
Maintaining Gaussian Mixture Models of Data Streams
Under Block Evolution

J.P. Patist, W. Kowalczyk, and E. Marchiori

Free University of Amsterdam, Department of Computer Science,
Amsterdam, The Netherlands

{jpp, wojtek, elena}@cs.vu.nl

Abstract. A new method for maintaining a Gaussian mixture model of a data
stream that arrives in blocks is presented. The method constructs local Gaussian
mixtures for each block of data and iteratively merges pairs of closest compo-
nents. Time and space complexity analysis of the presented approach demon-
strates that it is 1-2 orders of magnitude more efficient than the standard EM
algorithm, both in terms of required memory and runtime.

1 Introduction

The emergence of new applications involving massive data sets such as customer click
streams, telephone records, or electronic transactions, stimulated development of new
algorithms for analysing massive streams of data, [2, 4].

In this paper we address the issue of maintenance of a Gaussian mixture model of a
data stream under block evolution, see [5], where the modeled data set is updated peri-
odically through insertion and deletion of sets of blocks of records. More specifically,
we consider block evolution with a restricted window consisting of a fixed number of
the most recently collected blocks of data. The window is updated one block at a time
by inserting a new block and deleting the oldest one. Gaussian mixture models may be
viewed as an attractive form of data clustering.

Recently, several algorithms have been proposed for clustering data streams, see e.g.,
[1], [6], or [8]. In our approach, we apply the classical EM algorithm, [3], to generate
local mixture models for each block of data and a greedy merge procedure to combine
these local models into a global one. This leads to a dramatic reduction of the required
storage and runtime by 1-2 orders of magnitude.

2 Maintenance of Gaussian Mixture Models

A Gaussian mixture model with k components is a probability distribution on Rd

that is given by a convex combination p(x) =
∑k

s=1 αsp(x|s) of k Gaussian density
functions:

p(x|s) = (2π)−d/2|Σs|−1/2 exp(−(x − μs)�Σ−1
s (x − μs)/2), s = 1, 2, . . . , k,

each of them being specified by its mean vector μs and the covariance matrix Σs.

V.N. Alexandrov et al. (Eds.): ICCS 2006, Part I, LNCS 3991, pp. 1071–1074, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

1072 J.P. Patist, W. Kowalczyk, and E. Marchiori

Given a set {x1, . . . , xn} of points from Rd, the learning task is to estimate the
parameter vector θ = {αs, μs, Σs}k

s=1 that maximizes the log-likelihood function
L(θ) =

∑n
i=1 log p(xi; θ). Maximization of the data log-likelihood L(θ) is usually

achieved by running the Expectation Maximization (EM) algorithm [3]. For fixed val-
ues of d and k, the time and space complexity of this algorithm is linear in n.

Let us suppose that data points arrive in blocks of equal size and that we are interested
in maintaining a mixture model for the most recent b blocks of data. An obvious, but
expensive solution to this problem would be to re-run the EM algorithm after arrival of
each block of data. Unfortunately, for huge data sets this method could be too slow.

In our approach, b local mixtures are maintained, one for each block. Mixtures are
stored as lists of components. When a new block of data arrives, all components from
the oldest block are removed and the EM procedure is applied to the latest block to find
a local mixture model for this block. Finally, all bk local components are combined with
help of a greedy merge procedure to form a global model with k components.

Two Gaussian components (μ1, Σ1, α1), (μ2, Σ2, α2) are merged into one compo-
nent (μ, Σ, α) using the following formulas:

μ =
α1μ1 + α2μ2

α1 + α2
, Σ =

α1Σ1 + α2Σ2 + α1μ1μ
T
1 + α2μ2μ

T
2

α1 + α2
− μμT , α = α1 + α2.

The greedy merge procedure systematically searches for two closest components and
merges them with help of the above formulas until there are exactly k components left.

The distance between components is measured with help of the Hotelling T 2 sta-
tistic, [7], which is used for testing whether the sample mean μ is equal to a given
vector μ0:

H2(μ, α, Σ, μ0) = α(μ − μ0)T Σ−1(μ − μ0).

The Hotelling distance between components C1 and C2 is then defined as follows:

distH(C1, C2) = (H2(μ1, α1, Σ1, μ2) + H2(μ2, α2, Σ2, μ1))/2.

Let us note that for a fixed value of d the merging process requires O((bk)2) steps
and for large values of b and k it may be prohibitively slow. Therefore, we propose a
more efficient method, called k-means Greedy, which is a combination of the k-means
clustering and the greedy search. The combined algorithm reduces the initial number
of components from bk to l, where bk >> l > k, with help the k-means clustering
procedure and then the greedy search is used to reduce the number of components from
l to k. A further speed-up can be achieved by using the Euclidean distance measure
applied to μ′s in the “k-means phase”, rather than the expensive Hotelling statistic.

3 Space and Time Complexity Analysis

The main advantage of the proposed model construction and maintenance technique is
the reduction of the required memory. Instead of storing the last n points, we store only
the last block of data with up to n/b points and b local models. Now we will analyze
the relation between the values of n (window size), d (data dimensionality), k (the
number of components; the same for both local and the global model), b (the number

Maintaining Gaussian Mixture Models of Data Streams Under Block Evolution 1073

of blocks), and the memory reduction rate. We measure memory size in terms of the
number of stored values.

