
V.N. Alexandrov et al. (Eds.): ICCS 2006, Part I, LNCS 3991, pp. 379 – 386, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Developing Metadata Services for Grid Enabling
Scientific Applications

Choonhan Youn*, Tim Kaiser, Cindy Santini, and Dogan Seber

San Diego Supercomputer Center, University of California at San Diego
9500 Gilman Drive

La Jolla, CA 92093-0505
{cyoun, tkaiser, csantini, seber}@sdsc.edu

Abstract. In a web-based scientific computing, the creation of parameter
studies of scientific applications is required to conduct a large number of
experiments through the dynamic graphic user interface, without paying the
expense of great difficulty of use. The generated parameter spaces which
include various problems are incorporated with the computation of the
application in the computational environments on the grid. Simultaneously, for
the grid-based computing, scientific applications are geographically distributed
as the computing resources. In order to run a particular application on the
certain site, we need a meaningful metadata model for applications as the
adaptive application metadata service used by the job submission service. In
this paper, we present how general XML approach and our design for the
generation process of input parameters are deployed on the certain scientific
application as the example and how application metadata is incorporated with
the job submission service in SYNSEIS (SYNthetic SEISmogram generation)
tool.

1 Introduction

The Grid project [1] is essentially a giant research effort among loosely federated
groups to build a seamless computing infrastructure for distributed computing, for
example, the cyberinfrastructure for geosciences, GEON [2], national computational
grids, TeraGrid [3]. The ultimate vision of Grid computing is that it will be able to
provide seamless access to politically and geographically distributed computing
resources: a researcher somewhere potentially has access to all the computing power
he/she needs to solve a particular problem (assuming he/she can afford this), and all
resources are accessed in a homogeneous manner using Grid technologies [4].

In a grid computing environments, scientific applications are deployed into the Grid
as resources. For interacting with applications on the Grid, the information of actual
applications is necessary. For example, an actual application may be wrapped by XML
objects as the application proxy, which can be used to invoke the application, either
directly or through submission to a queuing system without modifying the application
source code. Thus, we need a general purpose set of schemas that describes how to use
a particular application. Having a general application description mechanism allows

* This research was funded by NSF grants EAR-0353590 and EAR 0225673.

380 C. Youn et al.

user interfaces to be developed independently of the service deployment. And the
application metadata may be discovered and bound dynamically through XML
database for storing and querying. For this, we reuse and extend the Application XML
Descriptors developed by the Community Grids Lab, Indiana University, Bloomington
(More detailed description is available from [5]) as the information repository.

Going beyond simple submission and management of running jobs, for the
repeated execution of the same application with different input parameters resulting in
different outputs, the creating process of the parameter studies manually is a tedious,
time-consuming, and error-prone. Scientists want to simplify the complex parameter
study process for obtaining the solutions from their applications using wide varieties
of input parameter values. Those parameter studies of high-performance distributed,
scientific applications have been a more challenging problem for conducting a large
number of experimental simulations. The parameter spaces are related to the
individual problem sizes which is obtained through several successive stages on the
portal.

In this paper, we describe our designs and initial efforts for building interacting
metadata services for the parameter studies and the discovery of applications in
SYNSEIS application tool. Using GEON grid environments [6] and national-scale
TeraGrid supercomputer centers [3] for high performance computing, the SYNSEIS
application tool is developed as a portlet object that can provide the hosting
environments interacting with the codes and the data retrieval systems [7]. It is built
using a service-based architecture for reusability and interoperability of each
constituent service components which are exposed as Web services as well. The
SYNSEIS targets a well-tested, parallel finite difference code, e3d developed by
Lawrence Livermore National Laboratory [8], with a wide variety of input
parameters. Input file data formats in e3d application are described in the various
forms depending on the user’s selection. We obviously want to support a more
scaleable system with common data formats that may be shared between the legacy
input file data formats which the code uses. The common data format may be
translated in a variety of the legacy input formats. Also, from the portal architecture
point of view, it becomes possible to develop general purpose tools for manipulating
the common data elements and a well-defined framework for adding new
applications. Using the meta-language approach, XML, we present XML schema and
our design for related data services for describing the code input parameters. This
XML object simply interacts with the hosting environments of the code, converting it
to the legacy input data formats, and then allowing the code to be executed, submitted
to batch queuing systems, and monitored by users.

