −Δx2

) (
f

(2)
1,X

f
(1)
2,X

)

=

(
f

(1)
1,X − f

(2)
2,X

Δx2[f
(1)
1,X − c

(1)
X (x1)] + Δx1[f

(2)
2,X − c

(2)
X (x2)]

)

(24)
where x1 = x − Δx1 and x2 = x + Δx2. The final numerical scheme in the time
interval [t, t + Δt2] is the following:

1. Solve the pure diffusive problem by applying equation (17) in the coarser
sub-grid G2 and then g-times in the finer sub-grid G1. Apply the coupling
conditions (23) on Γ by solving the system (24)

2. Solve the pure reactive problem by applying equation (18) in the coarser
sub-grid G2 and then in the finer sub-grid G1.

2.4 The Off-Lattice Numerical Boundary Conditions

In order to preserve the accuracy of the numerical scheme also for irregular
boundaries, we propose a numerical discretization of the boundary conditions
where the boundary is not on a grid point. For simplicity only discuss the 1D
problem. Let us consider the grid G1 and two points, x1 and x2, where x1 is
inside the boundary, x2 outside, and x1 < xb < x2. The fi,X(x, t) are computed
at x1 only to ensure the appropriate boundary condition at xb, assuming that
interpolation is considered. The Taylor expansion of cX at xb reads:

cX(x2) = cX(xb) + (Δx − xb)
∂cX

∂x (x=xb)
+ o(Δx − xb)2 (25)

Furthermore, we can write the spatial derivative in the rhs of equation (25) as:

∂cX

∂x (x=xb)
=

cX(x2) − cX(x1)
Δx

+ o(Δx2) (26)

By combining expressions (25) and (26) we obtain the numerical Dirichlet and
Neumann boundary conditions:

cX(x1) = cX(x2) − Δx

Δx − xb
(cX(x2) − cX(xb)) (27)

cX(x1) = cX(x2) − Δx
∂cX

∂x (x=xb)
(28)

All the values of the rhs in equations (27) and (28) are known from the boundary
condition or already computed from the numerical scheme. Note that imposing
cX in the LB scheme can be done as explained in [1].
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3 Numerical Validation

We show some numerical validations of the method proposed, for a planar elec-
trode case wherein DM = DL = DML = 10−9m2s−1, kac

∗
L = 105s−1, kd = 103s−1.

Initial conditions are c∗M = 9.9 · 10−6 mol m−3, c∗ML = 9.9 · 10−4 mol m−3 and
c∗L = 10−2 mol m−3. For this case, the scales are: μ = 10−7m, δ = 5.6 · 10−5

√
t

m, 1
kac∗

L
= 10−5s, δ2

DM
= 3.14 · t s. The simulations are run up to t = 10−2s. We

use the time splitting method by applying the discrete equations (17) and (18)
and the reaction is solved with an implicit scheme. We use the grid G1 from
the electrode surface (x = 0) to the distance xb = 3μ and the the grid G2 for
x > xb. The domain size is ∼ 5 · δ in order to fulfil the semi-infinite diffusion
conditions (12).

Tables 1 and 2 show the error on the flux computation computed for several
values of the discretization parameters. The relative error ε with respect to an
analytical result is computed as in [1].

Table 1 shows that the error decreases if the grid size close to the electrode
surface becomes smaller, until Δx1 = μ/20. For smaller grid sizes, the error
increases again, due to the small values of the relaxation parameter. In fact,
when Δx1 = μ/50, the corresponding values of ω1 and ω2 are too small and
the pure diffusive scheme loses accuracy. It is reasonable to fix the relaxation
parameters in the range 0.8 < ω < 1.5 to get the best performance. A way to
circumvent this problem would be to have a grid refinement technique where
Δx2

Δt is constant across the grid instead of Δx
Δt . This topic is under investigation.

Table 2 shows the effect of different grid refinement factors, g, for Δx1 = μ/20
and Δx2 = gΔx1, on accuracy and CPU time. The case where only G1 and G2
are used in all the domain, is shown for comparison. If g increases, then the error
increases as well, but the computation time is shorter. However, for g = 8 the
error is more than 5 percent, a value no longer acceptable. It is preferable to
use g = 2 − 4 which allows us to gain time of computation without losing too
much in precision. It is interesting to compare the errors and the computation
time shown for several g with the results obtained by applying only the grid
G1 everywhere. The results show that the grid refinement allows us to reduce
the computation time while keeping a good precision. With g = 2, the error still
remains less than 1% and the computation time is reduced 20% in comparison to
the time required using only the grid G1. Furthermore, in the last line of table 2,

Table 1. Error for different space grid sizes. Parameters of the simulation: DM =
DL = DML = 10−9m2s−1, kac

∗
L = 105s−1, kd = 103s−1. g = 2, Δx2 = gΔx1, xb = 3μ,

t = 10−2 s. (1000 time steps).

Δx1 ω1 ω2 ε

μ/5 1.90 1.95 8.71%
μ/10 1.67 1.82 3.80%
μ/20 1.11 1.43 0.50%
μ/50 0.33 0.57 3.90%
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Table 2. Error for different grid refinement factors g. Same parameters as in table 1,
but Δx1 = μ/20 and Δx2 = gΔx1.

g Computation time ε

2 0.80 0.50%
4 0.77 2.03%
6 0.72 4.79%
8 0.70 7.52%

only grid G1 everywhere 1 0.02%
only grid G2 (g = 2) everywhere 0.50 0.71%

we show the error and the computation time obtained with Δx2 = 2Δx1, by
applying only the grid G2. The computation time is still reduced, but the error
obtained by using only the coarser grid everywhere is larger.

4 Conclusions

We have seen that for processes involving fast reactions the grid size should be
small enough to follow the strong variations of the concentration profiles close to
the electrode surface. However, the grid size should be chosen carefully in order
to avoid values of the relaxation parameters too small. It is advisable to choose
grid size values, such that the corresponding relaxation parameter values range
between 0.8 and 1.5. The grid refinement is very useful because it allows us to
keep a good precision and to reduce the time of computation.

Acknowledgements

The authors gratefully acknowledge support of this work by the Swiss National
Foundation. Josep Galceran also thanks the support of this research by the
Spanish Ministry of Education and Science (DGICYT: Project BQU2003-07587).

References

1. Alemani, D., Chopard, B., Galceran, J., Buffle, J.: Phys. Chem. Chem. Phys., 7
(2005) 3331-3341.

2. Wolf-Gladrow, D.A.: Lattice Gas Cellular Automata and Lattice Boltzmann Models:
An introduction, Printed in Berlin, Springer-Verlag (2000).

3. Chopard, B., Droz, M.: Cellular Automata Modelling of Physical Systems, Cam-
bridge Univ. Press. UK (1988).

4. Dawson, S., Chen, S., Doolen, G.D.: Journal of Chemical Physics 98 (1992) 1514.
5. Hundsdorfer, W., Verwer, J.G.: Numerical Solution of Time-Dependent Advection-

Diffusion-Reaction Equations, Printed in Berlin, Springer-Verlag (2003).


	Introduction
	Definition of the Problem

	The Numerical LBGK Scheme
	The Time Splitting Method
	The Reason to Refine the Grid
	The Time Splitting - Grid Refinement - LBGK Scheme
	The Off-Lattice Numerical Boundary Conditions

	Numerical Validation
	Conclusions


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




