

V.N. Alexandrov et al. (Eds.): ICCS 2006, Part I, LNCS 3991, pp. 1059 – 1062, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Design and Implementation of a Resource Management
System Using On-Demand Software Streaming on

Distributed Computing Environment*

Jongbae Moon1, Sangkeon Lee1, Jaeyoung Choi1, Myungho Kim1, and Jysoo Lee2

1 School of Computing, Soongsil University, Seoul, 156-743, Korea
{comdoct, seventy9}@ss.ssu.ac.kr, {choi, kmh}@ssu.ac.kr

2 Korea Institute of Science and Technology Information
jysoo@kisti.re.kr

Abstract. As distributed computing has become a large-scale environment such
as grid computing, software resource management is rising as the key issue. In
this paper, we propose a new resource management system, which manages
software resources effectively, and its prototype implementation. This system
uses an existing on-demand software streaming technology to manage software
resources. This system greatly reduces traditional software deployment costs
and associated installation problems. In this system, an added node can also
execute a requested job without installation of applications.

1 Introduction

As computing technology advances, computing systems, which are geographically
dispersed, are interconnected through networks and cooperate to achieve intended
tasks. Moreover, not only system architecture but also software is more complicated.
Such computing systems, which are called distributed systems, are composed of vari-
ous types of resources and provide high throughput computing and high reliability. As
distributed computing has evolved from a simple cluster to complicated grid comput-
ing, providing a reliable and efficient distributed computing environment largely
depends on the effective management of these resources [1].

Resource management has always been a critical aspect, even in centralized
computing environments and operating systems [2, 3]. Managing resources is much
simpler in centralized systems than in distributed systems, since the resources are
confined to a single location, and in general the operating system has full control of
them. In distributed systems, however, these resources are scattered throughout dis-
tributed computing environment and no single entity has full control of these re-
sources. Thus, the resource management in distributed computing environments is
more difficult.

Various types of resources, which include both hardware resources and software
resources, exist in distributed computing systems. Many researches focus on hardware
resource management [4, 5, 6, 7]. For example, some researches focus on monitoring

* This work was supported by the National e-Science Project, funded by Korean Ministry of

Science and Technology (MOST).

1060 J. Moon et al.

work nodes, selecting available work nodes, allocating jobs to available work nodes,
and balancing loads between work nodes. In this paper, we only focus on software
resource management, because installing various kinds of software in many work
nodes, keeping software up to date, monitoring software status, and performing rou-
tine maintenance require more efforts.

Recently, on-demand software streaming has been used to make managing PC
Labs easy [8]. On-demand software streaming technology streams an application
code itself to a client computer, which then executes it natively. On-demand software
streaming provides the benefits of server-based computing. Server-based computing
offers potential of reducing the total cost of computational services through reduced
system management cost and better utilization of shared hardware resources [9].
Currently, only a few companies including [10, 11, 12, 13, 14] are known to possess
software streaming technology. On the other hand, software streaming is already used
to manage software resources in many offices and school PC Labs, and its demand is
increasing.

However, distributed systems do not support controlling streamed software re-
source. In this paper, we propose a new resource management system that can effec-
tively manage software resources including streamed software in a distributed system.
The proposed system adapts software streaming technology to a distributed system.
We implemented a prototype system including a job broker and a job management
module. The proposed system greatly reduces traditional software deployment costs
and associated installation problems.

2 Proposed Resource Management System

We have implemented a prototype system by using Z!Stream [14] that was developed
for Linux by SoftOnNet, Inc., and was implemented in C and PHP language. Also we
used MSF (Meta Scheduling Framework)[15] system to build workflow. In this paper,
we implemented a broker service and a job management module with Java language
to support multiple platforms.

2.1 System Architecture

The architecture of the proposed system is shown in Fig. 1. The system consists of
several modules and a Z!Stream package. A job broker collects work node status
information and requests jobs to those work nodes using a workflow. The job broker
is composed of several modules, which are a workflow interpreter, a streaming map,
work node monitor, and a job submission module. A job management module resides
at a work node with Z!Stream client and executes requested jobs. The job manage-
ment module consists of a status detector module, software detect module, and a job
execution module. If the requested application does not exist, the job execution mod-
ule requests the application to Z!Stream server. After Z!Stream server streams the
application code to a work node, then the work node executes it natively.