2 Related Work

We briefly review here some motivating examples for the parameter studies. Nimrod
[9] a tool for managing the execution of parameterized simulations on distributed
workstations and combining the advantages of remote queue management systems
with those of distributed applications. This tool builds a simple description of the
parameters and the necessary control scripts about a particular application for running

 Developing Metadata Services for Grid Enabling Scientific Applications 381

the code and generates a job for each set from the parameter creation. And then this
job is submitted to the remote host and any required files are also transferred to the
host.

Unlike Nimrod, users have the ability to access multiple job submission
environments including any combination of queue systems such as PBS, LSF,
Condor, and so on. In order to continue the job submission autonomously without the
continued presence of the parameter study tool, ILab [10] has constructed the GUI for
controlling parameter studies using the perl script and Tk tool kit. After creating input
files from the parameter studies the job launching process is initiated.

Nimrod and ILab’s parameter studies tool is restricted to the parameterization of
the input files. On the contrary, ZENTURIO [11] uses a direct-based language to
annotate arbitrary files and specify arbitrary application parameters as well as
performance metrics. Using this language-based approach, a large number of
experiments are potentially generated and submitted to the host.

QuakeSim project developed by the Community Grids Lab, Indiana University,
Bloomington [12] is science portal for the earthquake simulation modeling codes. It
provides the unifying hosting environment for managing the various applications. The
applications are wrapped as XML objects that can provide simple interactions with
the hosting environments of the codes, allowing the codes to be executed, submitted
to batch queuing systems, and monitored by users through the browser. For support
interactions between simulation codes, there are common formats, well-defined XML
tags for making legacy input and output parameters using Web service approach.

3 XML Schema for Code Input

XML is an important information technology as it can build and organize metadata to
describe resources and the raw data generated either by codes or by scientific
instruments. This metadata will enable more precise search methods as envisaged by
the Semantic Web. XML has the advantage of being human-readable and
hierarchically organized, but is verbose and thus not ideal for very large datasets.
Instead, it is more often useful to have the XML metadata description point to the
location of the data and describe how that data is formatted, compressed, and to be
handled. It may also be transmitted easily between distributed components by using
Web service. XML may be used to encode and provide the data structure to code
input data files in a structured way. We may thus be quite specific about which
definitions of location, resolution, geology, the external source, surfaces, volumes,
stations, layers, or other parameters we are actually using within a particular XML
document. We do not expect that our definitions will be a final standard adopted by
all, but it is useful to qualify all our definitions.

When we examined the inputs for the e3d application which is using in SYNSEIS
tool currently, it became apparent that the data may be split into two portions in
Figure 1: the code-basic data definitions, and code-optional data definitions for
incorporating various code parameters, such as number of stations, and layers. We
highlight the major elements here. We structure our XML dialect definitions as being
composed of the following:

382 C. Youn et al.

• Grid Dimension: describes the location, dimension, and the grid spacing for the
grid.

• Time Stepping: includes the number of time steps and the time step increment.
• Velocity Model: includes various parameters needed to characterize the griddled

velocity model such as p, s, r, or attenuation coefficients.
• Source: includes type, location, amplitude, frequency, fault parameters.
• Seismogram Output: includes location, output name, and mode for writing the

seismogram in SAC format [16].
• Image Output: includes the number of time steps for producing a series of mapview

images through the surface grid nodes.
• Volume Output: includes the number of time steps for outputting individual data

volumes at selected time steps.
• Layer: includes parameters for the crustal model format.

Fig. 1. The main block diagram of the e3d XML Schema

Note that we are not modifying the codes to take directly the XML input. Rather,
we use XML descriptions as an independent format that may be used to generate input
files for the codes in the proper legacy format. This XML schema simply defines the
information necessary to implement the input files in a particular application.

4 Implementing User Interfaces

In the design of user interface, it is very difficult to be faithful to one's functions as
well as be beautiful. If the user interface design is too functional, it is stiff and formal.
And if that design places great emphasis on the beauty, it is easy to be decorative as
well. So, our goal of user interface design is to get the benefit at both functions and
the beauty at the same time.

