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Abstract. In this research letter, we introduce a reconstruction formula
in spline signal spaces which is a generalization of former results in [11].
A general improved A-P iterative algorithm is presented. We use the
algorithm to show reconstruction of signals from weighted samples and
also show that the new algorithm shows better convergence than the old
one. The explicit convergence rate of the algorithm is obtained.

1 Introduction

In the classical sampling problem, the reconstruction of f on R
d from its samples

{f(xj) : j ∈ J}, where J is a countable indexing set, is one of main tasks in many
applications in signal or image processing. However, this problem is ill-posed, and
becomes meaningful only when the function f is assumed to be bandlimited, or
to belong to a shift-invariant space [1, 2, 3, 4, 8, 11, 12]. For a bandlimited signal
of finite energy, it is completely characterized by its samples, and described by
the famous classical Shannon sampling theorem. Obviously, the shift-invariant
space is not a space of bandlimited function unless the generator is bandlimited.

In many real applications, sampling points are not always regular. For ex-
ample, the sampling steps need to be fluctuated according to the signals so
as to reduce the number of samples and the computational complexity. If a
weighted sampling is considered, the system will be made to be more efficient
[1, 2, 3, 4, 5, 11, 12]. It is well known that spline subspaces yield many advantages
in their generation and numerical treatment so that there are many practical ap-
plications for signal or image processing. Therefore, the recent research of spline
subspaces has received much attentions (see[3, 10, 11]).

For practical application and computation of reconstruction, Goh et al.,
showed practical reconstruction algorithm of bandlimited signals from irregu-
lar samples in [8], Aldroubi et al., presented a A-P iterative algorithm in [1, 2, 4].
We will improve and generalize the A-P iterative algorithm and also show that
the new algorithm shows better than the old one for convergence rate. That
is, we can easy control the convergence rate of the algorithm with our require-
ment. At the same time, we don’t increase the number of the sampling point.
But this algorithm is not perfect. Because we immolate(increase) computation
complexity as soon as improve convergence rate of the algorithm.
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2 Reconstruction Algorithm in Spline Spaces

By the special features of spline subspaces, we will present the new improved
A-P algorithm and its convergence rate in spline spaces, which are more explicit.
We introduce some notations and lemmas that will be used in this section.

The signal space VN = {
∑

k∈Z

ckϕN (·−k) : {ck} ∈ �2} is spline space generated

by ϕN = χ[0,1] ∗ · · · ∗ χ[0,1] (N convolutions), N ≥ 1.

Definition 2.1. A general bounded partition of unity(GBPU) is a set of func-
tion {βj1 , βj2 , · · · , βjr} that satisfy:

(1) 0 ≤ βj1 , · · · , βjr ≤ 1(∀j1 ≡ j1(j), · · · , jr ≡ jr(j) ∈ J), where J be countable
separated index set.

(2) suppβj1 ⊂ B δ
r
(xj1 ), · · · , suppβjr ⊂ B δ

r
(xjr ),

(3)
∑

j∈J

(βj1 + · · · + βjr ) = 1.

In fact, in the case of r = 1, the above GBPU definition is ordinary BPU
definition be used in [1, 4].

We will assume that the weight function {ϕxj : xj ∈ X} satisfy the following
properties:

(i) suppϕxj ⊂ B a
r
(xj)

(ii) there exist M > 0 such that
∫

Rd |ϕxj |dx ≤ M ,
(iii)

∫
Rd ϕxj dx = 1

The operator A and Q defined by Af =
∑

j∈J

〈f, ϕxj1
〉βj1 + · · · + 〈f, ϕxjr

〉βjr

and Qf(x) =
∑

j

f(xj1)βj1(x) + · · · +
∑

j

f(xjr )βjr (x), respectively.

The other definitions and notations can be found in [1, 4, 11, 12].

Lemma 2.1. [6] {ϕN(· − k) : k ∈ Z} is Riesz basis for VN , AN =
∑

k

|ϕ̂N (π +

2kπ)|2 and BN = 1 are its lower and upper bounds, respectively.