When modeling data with multi-dimensional Gaussian distributions it is common to
consider two models: a general one, with no restrictions on the covariance matrix Σ
(other than being symmetric an positive definite), or a restricted one, where the covari-
ance matrix is supposed to be diagonal. Let us first consider the case with full covariance
matrices. Every component involves 1 + d + d(d + 1)/2 parameters (1 for prior, d for
μ, and d(d + 1)/2 for Σ), thus the total number of values that have to be stored, M(b),
is bk(1 + d + d(d + 1)/2) + dn/b.

In order to find the optimal value of b that minimizes the above expression let us
notice that the function f(x) = αx + β/x , where α, β, x > 0, reaches the minimum
2
√

αβ for x =
√

β/α. Therefore, the optimal number of blocks, bopt, is given by
bopt =

√
nd/k(1 + d + d(d + 1)/2), thus M(bopt) = 2

√
ndk(1 + d + d(d + 1)/2).

Hence, the optimal memory reduction rate, R(bopt), satisfies:

R(bopt) = nd/
√

2ndk(1 + d + d(d + 1)).

In the case of diagonal covariance matrices similar reasoning gives:

R(bopt) = nd/2
√

ndk(1 + 2d).

To get a better insight into the relation between the compression rate and other para-
meters we produced two plots for a fixed n = 50.000, d = 10, and k ranging between
1 and 10, and b = 1, 2 . . . , 250, see Figure 1.

Memory reduction rate is largest for small values of k: for k = 2 this rate is about
30-80 while for k = 10 it drops to 13-25, depending on d and the model type.

Finally, let us notice that the optimal number of blocks can be interpreted as the time
speed-up factor. Indeed, for fixed values of d and k, the time complexity of the EM

0 50 100 150 200 250
0

10

20

30

40

50

60

70

80

Number of blocks

C
om

pr
es

si
on

 ra
te

FULL

0 50 100 150 200 250
0

10

20

30

40

50

60

70

80

Number of blocks

C
om

pr
es

si
on

 ra
te

DIAGONAL

Fig. 1. The compression rate as a function of the number of blocks and the number of mixture
components, d = 10. Each curve corresponds to another value of k = 1, 2, . . . , 10. Lower curves
correspond to larger values of k. The window size n = 50.000.

1074 J.P. Patist, W. Kowalczyk, and E. Marchiori

algorithm is linear in n. Therefore, the run time of this algorithm on a block of data of
size n/b is b times smaller than when applied to the whole data set of n points. The
additional time that is needed for updating the global model depends on the merging
strategy and is O((bk)2) in case of greedy search, and O(bk) when a combination of k-
means and greedy search is applied (provided the value of parameter l is small enough,
i.e., l <

√
bk). Taking into account that both k and b are relatively small compared to n,

the influence of this factor on the overall run-time of the algorithm may be neglected. In
practice, in case of relatively small (but realistic) values of k and d the speed-up factor
ranges between 30-150 times.

4 Conclusions and Future Work

We presented a local approach for maintaining a Gaussian mixture model over a data
stream under block evolution with restricted window. The proposed approach is 1-2
orders of magnitude more efficient than the standard EM algorithm, both in terms of
required memory and runtime.

In our future research we would like to address three issues: 1) impact of our heuristic
approach on the accuracy of models (some initial results are already reported in [9]), 2)
dynamic identification of the optimal number of components (so far we assumed this
number was known in advance and fixed), and 3) incremental modeling of mixtures of
non-Gaussian distributions, e.g., mixtures of multinomials.

References

1. C. C. Aggarwal, J. Han, J. Wang, and P. Yu. A framework for clustering evolving data streams.
In VLDB, pages 81–92, 2003.

2. B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. Models and issues in data stream
systems. In PODS ’02: Proceedings of the twenty-first ACM SIGMOD-SIGACT-SIGART sym-
posium on Principles of database systems, pages 1–16. ACM Press, 2002.

3. A. Dempster, N. Laird, and D. Rubin. Maximum likelihood from incomplete data via the em
algorithm. Journal of the Royal Statistical Society, 39(B):1–38, 1977.

4. M. Gaber, A. Zaslavsky, and S. Krishnaswamy. Mining data streams: A review. ACM SIG-
MOD Record, 34(1), 2005.

5. V. Ganti, J. Gehrke, and R. Ramakrishnan. Mining data streams under block evolution.
SIGKDD Explorations, 3(2):1–10, 2002.

6. S. Guha, A. Meyerson, N. Mishra, R. Motwani, and L. O’Callaghan. Clustering data streams:
Theory and practice. IEEE Trans. Knowl. Data Eng., 15(3):515–528, 2003.

7. H. Hotelling. Multivariate quality control. In C. Eisenhart, M. W. Hastay, and W. A. Wallis,
editors, Techniques of Statistical Analysis, pages 11–184. McGraw-Hill, New York, 1947.

8. S. Nassar, J. Sander, and C. Cheng. Incremental and effective data summarization for dy-
namic hierarchical clustering. In SIGMOD ’04: Proceedings of the 2004 ACM SIGMOD
international conference on Management of data, pages 467–478. ACM Press, 2004.

9. J. Patist, W. Kowalczyk, and E. Marchiori. Efficient Maintenance of Gaussian Mixture Models
for Data Streams. http://www.cs.vu.nl/∼jpp/GaussianMixtures.pdf, Technical Report, Vrije
Universiteit Amsterdam, 2005.

	Introduction
	Maintenance of Gaussian Mixture Models
	Space and Time Complexity Analysis
	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