2.2 Implementation of the Job Broker

The job broker consists of a streaming map, a workflow interpreter, a work node
monitor, and a job submission module. The job broker keeps the streaming map,

 Design and Implementation of a Resource Management System 1061

Fig. 1. Architecture of the proposed system

which is a list of streamed software that a work node can stream and run. The work
node monitor collects status information of work nodes. The status information in-
cludes running job’s status and system load information. The job status is one of the
following: WAIT, RUNNING, and DONE. The workflow interpreter builds a work-
flow according to user requests, and selects work nodes to request jobs. The requested
jobs may consist of one job step, but most of them are generally batch jobs, which can
consist of several job steps. To execute batch jobs, workflow can be used. The work-
flow interpreter selects appropriate nodes to execute workflow jobs.

2.3 Implementation of the Job Management Module

The job management module consists of a status detector, a software detector, and a
job execution module. The status detector collects conventionally-installed software
list and process information, which the job execution module is performing. Then, the
status detector forwards the list and information to a job broker. The job execution
module uses a job queue. The OS control module controls conventionally-installed
applications by calling system calls. The streaming job control module controls
streamed jobs by calling interface, which the streaming client provides.

3 Conclusions and Future Works

In this paper, we proposed a new resource management system which manages soft-
ware resources effectively. The proposed system adapts on-demand software stream-
ing technology to existing distributed systems. We implemented a broker and a job
management module. The broker receives user requests and builds workflow if neces-
sary, and then selects work nodes and requests jobs to work nodes. The job manage-
ment module runs requested jobs and control the jobs including streamed jobs. This

1062 J. Moon et al.

system can manage software resources effectively by using software streaming. Also,
this system greatly reduces traditional software deployment costs and associated in-
stallation problems. A new added work node is not necessary to install any applica-
tions to run a job. Moreover, the system can perform workflow tasks.

There are some problems remaining in this system which require further research.
The proposed system does not support batch systems such as PBS. Also, a job man-
agement module can not control completely streamed software because it gets only
limited information from the streaming client. In future research, we will take batch
systems into consideration, and provide improved methods for controlling streamed
software.

References

1. Andrzej Goscinski, Mirion Brearman: Resource Management in Large Distributed Sys-
tems, ACM SIGOPS Operating Systems Review Vol. 24, (1990) 7–25

2. A. S. Tanenbaum: Modern Operating Systems, Prentice Hall, Englewood Cliffs, NJ (1992)
3. Gaurav Banga, Peter Druschel, and Jeffrey C. Mogul: Resource containers: A new facility

for resource management in server system, Proceedings of the 3rd USENIX Symposium on
Operating Systems Design and Implementation (ODSI), New Orleans, LA (1999)

4. D.L. Eager, E.D. Lazowska and J. Zahorjan: Adaptive Load Sharing in Homogeneous Dis-
tributed Systems, IEEE Trans. on Software Eng. Vol. SE-12, No. 5, May.

5. I.S. Fogg: Distributed Scheduling Algorithms: A Survey, Technical Report No. 81, Uni-
versity of Queensland, Australia.

6. A. Goscinski: Distributed Operating Systems. The Logical Design, Addison-Wesley
(1989)

7. Y.-T. Wang and R.J.T. Morris: Load Sharing in Distributed Systems, IEEE Trans. On
Computers, Vol. C-34. No. 3, March.

8. AppStream Inc.: Solving the unique PC management challenges IT faces in K-12 schools.
2300 Geng Road, Suite 100, Palo Alto, CA 94303.

9. Fei Li, Jason Nieh: Optimal Linear Interpolation Coding for Server-based Com-
puting, Proceedings of the IEEE International Conference on Communications
(2002)

10. AppStream: http://www.appstream.com/
11. Softricty, Inc.: http://www.softricity.com/
12. Stream Theory: http://www.streamtheory.com/
13. Exent Technologies: http://www.exent.com/
14. SoftOnNet, Inc.: http://www.softonnet.com/
15. Seogchan Hwang, Jaeyoung Choi: MSF: A Workflow Service Infrastructure for

Computational Grid Environments, Lecture Notes in Computer Science, Vol. 3292.
Springer-Verlag, Berlin Heidelberg New York (2004) 445–448

	Introduction
	Proposed Resource Management System
	System Architecture
	Implementation of the Job Broker
	Implementation of the Job Management Module

	Conclusions and Future Works
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

