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Abstract. Profile Hidden Markov Models (PHMMs) are used as a popular tool 
in bioinformatics for probabilistic sequence database searching. The search 
operation consists of computing the Viterbi score for each sequence in the 
database with respect to a given query PHMM. Because of the rapid growth of 
biological sequence databases, finding fast solutions is of highest importance to 
research in this area. Unfortunately, the required scan times of currently 
available sequential software implementations are very high. In this paper we 
show how reconfigurable hardware can be used as a computational platform to 
accelerate this application by two orders of magnitude. 

1   Introduction 

Profile Hidden Markov Models (PHMMs) have been introduced to molecular biology 
to statistically describe protein families [6,8]. This statistical description can be used 
for sensitive and selective protein sequence database searching [5]. The scan 
operation consists of aligning each sequence in the database to a query PHMM using 
the well-known Viterbi algorithm [12]. This type of database search is widely used in 
biological research. Examples include searching for trans-membrane domains [9] and 
Spin/SSTY homologues [11], to name just a few.  However, due to the quadratic time 
complexity of the Viterbi algorithm this search can take hours or even days 
depending on the database size, query PHMM length, and hardware used. Therefore, 
several parallel solutions for PHMM database searching have been developed on 
coarse-grained architectures such as clusters [13] and grids [2] as well as on fine-
grained architectures such as SIMD boards [3,10] and graphics cards [7].  

In this paper we show how re-configurable field-programmable gate array 
(FPGA)-based hardware platforms can be used to accelerate PHMM database 
scanning by two orders of magnitude.  Since there is a large overall FPGA market, 
this approach has a relatively small price/unit and also facilitates upgrading to 
FPGAs based on state-of-the-art technology. We present a high-speed 
implementation on a Virtex II XC2V6000. The implementation is also portable to 
other FPGAs. 

This paper is organised as follows. In Section 2, we introduce the Viterbi 
algorithm used to align a PHMM to a sequence. The parallel algorithm and its 
mapping onto a reconfigurable platform are explained in Section 3. The performance 
is evaluated and compared to previous implementations in Section 4.  Section 5 
concludes the paper with an outlook to further research topics. 
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2   Viterbi Algorithm for Profile Hidden Markov Models 

Biologists have characterized a growing resource of protein families that share 
common function and evolutionary ancestry. PHMMs have been identified as a 
suitable mathematical tool to statistically describe such families and PHMM 
databases such as PFAM [1] have been created. The general transisiton structure of a 
PHMM is shown in Figure 1. It consists of a linear sequence of nodes. Each node has 
a match (M), insert (I) and delete state (D). Between the nodes are transitions with 
associated probabilities. Each match state and insert state also contains a position-
specific table with probabilities for emitting a particular amino acid. Both transition 
and emission probabilities can be generated from a multiple sequence alignment of a 
protein family. 
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Fig. 1. The transition structure of a PHMM of length 4. Squares represent match states, circles 
represent delete states and diamonds represent insertions. 

A PHMM can be aligned to a given protein sequence to determine the probability 
that the sequence belongs to the modeled protein family. The most probable path 
through the PHMM generating a sequence equal to the given sequence determines a 
similarity score. The well-known Viterbi algorithm can compute this score by 
dynamic programming (DP). The computation is given by the following recurrence 
relations. 
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where tr(state1,state2) is the transition cost from state1 to state2 and e(Mj,si) is the 
emission cost of amino acid si at state Mj. M(i,j) denotes the score of the best path 
matching subsequence s1…si to the submodel up to state j, ending with si being 
emitted by state Mj. Similarly I(i,j) is the score of the best path ending in si being 
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emitted by Ij, and, D(i,j) for the best path ending in state Dj. Initialization and 
termination are given by M(0,0)=0 and M(n+1,m+1) for a sequence of length n and a 
PHMM of length m. By adding jump-in/out costs, null model transitions and null 
model emission costs the equation can easily be extended to implement Viterbi local 
scoring (see e.g. [4]). 

An alignment example is illustrated in Figures 2, 3, and 4. A PHMM with 
transition scores is given in Figure 2. The emission scores of the M-states are given in 
Figure 3.  The I-states emission scores in this example are set to zero, i.e. e(Ij,si) = 0 
for all i ,j. The Viterbi DP matrix for computing the global alignment score of the 
sequence HEIKQ and the given PHMM is shown in Figure 4. The three values M, I, 
D at each position are displayed as DMI. A traceback procedure starting at M(6,5) and 
ending at M(0,0) (shaded cells in Figure 4) delivers the optimal path through the 
given PHMM emitting the sequence HEIKQ. 
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Fig. 2. The given PHMM of length 4 with transition scores 

 A C D E F G H I K L M N P Q R S T V W Y 
M1 −1 −1 −1 −1 1 −1 3 1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 
M2 1 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 
M3 2 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
M4 −1 −1 1 −1 −1 −1 1 −1 2 −1 −1 −1 −1 −1 −1 −1 1 −1 −1 −1 

