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Abstract. Employing a differential evolution (DE) algorithm, we pre-
sent a novel permutation-based search technique in list scheduling for
parallel program. By encoding a vector as a scheduling list and differ-
ential variation as s swap operator, the DE algorithm can generate high
quality solutions in a short time. In standard differential evolution al-
gorithm, while constructing the next generation, a greedy strategy is
used which maybe lead to convergence to a local optimum. In order to
avoid the above problem, we combine differential evolution algorithm
with simulated annealing algorithm which relaxes the criterion selecting
the next generation. We also use stochastic topological sorting algorithm
(STS) to generate an initial scheduling list. The results demonstrate that
the hybrid differential evolution generates better solutions even optimal
solutions in most cases and simultaneously meet scalability.

1 Introduction

Given parallel program modelled by a directed acyclic graph (DAG), the objec-
tive of scheduling the tasks to multiprocessors is minimizing the completion time
or makespan while satisfying the precedence constraints. The problem is NP-
hard even simplified model with some assumptions and becomes more complex
under realistic application such as arbitrary task execution and communication
times. Due to the intractability, many classical heuristics have been proposed
to find out sub-optimal solution of the problem, the idea behind these heuristic
algorithms is to tradeoffs the solution quality and the complexity [1-5]. Recently
meta-heuristics search approaches have also made some accomplishment on solv-
ing the problem [1][2][3].

Since DE was first introduced to minimizing possibly nonlinear and non-
differentiable continuous space functions [6], it has been successfully applied
in a variety of applications [7]. In this paper, we exploit a hybrid differential
evolution algorithm to construct the solution for parallel program scheduling
with the permutation-based solution presentation.
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2 The Multiprocessor Scheduling with Communication
Delays

It is popular to model the multiprocessor scheduling using a directed acyclic
graph (DAG), which can be defined by a tuple G = (V, E, C, W ), where V =
{nj, j = 1 : v} is the set of task nodes and v = |V | is the number of nodes, E is
the set of communication edges and e = |E| is the number of edges,C is the set
of edge communication costs, and W is the set of node computation costs. The
value c(ni, nj) ∈ C corresponds to the communication cost incurred while the
task ni and nj are scheduled to different processors, which is zero if both nodes
are assigned on the same processor. The value w(ni) ∈ W is the execution time
of the node ni ∈ V . The edge ei,j = (ni, nj) ∈ E represents the partial order
between tasks ni and nj , which dictate that a task cannot be executed unless
all its predecessors have been completed their execution.

The target system M is consisted of m identical or homogeneous proces-
sors with local memory connected by an interconnection network with a cer-
tain topology. When scheduling tasks to machines, we assume every task of a
parallel program can be executed on any processor and only on one proces-
sor non-preemptively and the system executes computation and communication
simultaneously.

Scheduling the graph G to M is to find out pairs of (task, processor) which
optimize the scheduling length or completion time. Most scheduling algorithms
are based on the so-called list scheduling strategy. The basic idea of list schedul-
ing is to make a scheduling list (a sequence of nodes for scheduling) by assigning
them some priorities, and then assign the tasks to processor according to some
rule such as the earliest start time first.

3 Differential Evolution Algorithm

Differential evolution (DE) is one of the latest evolutionary optimization meth-
ods proposed by Storn and Price [6]. Like other evolution algorithms, mutant
operator, Crossover operator, selection operator are introduced to generate a
next generation, but DE has its advantages such as simple concept, immediately
accessible for practical applications, simple structure, ease of use, speed to get
the solutions, and robustness, parallel direct search method [6].

At the heart of the DE method is the strategy that the weighted difference
between two vectors selected randomly is exerted on the perturbed vector to gen-
erate a trial vector, then the trial vector and the assigning vector exchange some
elements according to probability, better individuals are selected as members of
the generation G+1.

For example, one version DE/rand/2 updates according to the following
formulates:

(1) Initial population,Xi,G, i = 0, 1, 2, · · · , NP − 1, NP is the number of popu-
lation.

(2) Evolution operation, for every Xi,G, denote running vector.
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Mutation
A mutation vector v is generated according to

Vi,G+1 = Xr1,G + F1 ∗ (Xr2,G − Xr3,G) + F2 ∗ (Xr4,G − Xr5,G) (1)

r1,r2,r3,r4 and r5 ∈ [0, NP − 1] re mutually different integer and different
from running index i; F1, F2 ∈ [0, 2] are constant factor which controls the
amplification of the differential variation (Xr2,G − Xr3,G) and (Xr4,G − Xr5,G).