Lemma 2.2. [4] If ϕ is continuous and has compact support, then for any f ∈
V p(ϕ) = {

∑

k∈Z

ckϕ(· − k) : (ck) ∈ �p}, the following conclusions (i)-(ii) hold:

(i) ‖f‖Lp ≈ ‖c‖�p ≈ ‖f‖W (Lp),
(ii) V p(ϕ) ⊂ W0(Lp) ⊂ W0(Lq) ⊂ W (Lq) ⊂ Lq(R)(1 ≤ p ≤ q ≤ ∞).

Lemma 2.3. If f ∈ VN , then for any 0 < δ < 1 we have ‖oscδ(f)‖2
L2 ≤

(3Nδ)2
∑

k∈Z

|ck|2, where oscδ(f)(x) = sup|y|≤δ |f(x + y) − f(x)|.

Lemma 2.4. [4] For any f ∈ V p(ϕ), the following conclusions (i)-(ii) hold:

(i) ‖oscδ(f)‖W (Lp) ≤ ‖c‖�p‖oscδ(ϕ)‖W (L1),
(ii) ‖

∑
k∈Z

ckϕ(· − k)‖W (Lp) ≤ ‖c‖�p‖ϕ‖W (L1).
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Lemma 2.5. If X ={xn} is increasing real sequence with supi(xi+1−xi)=δ<1,
then for any f =

∑
k∈Z

ckϕN (· − k) ∈ VN we have ‖Qf‖L2 ≤ ‖Qf‖W (L2) ≤
(3 + 2δ

r )‖c‖�2‖ϕ‖W (L1).

Proof. For f =
∑

k∈Z
ckϕN (· − k) we have

|f(x) − (Qf)(x)| ≤ osc δ
r
(f)(x).

From this pointwise estimate and Lemma 2.2, 2.4, we get

‖f − Qf‖W (L2) ≤ ‖osc δ
r
(f)‖W (L2)

≤ ‖c‖�2‖osc δ
r
(ϕN )‖W (L1).

By the results of [1] or [4] we know

‖osc δ
r
(ϕN )‖W (L1) ≤ 2(1 +

δ

r
)‖ϕN‖W (L1).

Putting the above discussion together, we have

‖Qf‖L2 ≤ ‖Qf‖W (L2) ≤ ‖f − Qf‖W (L2) + ‖f‖W (L2)

≤ 2(1 +
δ

r
)‖c‖�2‖ϕN‖W (L1) + ‖

∑

k∈Z

ckϕN (· − k)‖W (L2)

≤ 2(1 +
δ

r
)‖c‖�2‖ϕN‖W (L1) + ‖c‖�2‖ϕN‖W (L1)

≤ (3 +
2δ

r
)‖c‖�2‖ϕN‖W (L1).

Theorem 2.1. Let P be an orthogonal projection from L2(R) to VN . If sampling
set X = {xn} is a increasing real sequence with supi(xi+1 − xi) = δ < 1 and
γ = 3Nδ

r
��

k

|ϕ̂N (π+2kπ)|2
< 1, then any f ∈ VN can be recovered from its samples

{f(xj) : xj ∈ X} on sampling set X by the iterative algorithm
{

f1 = PQf,
fn+1 = PQ(f − fn) + fn.

The convergence is geometric, that is,

‖fn+1 − f‖L2 ≤ γn‖f1 − f‖L2.

Proof. By Lemma 2.1, Lemma 2.3 and properties of {βj1, · · · , βjr}, we have

‖(I − PQ)f‖2
L2 = ‖Pf − PQf‖2

L2 ≤ ‖P‖2
op‖f − Qf‖2

L2 = ‖f − Qf‖2
L2

≤ ‖osc δ
r
(f)‖2

L2 ≤ (3N
δ

r
)2

∑

k∈Z

|ck|2 = (3N
δ

r
)2‖c‖2

�2

≤ (
3Nδ

r
√∑

k

|ϕ̂N (π + 2kπ)|2
)2‖f‖2

L2.
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Therefore

‖fn+1 − f‖L2 = ‖fn + PQ(f − fn) − f‖L2 = ‖PQ(f − fn) − (f − fn)‖L2

≤ ‖I − PQ‖‖f − fn‖L2 ≤ · · · ≤ ‖I − PQ‖n‖f − f1‖L2 .

Combining with the estimate of ‖I − PQ‖, we can imply

‖fn+1 − f‖L2 ≤ γn‖f1 − f‖L2.

Taking assumption γ = 3Nδ

r
��

k

|ϕ̂N (π+2kπ)|2
< 1, we know the algorithm is

convergent.