Fig. 3. Emission scores of the M-states for the PHMM in Figure 2 

 0 1 2 3 4 5 

∅ *0
* -5−∞−∞ -7−∞−∞ -9−∞−∞ -12−∞−∞  

H −∞−∞-5 −∞3−7 1−7−∞ −1−9−∞ −4−9−∞  
E −∞−∞-7 −∞−8−2 −43

−2 0−1−4 −3−3−6  
I −∞−∞-9 −∞−6−4 −6−4−1 −32

−3 −1−2−5  
K −∞−∞-11 −∞−10−6 −8−5−3 −5−30 −42

−3  
Q −∞−∞-13 −∞−12−8 −10−8−5 −7−5−2 −6−2−2  
      −2 

Fig. 4. The Viterbi DP matrix for computing the global alignment score of the protein 
sequence HEIKQ and the given PHMM 
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3   Mapping onto a Reconfigurable Platform  

The three values of I, D, and M of any cell in the Viterbi DP matrix can only be 
computed if the values of all cells to the left and above have been computed. But the 
calculations of the values of diagonally arranged cells parallel to the minor diagonal 
are independent and can be done simultaneously. Assuming we want to align a 
subject sequence to a query PHMM on a linear array of processing elements (PEs) 
this parallelization is achieved by mapping the Viterbi calculation as follows: one PE 
is assigned to each node of the query PHMM. The subject sequence is then shifted 
through the linear chain of PEs (see Fig. 5). If l1 is the length of the subject sequence 
and l2 is the length of the query PHMM, the comparison is performed in l1+l2−1 steps 
on l1 PEs, instead of the l1×l2 steps required on a sequential processor. 

… H E I K Q

subject sequence

query model

 
Fig. 5. Systolic sequence comparison on a linear processor array 

Figure 6 shows our design for each individual PE. It contains registers to store the 
following temporary DP matrix values: M(i−1,j−1), I(i−1,j−1), D(i−1,j−1) (upper-left 
cells) and M(i−1,j), I(i−1,j), D(i−1,j) (upper cells). The values M(i,j−1), I(i,j−1), and 
D(i,j−1) are stored in the left neighbour. Each PE holds the emission probabilities 
e(Mj,si) and e(Ij,si) for the corresponding PHMM node in two look-up-tables (LUTs). 
The look-ups of e(Mj,si) and e(Ij,si) and their addition are done in one clock cycle. 
The results are then passed to the next PE in the array together with the sequence 
character. 

The data width (dw) is scaled to the required precision (usually dw = 24 bits is 
sufficient). The LUT depth is scaled to hold the number of emission scores per node 
(usually 20 for aminoacid sequences). The emission width (ew) is scaled to 
accommodate the dynamic range required by the emission score (usually ew=16 is 
sufficient). The look-up address width (lw) is scaled in relation to the LUT depth. All 
numbers are represented in 2-complement form. Furthermore, the adders in our PE 
design use saturation arithmetic.  

In order to achieve high clock frequencies fast saturation arithmetic is crucial to 
our design. Therefore, we have added two tag bits to our number representation. 
These two tags encode the following cases: number (00), +max (01), −max (10), and 
not-a-number (NaN) (11). The tags of the result of an addition and maximum 
operation are calculated according to Table 1 and 2. Our representation has the 
advantage that result tags can be computed in a very simple and efficient way: if any 
of the operand’s tags is set in an addition, a simple bit-wise OR operation suffices. 
Otherwise, the tags will be set according to the overflow bit of the performed 
addition.  
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Table 1. Computation of result tags in the case of an addition 

add number (00) +max (01) −max (10) NaN (11) 

number (00) 00(a) 01 10 11 
+max (01) 01 01 11 11 
−max (10) 10 11 10 11 
NaN (11) 11 11 11 11 

(a)except the case that the result produces an overflow, then the result tag is 01 (if MSB is set) 
or 10 (if MSB is not set) 

Table 2. Computation of result tags in the case of a maximum operation 

max number (00) +max (01) −max (10) NaN (11) 
number (00) 00 01 00 11 

+max (01) 01 01 01 11 
−max (10) 00 01 10 11 
NaN (11) 11 11 11 11 

Assuming, we are aligning the subject sequence S = s1…sM of length M to a query 
PHMM of length K on a linear processor array of size K using the Viterbi algorithm. 
As a preprocessing step, the transition and emission probabilities of states Mj, Ij, and 
Dj are loaded into PE j, 1≤j≤K. S is then completely shifted through the array in 
M+K−1 steps as displayed in Figure 5. In iteration step k, 1≤k≤M+K−1, the values 
M(i,j), I(i,j), and D(i,j) for all i, j with 1≤i≤M, 1≤j≤K and k=i+j−1 are computed in 
parallel in all PEs within a single clock cycle. For this calculation, PE j, 2≤j≤K, 
receives the values M(i,j−1), I(i,j−1), D(i,j−1) and si from its left neighbor j−1, while 
all other required values are stored locally. Thus, it takes M+K−1 steps to compute 
the alignment score with the Viterbi algorithm. However, notice that after the last 
character of S enters the array, the first character of a new subject sequence can be 
input for the next iteration step. Thus, all subject sequences of the database can be 
pipelined with only one-step delay between two different sequences. 