 Developing Metadata Services for Grid Enabling Scientific Applications 383

Fig. 2. SYNSEIS’s interactive graphic user interface

More or less the e3d application has more complex parameter creation process. We
have developed to construct our SYNSEIS Graphic User Interface using the flash
application [13] as shown in Figure 2 for minimizing the difficulty of building a set of
parameterized input files. Our aim in our SYNSEIS tool is also to provide users with a
nice and a variety of user-centric and dynamic environments on the web for
representing the input parameters of the earthquake experiments. In Figure 2, as one
of scenarios, users are able to select some certain area in US map using the mapping
tool and compose the location, several event points and station locations by using the
data retrieval Web service [7], and the selected points for the experiment within the
boundary area. And then another window specifies other input parameters to allow
users to do the graphical selection of the appropriate parameter data fields and
designate the set of values by using data model Web service [7]. If users set up the
“Distance Resolution” field in Figure 2, “Time Resolution” and “Source Frequency”
have been parameterized automatically because of unsuccessful run of the scientific
program under the consideration. After the text selection of the appropriate fields,
finally the XML input file is generated for running the experiments. Because the
parameter creation process is integrated within SYNSEIS GUI, its use is quite easy,
intuitive, and trivial.

5 Interactions of the Metadata Service for the Application

We describe how SYNSEIS system exports the XML input file to the specific input
data formats of the code and integrate the metadata for the application. In Figure 3,
we may express the input file for e3d application using XML format. XML generator
collects and composes some data needed for running the code from the user interface,
for example, map services, data model Web service, and data descriptors. Using our

384 C. Youn et al.

specific job submission Web service [7], this generated XML input file is saved into
the XML data repository for archival reference, re-use, and modification. Users may
independently modify this user XML file for their own experiment purposes and
resubmit it for running the application code on the archival session provided by
SYNSEIS archival service for domain experts. This input XML file is therefore
recyclable, if desired. For this experiment, this XML input file is transferred into the
targeted remote host via the grid file transfer protocol. Simultaneously, RSL
(Resource Specification Language) [14] generator creates the job script based on the
application metadata for running the Globus job through the gatekeeper. This
application metadata consists of mainly three parts: application descriptors, host
descriptors, and queue descriptors. We use and integrate application information Web
service [5] as the information repository describing e3d application for the seismic
simulation and other system commands for dealing with the job files.

Through the gatekeeper, this job script that describes the remote perl script which
takes XML input file as the argument is executed. When the gatekeeper runs this
script on the remote host, the “Input File” generator creates several input files which
are for actually running the code and the queue script in a remote certain directory for
this experiment. At this stage, we must export the XML to the legacy input format for
a particular application.

Fig. 3. Processing steps for interactions with the metadata for the application

We assume that a cluster of machines has the job scheduler such as PBS, or
Condor. That is, in order for the job submitter to launch jobs run, we need the local or
remote compute environments that may require any of Globus, PBS, and other job
scheduler. This job scheduler which is accessed from Globus interface [15] is used for
queuing and starting jobs. Finally, this batch queue script containing PBS directives
followed by shell commands is submitted to the job scheduler by executing the
remote perl script.

 Developing Metadata Services for Grid Enabling Scientific Applications 385

6 Conclusion and Future Directions

We have built an application-specific tool called SYNSEIS using Web services
approach. Since this architecture is based on the service-oriented, those useful
services can be plugged into any general frameworks and be put together on the
workbench. At the implementation phase of those services, some computing services
are required for integrating with the metadata services on the framework. For
example, we provide a job submission Web Service to run the relevant applications in
a computational and hosting environment, TeraGrid or GEONgrid using Grid
technologies, especially Globus interface, including a file transfer. So, we have
presented the application XML metadata for constructing the job script for running
the code within this service. This application metadata for describing the actual
application which we suggested can be used by application web service, having
providing the application interfaces as the application proxy. The application
descriptor schema contains the “HostBinding” element that indicates the host
descriptor, which describes the hosting environment, especially the location, type,
parameters of the queuing system. In our application tool, more system commands are
required for doing the job and data handling. So, for a more general way, we will keep
extending this schema to put the system environments.

In the design of the user interface, we have also implemented the easy-to-use
parameterization process for complex earthquake simulations using SYNSEIS SWF
(the file format used by Macromedia Flash) code. Through the dynamic graphic user
interface, users can select and compose the data items. And then XML input data
object is generated for the user experiments on the computational environments.
Currently, since we provide simply the event-station pair and point source case
for this experiment, we will take into consideration providing event-multiple
stations situations, a line source implementation, and multiple seismogram plots
additionally.

