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Abstract. The main purpose of this paper is to examine the distribu-
tion of the random amplitude error for the sampling problem in diverse
situations, and specific formulas are given, which reveal the connection
between the random errors of the sampled values and the amplitude error
caused by them. The information loss error is also included as a special
case.

1 Introduction and Preliminaries

Sampling theories are now widely used in many areas, especially in digital sig-
nal processing and transmitting. The most important feature of all sampling
theorems is that a continuous signal can be recovered from a sequence of sam-
pled values. The most famous sampling theorem which is usually attributed to
Shannon stated that

f(t) =
∑

n∈ZZ

f
( n

2σ

) sin 2πσ(t − n/2σ)
2πσ(t − n/2σ)

for any σ-bandlimited signals f(t), i.e., f(t) ∈ L2(IR) and its Fourier transform
f̂(ξ) :=

∫
IR f(t)e−i2πξtdt supported on [−σ, +σ], where L2(IR) denote the space

of all square integrable signals. The classical sampling theorem has been extended
in many ways during the last five decades. The most important extension may
be nonuniform sampling and sampling in other signal spaces, such as spline-
like (shift-invariant) spaces and wavelet subspaces, e.g., see [1, 4, 5, 10]. Higher
dimensional sampling is also considered by many researchers because of its wide
application in image processing and many other areas.
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Now let us introduce some notations. We use IRd and ZZd to denote the d-
dimensional Euclidean space and unit lattice, respectively. L(IRd) and l2(ZZd)
denote the space of all square integrable signals defined on IRd and the space
of all square summable sequences defined on ZZd, respectively. With the inner
product 〈f, g〉 =

∫
IRd f(t)g(t)dt, L2(IRd) constitutes a Hilbert space. Obviously,

the sampling problem would be meaningless if no restriction is imposed on the
signal space and the set of sampling points. Throughout this paper we assume
that the signal space V ⊆ L2(IRd) and the set of sampling points X := {tj}j∈J ⊆
IRd satisfy the following conditions:

i). There exists a sequence {sn : n ∈ ZZd} of functions in V which is called a
sampling sequence of V such that

f(t) =
∑

n∈ZZd

f(tn)sn(t) (1)

for any f ∈ V , where the convergence is in the L2(IRd)-sense. In particular, if
there exist s ∈ V such that {s(·− tn) : n ∈ ZZd} constitutes a sampling sequence
of V , then s is said to be a sampling function.
ii). The sampling operator SX : V → l2(X) defined by SX f = (f(tj))j∈J is a
bounded linear operator, i.e.,

∑

j∈J

|f(tj)|2 ≤ B‖f‖2
2 , for all f ∈ V ,

where B is a constant independent of f .
It is worthwhile pointing out that so far all the sampling theorems either in-

clude the above conditions as a assumption or include other assumptions from
which the above conditions can be obtained as a conclusion. Here we list the
sampling sequence or sampling functions for several well-known sampling prob-
lems:

I) Uniform sampling for band-limited functions. The signal space is Bσ, which
consists of all σ-bandlimited signals defined on IR, the system {sinc 2πσ(·−
n/2σ)}n∈ZZ constitutes a sampling sequence of Bσ, where sinc t := sin t/t.
Hence sinc 2πσ(·) is a sampling function of Bσ, the reconstruction formula
is exactly the Shannon sampling theorem.

II) If σ = 1, {tn}n∈ZZ is a sequence of real numbers such that |tn − n| ≤
L < 1/4 for all n, then by Kadec’s 1

4 -theorem (e.g., see [11]), the sequence
{Gn(t)}n∈ZZ constitutes a sampling sequence of Bσ, where

Gn(t) :=
G(t)

G′(tn)(t − tn)
, G(t) := t

∏

n∈ZZ

(
1 − t2

t2n

)
.