So far we have assumed a processor array equal in size of the query model length. In 
practice, this rarely happens. Since the length of the HMMs may vary, the computation 
must be partitioned on the fixed size processor array. The query model is usually larger 
than the processor array. For sake of clarity we firstly assume a query sequence of 
length K and a processor array of size N where K is a multiple of N, i.e. K=p⋅N where 
p≥1 is an integer. A possible solution is to split the computation into p passes:  

The first N nodes of the query model are assigned to the processor array and the 
corresponding emission and transition scores are loaded. A number of database 
sequences to be aligned to the query model then cross the array; the M-, I-, and D-
value computed in PE N in each iteration step are output. In the next pass the 
following N nodes of the query model are loaded into the array. The data stored 
previously is loaded together with the corresponding subject sequences and sent 
again through the processor array. The process is iterated until the end of the query 
model is reached.   



 Accelerating the Viterbi Algorithm for PHMMs Using Reconfigurable Hardware 527 

M(i-1,j-1)
tr(Mj-1,Mi)

I(i-1,j-1)

D(i-1,j-1)

tr(Ij-1,Mi)

tr(Dj-1,Mi)

M
A
X

M
A
X

si

tr(Ij,Ii)

tr(Mj,Ii)

M
A
X

I(i-1,j)

M(i-1,j)

D(i-1,j)

LUTe(Mj, si) LUTe(Ij, si)

M(i,j-1)

tr(Mj-1,Di)

I(i,j-1)

tr(Dj-1,Di)

M
A
X

D(i,j-1)

si-1 sw

dw

dw

dw

M(i-1,j)

I(i-1,j)

D(i-1,j)

si

dw

dw

dw

dw

dw

sw

ew ew

 

Fig. 6. Schematic diagram of our PE design 

The database sequences are passed in from the host one by one through a first-in 
first-out (FIFO) buffer. The database sequences have been pre-converted to LUT 
addresses. For query lengths longer than the PE array, the intermediate results are 
stored in a FIFO. The FIFO depth is sized to hold the longest sequence in the 
database. The database sequence is also stored in the FIFO. On each consecutive pass 
an LUT offset is added to address the emission table corresponding to the model of 
the next iteration step within the PEs. Figure 7 illustrates this solution for 4 PEs. 
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Fig. 7. System implementation 
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4   Performance Evaluation 

We have described our PE design in Verilog and targeted it to the Xilinx Virtex II 
architecture. We have specified an area constraint for each PE. The linear array is 
placed in a zigzag pattern as shown in Figure 8. We use on-chip RAM for the partial 
result FIFO, i.e. one column of block SelectRAM. The host interface also takes up 
some of the FPGA space in the bottom right-hand corner. Our design has been 
synthesized with Synplify Pro 7.0. We have used Xilinx ISE 6.3i for mapping, 
placement and routing.  
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Fig. 8. System Floor plan in the XC2V6000 on the Alpha-Data ADM-XRC-II Board 

The size of one PE is 8×14 configurable logic blocks (CLBs). We have 
implemented a linear array of these PEs. Using all 96×88 CLBs of a Virtex II 
XC2V6000 on an Alpha-Data ADM-XRC-II PCI board we are able to accommodate 
(96×88)/(8×14) =12×6 = 72 PEs. The corresponding clock frequency is 74MHz.  

A performance measure commonly used in computational biology is cell updates 
per second (CUPS). A CUPS represents the time for a complete computation of one 
entry of each of the matrices M, D, and I. The CUPS performance of our 
implementations can be measured by multiplying number of PEs times the clock 
frequency: 74 MHz × 72 PEs = 5.3 Giga CUPS.  

HMMER [5] is a widely used open source implementation of PHMM algorithms 
with protein databases written in the C programming language. We have measured 
the performance of the hmmsearch algorithm, which is part of the HMMER 2.3.2 
package. hmmsearch also aligns a query PHMM to all protein sequences of a given 
database using the Viterbi algorithm as described in Section 2. The performance of 
hmmsearch for searching the SwissProt database (release 48.6 containing 201,594 
sequences) is around 24 Mega CUPS on a Pentium4 3GHz, 1GB RAM, running 
Linux 2.6.11. Hence, our FPGA implementation achieves a speedup of 220. 
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5   Conclusions and Future Work 

In this paper we have demonstrated that re-configurable hardware platforms provide 
a cost-effective solution to high performance biological sequence database searching 
with PHMMs. We have described a partitioning strategy to implement database scans 
using the Viterbi algorithm on a fixed-size processor array with varying query model 
lengths. Our PE design and partitioning strategy outperforms available sequential 
desktop implementations by two orders of magnitude. Our future work includes 
extending our design to compute local alignments between a sequence and a PHMM 
and making our implementation available to biologists as a webserver.  
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