Crossover
The trial vector is formed,

Ui,G+1 = (u0i,G+1, u1i,G+1, . . . , u(D−1)i,G+1) (2)

where , uji =
{

vji,G+1 j =< n >D, < n + 1 >D, . . . , < n + L − 1 >D

xji,G otherwise (3)

where <>D denote the modulo function with modulus D. The starting index n
in (2) is a randomly chosen integer from the interval [0, D − 1]. The integer L is
drawn from the interval [0, D − 1] with the probability

Pr(L = v) = (CR)v (4)

CR ∈ [0, 1] is the crossover probability and constitutes a control variable for the
DE scheme. The values of both n, D and L can refer to literature [6].

Selection
In order to determine whichever of Ui,G+1 and Xi,G is transferred into the next
generation, the fitness values of the two are comparedand the better is preserved.

(3) Stop Criterion

This process is repeated until a convergence occurs.

4 Applying DE Heuristic to Scheduling Problem

The DE algorithm with few control variables is robust, easy to use and lends
itself very well to parallel computation [6]. However, the continuous nature of
the algorithm limited DE to apply to combinatorial optimization problems. In
order to use it in parallel program scheduling problem, we must re-define the
operations in following way as to take into account the precedence relations
between tasks.

4.1 Redefining the DE

Defining the vector: Every vector in differential evolution algorithm is repre-
sented by a feasible permutation of tasks, a tasks list satisfying topology order.

Defining of differential variation: In our proposed algorithm, the differential
variations (Xr2,G − Xr3, G) and (Xr4,G − Xr5,G) is defined as a set of Swap
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Operator on task nodes in scheduling list[8]. Consider a normal solution se-
quence of multiprocessor scheduling with n nodes, here we define Swap Operator
SO(ni, nj) as exchanging node ni and node nj in scheduling list. Then we define
S̃ = S + SO(ni, nj) as a new solution on which operator SO(ni, nj) acts. For
example,

{n1, n2, n3, n4, n5, n6} + SO(n1, n3) = {n3, n2, n1, n4, n5, n6} (5)

Plus operation between two SOs: Swap Set SS is a set of Swap Operators.

SS = (SO1, SO2, SO3, · · · , SOn) (6)

When Swap Set acts on a solution, all the Swap Operators of the swap Set act
on the solution in order. i.e.

SS = {(nk
i , nk

j ), i, j ∈ {1, 2, · · · , N}, k ∈ {1, 2, · · · , }} (7)

which represents that node nk
i and nk

j are swapped firstly, and n2
i and n2

j are
swapped secondly, and so forth. Define plus operation between SO1 and SO2 as
the union of the two swap operators, denote

SO1 + SO2 (8)

so Swap Set operation can be described by the following formula[8]:

S̃ = S + SS = S + (SO1, SO2, SO3, · · · , SOn)
= ((SO1, SO · · ·) + SO2) + . . . + SOn (9)

The plus sign “+” above means continuous swap operations on one solution.
Plus operation between two SSs: If several Swap Sets have the same results as

a single Swap Set acting on one solution, we define the operator “⊕” as merging
several Swap Sets into a new swap Set[8]. For instance, there is two Swap Sets
SS1 and SS2, SS1 and SS2 act on one solutionS in order, and there is another
Swap Set SS̃ acting on the same solution S, then get the same solution S̃, call
that SS̃ is equivalent to SS1 ⊕ SS2.

Minus operation between two vectors: Suppose there are two vectors, A and
B, a Swap Set SS which can act on B to get vector A, i.e. we can swap the
nodes in B according to A from left to right to get SS. So there must be an
equation A = B + SS. We define the minus operation between vectors A and B
as a SS, that is. A = B + SS ⇔ A − B = SS.

Updating: On the basis of above, Formula (1) has already no longer been
suitable for the scheduling problem. We update it as follows:

Vi,G+1 = Xr1,G + (Xr2,G − Xr3,G) ⊕ (Xr4,G − Xr5,G) (10)

4.2 Stochastic Topological Sorting Algorithm

On the basis of above, the initial vectors, initial scheduling list, must satisfy
the precedence constrains. The topological sorting algorithm (TS) can serve the
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purpose, but the TS has two fatal disadvantages, one of which is that it is based
on the depth-first search so that the topological orders generated by the TS
algorithm cannot cover the whole feasible solutions, the other of which is that
the topological order is fixed because it is subject to the storage structure of the
DAG in the computer. In [9], we devise a novel sorting algorithm, a stochastic
topological sorting algorithm (STS). The STS algorithm will be used in this
paper to generate an initialized population.

4.3 Crossover Operation

In our algorithm, crossover operators adopted do not exchange the values of
the elements but the order the elements appear in vectors to avoid permutation
infeasibility when using permutation-based DE for the scheduling. We lend this
idea from partially mapped crossover (PMX) [10], so that the order the activities
appear in the multidimensional vectors other than the values of the elements are
changed during updating process. The strategy of PMX that performs swapping
elements is illustrated in Fig.1.