III) If the signal space is a spline-like space V 2(ϕ) defined as follows

V 2(ϕ) :=

⎧
⎨

⎩
∑

n∈ZZd

cnϕ(· − n) : c = (cn) ∈ l2(ZZd)

⎫
⎬

⎭ ,
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where ϕ satisfies

0 < c ≤ Gϕ(ξ) =
∑

j∈ZZd

|ϕ̂(ξ + j)|2 ≤ C , a.e. ξ ∈ IRd (2)

and some decay and smoothness condition, e.g., ϕ is continuous and satisfies

‖ϕ‖W (Lp(IRd)) :=

⎛

⎝
∑

k∈ZZd

sup
t∈[0,1]d

|ϕ(t + k)|p
⎞

⎠
1/p

< ∞ ,

then the function s determined by

ŝ(ξ) =
ϕ̂(ξ)∑

j∈ZZd ϕ(j)e2πij·ξ (3)

is a sampling function of V 2(ϕ), and {s(· − n)}
n∈ZZd is a sampling se-

quence, e.g., see [1, 10]. If the sampling points are not uniformly distrib-
uted, we can also construct a sampling sequence of V 2(ϕ). Indeed, if we let
ϕ̃ be determined by ˆ̃ϕ(ξ) = ϕ̂(ξ)/Gϕ(ξ), where Gϕ(ξ) defined in (2), then
K(x, y) :=

∑
j∈ZZd ϕ(x − j)ϕ̃(y− j) is a reproducing kernel (e.g., see [16]),

namely,
f(t) = 〈f, K(t, ·)〉 , for all t ∈ IRd, f ∈ V 2(ϕ) . (4)

If the sampling points {tj} are dense enough, then {K(tj, ·)} constitutes a
frame for V 2(ϕ), and its dual frame { ˜K(tj, ·)} is what we try to find, e.g.,
see [1, 13, 14, 15].

IV) Let ϕ be a scaling function (e.g., see [5, 8, 9]) satisfying (2) and certain
decay and smoothness condition, {Vm : m ∈ ZZ} be the multi-resolution
analysis generated by ϕ (e.g., see [5]). If s be the function determined by
(3), then for each m the system {sm,n : n ∈ ZZ} constitutes a sampling
basis of Vm, where sm,n = ϕ(2m · −n). The reconstruction formula is

f(t) =
∑

n∈ZZd

f
( n

2m

)
sm,n(t) , for all f ∈ Vm .

There are several type of errors which occur in in the real application of
sampling theorems, e.g., see [6]. In [3], Atreas et al examined the truncation
error of the reconstruction formula in wavelet subspaces. It was not long before
Yang et al extended their results to higher dimensional cases and spline-like
spaces, e.g., see [12, 14]. In this paper we shall investigate the random amplitude
error for the above sampling expansions. Specifically, let f(tj) be the true value
of the signal f at the sample tj , and f̃(tj) be the sampled value obtained by
apparatus, of course it cannot be absolutely precise, since it is often noised by a
random error. Let λ(tj) be the relative error defined by

λ(tj) :=
f̃(tj) − f(tj)

f(tj)
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if f(tj) 
= 0, otherwise λ(tj) = sgn(f̃(tj) − f(tj)) · ∞, where sgn(·) denotes the
sign function, i.e., sgn(x) = 1 if x > 0, sgn(x) = −1 if x < 0, and sgn(0) = 0,
and 0 · ∞ = 0 in the definition of λ(tj) by convention. Since the relative error is
determined by the inertia of the sampling apparatus and many other unknown
factors, it is impossible to find out its precise value, so we assume that all λ(tj)’s
are independent and identically distributed (i.i.d.) random variables with finite
first moments. The amplitude error is defined by

Am f(t) := Rec f(t; · · · , f̃(tj), · · ·) − f(t) ,

where Rec f(t; · · · , f̃(tj), · · ·) denotes the signal reconstructed from the sequence
{f̃(tj)} of measured samples.

2 Random Amplitude Error Estimation

In this section we assume that the L2(IRd)-norm of the original signal f(t) is
finite, and then examine the distribution of the amplitude error in terms of
this norm. We assume henceforth that the relative errors λ(tj) are i.i.d. random
variables with E[λ(tj)] = 0 and E[|λ(tj)|] = δ < ∞ if no other assumptions are
claimed, where E[X ] denotes the expectation (mean) of the random variable X .