In the following, we will show the new improved A-P iterative algorithm from
weighted samples in spline subspace.

Theorem 2.2. Let P be an orthogonal projection from L2(R) to VN and weight
function satisfy the following three conditions (i)-(iii):

(i) suppϕxj ⊂ [xj − a
r , xj + a

r ]
(ii) there exist M > 0 such that

∫
|ϕxj (x)|dx ≤ M,

(iii)
∫

ϕxj (x)dx = 1.

If sampling set X = {xn} is a increasing real sequence with supi(xi+1 − xi) =
δ < 1 and we choose proper δ and a such that α = 3N

r
��

k

|ϕ̂N (π+2kπ)|2
(δ +

a(3 + 2a
r )M) < 1, then any f ∈ VN can be recovered from its weighted sam-

ples {〈f, ϕxj 〉 : xj ∈ X} on sampling set X by the iterative algorithm
{

f1 = PAf,
fn+1 = PA(f − fn) + fn.

The convergence is geometric, that is,

‖fn+1 − f‖L2 ≤ αn‖f1 − f‖L2.

Proof. By Pf = f and ‖P‖op = 1, for any f =
∑

k∈Z

ckϕN (· − k) ∈ VN we have

‖f − PAf‖L2 = ‖f − PQf + PQf − PAf‖L2 (1)
≤ ‖f − Qf‖L2 + ‖Qf − Af‖L2 (2)

From the proof of Theorem 2.1, we have the following estimate for ‖f − Qf‖L2:

‖f − Qf‖L2 ≤ (
3Nδ

r
√∑

k

|ϕ̂N (π + 2kπ)|2
)‖f‖L2. (3)

For the second term ‖Qf − Af‖L2 of (2) we have the pointwise estimate

|(Qf − Af)(x)| ≤ MQ(
∑

k∈Z

|ck|osc a
r
(ϕN )(x − k)).



208 C. Zhao, Y. Zhuang, and H. Gan

From this pointwise estimate, Lemma 2.1, Lemma 2.3 and Lemma 2.5, it
follows that:

‖Qf − Af‖L2 ≤ M(3 +
2a

r
)‖c‖�2‖osc a

r
(ϕN )‖W (L1) (4)

≤ M(3 +
2a

r
)

‖osc a
r
(ϕN )‖W (L1)

√∑

k

|ϕ̂N (π + 2kπ)|2
‖f‖L2 (5)

≤ M(3 +
2a

r
)

3Na

r
√∑

k

|ϕ̂N (π + 2kπ)|2
‖f‖L2 (6)

By combining (3) and (6), we can obtain

‖f − PAf‖L2 ≤ 3N

r
√∑

k

|ϕ̂N (π + 2kπ)|2
(δ + a(3 +

2a

r
)M)‖f‖L2,

that is,

‖I − PA‖L2 ≤ 3N

r
√∑

k

|ϕ̂N (π + 2kπ)|2
(δ + a(3 +

2a

r
)M).

Similar to the procedure in the proof of Theorem 2.1, we have

‖fn+1 − f‖L2 ≤ αn‖f1 − f‖L2.

Remark 2.1. From the constructions of operator Q and A, we know why item
r can appear in the convergence rate expression of the new improved algorithm.
But r is not appear in the old algorithm. Hence this algorithm improves the
convergence rate of the old algorithm. In addition, it is obvious that we can
easily control the convergence rate through choosing proper r without changing
sampling point gap δ. That is, when δ and a are proper given, we can obtain the
convergence rate that we want through choosing proper r. We hope r be enough
large. But we increase the computation complexity as soon as choose larger r.
So we should choose proper r with our requirement.

3 Conclusion

In this research letter, we discuss in some detail the problem of the weighted
sampling and reconstruction in spline signal spaces and provide a reconstruction
formula in spline signal spaces, which is generalized and improved form of the
results in [11]. Then we give general A-P iterative algorithm in general shift-
invariant spaces, and use the new algorithm to show reconstruction of signals
from weighted samples. The algorithm shows better convergence than the old
one. We study the new algorithm with emphasis on its implementation and
obtain explicit convergence rate of the algorithm in spline subspaces. Due to
the limitation of the page number, we omit some numerical examples, proofs of
lemma and theorem and will show their detail in regular paper.
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