Here, the mutation vector and the running vector, respectively, resemble par-
ent 1 and parent 2 in PMX, except that the two vectors should not be in-
corporated into a vector. Element(called element 1) of mutation vector will be
determined according to formula(3) to see if the activity represented by the el-
ement will be moved to another placement or if the element will be swapped
with another one (called element 2), which is the element that element 1 maps
in the running vector[11]. When the placements of the two elements satisfy the
predecessors-successors constraints, the crossover operation takes place.

{n1, n2, · · · , ni, · · · , nk, · · · , nj , · · · , nN}
mutation vector

{n1, n2, · · · , nk, · · · , nj , · · · , ni, · · · , nN}
running vector

{n1, n2, · · · , ni, · · · , nj , · · · , nk , · · · , nN}
trial vector

�
���

�
���

�

�

Fig. 1. An example of the partially mapped crossover operator in DE vectors

4.4 Simulated Annealing Selection Operation

Once a new solution is generated, a decision must be made whether or not to
accept the newly derived vector as next generation. In standard DE, a greedy
strategy is utilized to determine trial and running vector, which means the better
of fitness of the two survive into next generation. The greedy criterion can con-
verge fairly fast, but it runs the risk of becoming trapped by a local minimum[6].
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The mechanism of Simulated Annealing is introduced into DE[12], which effec-
tively optimize the objective function while moving both uphill and downhill.
According to SA algorithm, selection strategy not only accepts better solutions
(decreasing scheduling length) but also some worse solutions(increasing schedul-
ing length). The Metropolis criterion decides on acceptance probability of worse
solutions[12].

5 Experiment Results

Benchmark instances from website (http://www.mi.sanu.ac.yu/ tanjad/) are
used to test the validity of our approach with three different selection strate-
gies. In order to demonstrate the efficiency of the SA select operation, we
test the benchmark instances using three strategies, SA selection operation
(DE+SA), standard DE(STDE), the trial vector directing into next genera-
tion(DE+RAND) respectively.

In our experiments, we select the ogra100 problem with different edge densities
, which is defined as the number of edges divided by the number of edges of a
completely connected graph with the same number of nodes [5]. For each density,
the mean deviations from the optimal schedule for 10 runs are recorded in Table1
for DE with and without SA selection strategy respectively. DE with SA always
has comparable performance on the results of DE without SA whether using
different processors or different densities.

Table 1. Results of the DE algorithm with different selection strategies compared
against optimal solutions (% deviations) for the random task graphs with three densi-
ties using 2, 4, 6, and 8 processors.( amplification factor F1=F2=1, Iteration number
equals 20).

No. of processors
STDE DE+RAND DE+SA

Graph density 2 4 6 8 2 4 6 8 2 4 6 8
60 3.75 8.00 9.25 10.88 2.88 7.13 12.88 11.25 2.88 6.75 8.63 6.79
70 2.75 6.38 7.25 7.25 2.63 8.50 12.13 9.38 1.63 6.75 6.79 6.75
80 1.63 5.00 7.63 4.63 1.38 8.13 10.25 7.38 1.00 4.00 4.75 4.75
90 1.00 1.12 5.48 5.50 1.13 3.50 5.50 5.50 0.50 1.63 4.00 4.00

Avg. Dev. 2.28 5.12 7.40 7.06 2.00 6.81 10.18 8.38 1.50 4.78 6.04 5.57

At the same time, we also investigate how the density of graphs affects the
scheduling results. Because the lengths of optimal schedules are given depend on-
lyon task number, it appears that dense graphs spent less communication costs.
Fig.2 is the result. Based on same tasks number and processors, less deviation
is achieved for dense-task graphs.

Finally, we test the average deviation under different task numbers, and the
result is illustrated in Fig.3. With the tasks number increasing, the communica-
tion cost between tasks assigned to different processors has a vital proportion to
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Fig. 2. The average % deviations from the optimal of the solutions generated by the
DE algorithm for the random task graphs with different densities using 2 processors
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Fig. 3. The average % deviations from the optimal of the solutions generated by the
DE algorithm for the random task graphs with different tasks using 4 processors

the overall cost. A conclusion can be observed that the DE algorithm with SA
selection strategy for scheduling has a good scalability.

From the values above it is evident that a hybrid strategy of DE incorporating
temperature-based acceptance criterion of SA is preferable to greedily selecting
manipulation because the use of probability acceptance to inferior solutions in SA
enhances the solution diversity in search process. The effect is always desirable
due to the advantage of the DE with SA to avoid the local optima.

6 Summary

We have presented a differential evolution algorithm for multiprocessor DAG
scheduling. As can be see from the previous results of the performance-testing
experiment, in most cases the permutation-based DE method can find near-
optimal schedule, especially the DE method with SA selection technique. In
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practice, we combine the DE technique of searching in global space with the SA
capacity to jump out of local optimum in selecting an optimal scheduling list.
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