2.1 Uniform Sampling

Without loss of generality, we assume that the unit lattice ZZd and the signal
space V ⊆ L2(IRd) satisfy the conditions i) and ii) given in Section 1. Let {s(· −
j) : j ∈ ZZd} be a sampling sequence of the signal space V . Then we have the
following reconstruction formula

f(t) =
∑

j∈ZZd

f(j)s(t − j) , (5)

and the amplitude error can be rewrite as

Am f(t) = Rec f(t; · · · , f̃(tj), · · ·) − f(t)

=
∑

j∈ZZd

f̃(j)s(t − j) −
∑

j∈ZZd

f(j)s(t − j)

=
∑

j∈ZZd

λ(j) · f(j)s(t − j) . (6)

Hence we have

E[Am f(t)] =
∑

j∈ZZd

E[λ(j)] · f(j)s(t − j) = 0 (7)
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and

E[| Am f(t)|] ≤ E

⎡

⎣
∑

j∈ZZd

|λ(j)| · |f(j)s(t − j)|

⎤

⎦

= δ
∑

j∈ZZd

|f(j)s(t − j)|

≤ δ

⎛

⎝
∑

j∈ZZd

|f(j)|2
⎞

⎠
1/2

·

⎛

⎝
∑

j∈ZZd

|s(t − j)|2
⎞

⎠
1/2

≤ δ · B1/2 · ‖f‖2 ·

⎛

⎝
∑

j∈ZZd

|s(t − j)|2
⎞

⎠
1/2

. (8)

Now by the Chebyshev’s inequality, from (7) and (8) we get that

Prob{| Am f(t)| < ε} ≥ 1 − δ · B1/2

ε
‖f‖2 ·

⎛

⎝
∑

j∈ZZd

|s(t − j)|2
⎞

⎠
1/2

. (9)

Hence we have proved the first part of the following theorem.

Theorem 1. Let the set of sampling points ZZd and the signal space V satisfy
the conditions given in Section 1, and assume that there exists a sampling func-
tion s ∈ V such that the reconstruction formula (5) holds for all t. If s decays
fast enough such that

∑
j∈ZZd |s(t− j)|2 < ∞, then the amplitude error satisfies

(9). In particular, if |s(t)| ≤ C(1 + |t|α)−1/2, where α > d, then we have

Prob{| Am f(t)| < ε} ≥ 1 − C · δ · B1/2 · α1/2 · 2(α+d)/2

ε · (α − d)1/2 ‖f‖2 (10)

for all t.

Proof. Only inequality (10) needs to prove. For each j ∈ ZZd, let Qj be a closed
ball centred at j with radius 1/2. For y ∈ Qj and t ∈ Qc

j , where Qc
j denotes the

complement of Qj , direct calculations show that

1 + |t − y|α
1 + |t − j|α ≤ 1 + (|t − j| + |y − j|)α

1 + |t − j|α

≤ 1 + (|t − j| + 1/2)α

1 + |t − j|α

≤
1 + |t − j|α

(
1 + 1

2|t−j|
)α

1 + |t − j|α
≤ 2α.
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For t ∈ Qj , we can also prove that (1 + |t − y|α)/(1 + |t − j|α) ≤ 2α. Hence
(1+ |t− j|α)−1 ≤ 2α · (1+ |t−y|α)−1 for all y ∈ Qj and all t ∈ IRd, and therefore

∑

j∈ZZd

|s(t − j)|2 ≤ C2
∑

j∈ZZd

(1 + |t − j|α)−1

≤ C2 · 2α
∑

j∈ZZd

|Qj |−1
∫

Qj

(1 + |t − y|α)−1 dy

≤ C2 · 2α+d d

Sd

∫

IRd

(1 + |t − y|α)−1 dy

≤ C2 · 2α+d · d ·
(

1
d

+
1

α − d

)
, (11)

where |Qj| and Sd denote the volume of the closed ball Qj and the area of the
d-dimensional unit sphere, respectively. The inequalities (9) and (11) lead to the
conclusion immediately.