On the back end, at the time of submitting the job that contains users’ XML file,
the remote perl script consists of mainly two parts: the converting the XML file
into the legacy input file and the job launching process. Because its process is
tightly coupled, if both parts are not run successfully, for example, the converting
process is done, but the job submission is failed, the remote perl script running is
not useful even if the converting process is successful. For more modularity and
reusability, those steps are redesigned. Creating the input files and the job
directory for this experiment from the XML file will be generated by using Web
service. For example, the QuakeSim portal [12] has the capability for exporting
and importing the XML input file into the legacy format between applications
running. Using the common XML format, QuakeSim applications are able to
communicate each other via the Data hub. The current job submission is used for
the job scheduler directly. That is, the job is submitted to the job scheduler
directly. As the effective way, in order to get full functionalities provided by
Globus interface, the launching and monitoring job will be performed through the
Globus metacomputing middleware.

386 C. Youn et al.

References

1. Berman, F., Fox, G., and Hey, T.: Grid Computing: Making the Global Infrastructure a
Reality. Wiley, 2003

2. Cyberinfrastructure for the Geosciences: http://www.geongrid.org
3. TeraGrid project: http://www.teragrid.org
4. Fox, G. C., Gannon, D., and Thomas, M. A Summary of Grid Computing Environments.

Concurrency and Computation: Practice and Experience, Vol. 14, No. 13-15, pp 1035-
1044, 2002

5. Youn, C., Pierce, M., and Fox, G., “Building Problem Solving Environments with
Application Web Service Toolkits” ICCS 2003 Workshop on Complex Problem Solving
Environments for Grid Computing, LNCS 2660, pp. 403-412, 2003

6. C.Youn, C. Baru, K. Bhatia, S. Chandra, K. Lin, A. Memon, G. Memon and D. Seber.
GEONGrid Portal: Design and Implementations. GCE 2005: Workshop on Grid
Computing Portals held in conjunction with SC 2005, Seattle, WA, USA, November 12-
18, 2005

7. C. Youn, T. Kaiser, C. Santini and D. Seber. Design and Implementation of Services for a
Synthetic Seismogram Calculation Tool on the Grid. ICCS 2005: 5th International
Conference, Atlanta, GA, USA, May 22-25, 2005, Proceedings, Part 1, LNCS 3514, pp.
469-476, 2005

8. Larsen, S.: e3d: 2D/3D Elastic Finite-Difference Wave Propagation Code. Available from
http://www.seismo.unr.edu/ftp/pub/louie/class/455/e3d/e3d.txt

9. Abramson, D., Sosic, R.,Giddy, J., Hall, B.: Nimrod: A Tool for Performing Parametised
Simulations using DistributedWorkstations. The 4th IEEE Symposium on High
Performance Distributed Computing, Virginia, August 1995 IEEE Computer Society
Press, Silver Spring, MD, 1995, pp. 520–528

10. M. Yarrow, K.M. McCann, R. Biswas, R.F. Van der Wijngaart, An Advanced User
Interface Approach for Complex Parameter Study Process Specification on the
Information Power Grid, in Proceedings of the First IEEE/ACM International Workshop
on Grid Computing, Bangalore, India, December 2000, Lecture Notes in Computer
Science, Vol. 1971, Springer, London, UK 2000, 146 – 157

11. R. Prodan, T. Fahringer, ZENTURIO: a grid middleware-based tool for experiment
management of parallel and distributed applications. Journal of Parallel and Distributed
Computing, Vol. 64 (6), Academic Press, Orlando, FL, USA, 2004, pp. 693 – 707

12. M. Pierce, C. Youn and G. Fox, Interacting Data Services for Distributed Earthquake
Modeling, ICCS 2003 Workshop on Computational Earthquake Physics and Solid Earth
System Simulation, LNCS 2659, pp. 863-872, 2003

13. Allaire, J.: Macromedia Flash MX—A next-generation rich client. March 2002. Available
from http://www.macromedia.com/devnet/mx/flash/whitepapers/richclient.pdf

14. RSL v1.0. See http://www-fp.globus.org/gram/rsl_spec1.html
15. Gregor von Laszewski, Ian Foster, Jarek Gawor, and Peter Lane. A Java Commodity Grid

Kit," Concurrency and Computation: Practice and Experience, vol. 13, no. 8-9, pp. 643-
662, 2001

16. SAC – Seismic Analysis Code: http://www.llnl.gov/sac/

	Introduction
	Related Work
	XML Schema for Code Input
	Implementing User Interfaces
	Interactions of the Metadata Service for the Application
	Conclusion and Future Directions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