Note that for band-limited sampling theorems the sampling function can be
obtained by dilating the function sinc(·), therefore, obviously satisfies the decay
condition required in Theorem 1; for sampling theorems in the spline-like spaces,
the decay of the sampling function is guaranteed by the decay of the generator
ϕ. Indeed, Yang has proved that in the spline-like spaces the asymptotic rate of
decay of the sampling function is the same as that of the generator (see [12]). As
for the wavelet subspaces, it can be viewed as a spline-like space generated by the
dilated scaling function, so the amplitude error estimate obtained in spline-like
spaces can be easily extended to wavelet subspaces.

2.2 Nonuniform Sampling

Now let us consider the general case. Let the signal space V ⊆ L2(IRd) and the
set of sampling points {tj : j ∈ J} satisfy the conditions i) and ii) given in
Section 1. Then the amplitude error can be rewrite as

Am f(t) =
∑

j∈J

λ(tj) · f(tj)s(t − tj) .

By the same techniques we can prove the following results.

Theorem 2. Let the set of sampling points {tj : j ∈ J} and the signal space V
satisfy the conditions given in Section 1. If the sampling sequence {sj ∈ V : j ∈
J} satisfies that

∑
j∈J |sj(t)|2 < ∞ uniformly, then we have

Prob{| Am f(t)| < ε} ≥ 1 − δ · B1/2

ε
‖f‖2 ·

⎛

⎝
∑

j∈J

|sj(t)|2
⎞

⎠
1/2

(12)
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for all t. In particular, if |sj(t)| ≤ C(1+ |t−tj |α)−1/2 for all j ∈ J , where α > d,
and the set of sampling points {tj : j ∈ J} are separated, i.e., infj,l∈J,j �=l |xj −
xl| = μ > 0, then we have

Prob{| Am f(t)| < ε} ≥ 1 − C · δ · B1/2 · α1/2 · 2(α+d)/2

ε · μd/2 · (α − d)1/2 ‖f‖2 (13)

for all t.

We point out that for nonuniform sampling in spline-like spaces, the decay of the
sampling sequence {sj : j ∈ J} is also guaranteed by the decay of the generator
ϕ, e.g., see [7]. Secondly, the constant B appearing in condition ii) in Section 1
depends on the density of the samples, and its existence is guaranteed by the
separateness of the samples.

3 Random Information Loss Error Estimation

If the relative errors are binary valued, namely, λ(tj) either takes the value 1 or
takes the value 0, no other value is allowed, then the corresponding amplitude
error is called the information loss error in [2]. In that paper, the error caused
by the missing of some sampled data are considered, where λ(tj) = 1 for the
sampling points tj at which the sampled values f(tj) are missing and λ(tj) = 0
otherwise. In the present paper we assume that the missing occurs randomly, and
λ(tj) are i.i.d. random variables with Prob{λ(tj) = 1} = p and Prob{λ(tj) =
0} = 1− p. Since the following results are just special cases of Theorem 2, so we
omit its proof.

Theorem 3. Let the set of sampling points {tj : j ∈ J} and the signal space V
satisfy the conditions given in Section 1, and λ(tj) be the corresponding relative
errors with all the properties stated above. If the sampling sequence {sj ∈ V :
j ∈ J} satisfies that

∑
j∈J |sj(t)|2 < ∞ uniformly, then we have

Prob{| Am f(t) − p| < ε} ≥ 1 − p · B1/2

ε
‖f‖2 ·

⎛

⎝
∑

j∈J

|sj(t)|2
⎞

⎠
1/2

(14)

for all t. In particular, if |sj(t)| ≤ C(1+ |t−tj |α)−1/2 for all j ∈ J , where α > d,
and the set of sampling points {tj : j ∈ J} are separated, i.e., infj,l∈J,j �=l |xj −
xl| = μ > 0, then we have

Prob{| Am f(t) − p| < ε} ≥ 1 − C · p · B1/2 · α1/2 · 2(α+d)/2

ε · μd/2 · (α − d)1/2 ‖f‖2 (15)

for all t.
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