

V.N. Alexandrov et al. (Eds.): ICCS 2006, Part I, LNCS 3991, pp. 1055 – 1058, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Security and Performance in Network Component
Architecture*

Dongjin Yu1,2, Ying Li3, Yi Zhou 3, and Zhaohui Wu3

1 Zhejiang Gongshang University, 310035 Hangzhou, China
yudongjin@hz.cn

2 Zhejiang Institute of Computing Technology, 310006 Hangzhou, China
3 College of Computer Science, Zhejiang University, 310027 Hangzhou, China

{cnliying, zhouyi, wzh}@zju.edu.cn

Abstract. In the Internet computing environment, clients usually invoke remote
components to accomplish computation, which leads to many security prob-
lems. Traditional network component architecture model focuses on business
logic, and takes little consideration for security problems. This paper proposes
Secure Network Component Architecture Model (SNCAM). It classifies clients
according to their credibility levels on component-side. Next, it presents the
main idea of this paper, which is the security domain. To reduce the overhead
introduced by the security mechanism, a method called security agent is also
proposed.

1 Introduction

In the Internet computing environment, it is very pervasive that clients may not im-
plement all the services they need. When clients need certain services, they can in-
voke remote components to get them, leading to the network component architecture
model [7]. In such a model, local programs invoke remote components to accomplish
the tasks, which may be required to transmit a great amount of data between clients
and remote components. If the data is transmitted on the network without encryption,
malicious listeners may get and change it. Traditional network component architec-
ture model [6] focuses on business logic, and takes little consideration for security
problems when business logic is invoked. All the parameters and returned results are
transmitted on the network as plain text, causing security hazard.

The Common Component Architecture (CCA) [2] provides the means to manage
the complexity of large-scale scientific software systems and to move toward a “plug
and play” environment for high-performance computing. In the design of CCA, the
considered requirements are: Performance, Portability, Flexibility and Integration.
CCA gives concerns to performance issues, but does not address the requirements of
security, which is very important in distributed component computing environment.

There are two measures to ensure secure communication between computers. One
is data-encryption, which is further divided into an algorithm and an encryption key.

* The work is supported in part by Natural Science Foundation of Zhejiang Province of China

with grant No. Z104550, Zhejiang Provincial Science and Technology Department Key
Projects with grant No. 2005C21024, of China.

1056 D. Yu et al.

The negotiation of encryption key is always made using public-key technology, such
as that of the IETF "SPKI"(Simple Public-Key Infrastructure).

The second measure is authentication or access-control. Many research works [9]
address this problem, but few combine the authentication process with the data-
encryption process for an integrated security framework. A language called Ponder [4]
defines a declarative, object-oriented language for specifying policies for the security
and management of distributed systems. Ponder focuses on specifying authentication
rules, but lacks the security while data is being transmitted after the authentication.

Another issue is performance. Most of the existing security architectures do not
address the problem of performance reduction [3]. Actually, we can do many per-
formance improvements under the security framework.

In response to this situation, we propose the Secure Network Component Architec-
ture Model (SNCAM) to ensure secure communication of clients and remote
components in both ways: data-encryption and access-control. We also take into con-
sideration for performance reduction owing to security mechanisms.

SNCAM adds security mechanisms to the traditional model. It forces components
and clients to negotiate encryption algorithms and exchange an encryption key in
every session for future communication. It also forces the authentication of clients to
ensure that clients have the right to access the services provided by components. The
participants of SNCAM are clients and security domains. A security domain consists
of many business components and one security component. The relationship between
these participants is: 1. a client invokes a business component; 2. the business compo-
nent invokes security service provided by the security component, and the result indi-
cates whether it should give the client the opportunity to access the business service;
3. if the client is granted the right to access the business service, the business compo-
nent may also invoke other business services provided by components either in the
domain or outside the domain.

2 Client Classification and Security Domains

SSH [1] (Secure SHell) is a protocol for secure remote login and other secure network
services over an insecure network. It divides the process of establishing a secure con-
nection into five phases: version exchange, algorithm negotiation, key exchange,
authentication and session. The version exchange phase is to negotiate the protocol
and software versions that the client and the server are both compatible to. In the
session phase, the communication between up-level applications of the client and the
server has already begun. These two phases are irrelevant to security mechanisms.
Therefore, we can simplify the 5-phase SSH protocol into 3 phases: algorithm nego-
tiation, key exchange and authentication. These three phases are loosely coupled:
algorithm negotiation is to decide which algorithms to use during encryption and
authentication; key exchange is to decide the key that is used to do encryption and
decryption; authentication is to verify the client’s access right. To accomplish the
above three tasks, we can design three separate pieces of programs, which are also
called as security procedures.

From the viewpoint of a server-side component, different clients may have differ-
ent credibility. We classify these clients into 4 classes according to their credibility in

 Security and Performance in Network Component Architecture 1057

the ascending order, resulting in four credibility levels: A-SEC, B-SEC, C-SEC, and
D-SEC. For example, clients whose credibility levels are B-SEC are more credible
than clients of A-SEC. When a client passes a security procedure, its credibility level
goes up. In SSH, the exchanged key is temporarily valid. When a certain period of
time expires, the key becomes invalid. The client and the server then have to re-
exchange the key (rekey). The clients’ credibility levels can go up and down as well.
For example, a client whose credibility level is C-SEC or D-SEC can migrate back to
B-SEC.

The Implementation of security procedures is the implementation and organization
of the program that accomplishes the tasks of algorithm negotiation, key exchange,
and authentication. Security procedures, which reside on component servers, read
information about a client’s credibility level from storage and may change it.

In many situations, the implementations of security procedures are similar. Hence
it is reasonable to combine components that have the same implementation of security
procedures into a domain, and configure a security component that implements these
security procedures. The security component controls and authorizes clients to access
services provided by components in that domain. In this way, other components in
that domain need not implement security procedures. Instead, they can use the secu-
rity service provided by the security component. All the components in one security
domain can be classified into two categories: business and security. The business
components accomplish business logic and the security component is responsible for
controlling access.

3 Security Agent

A Security Agent method provides an express way for direct communication between
distrusted clients and components. The discussion below regards clients as compo-
nents, and we call components that provide services as object components.

The direct trust relationship between components is a 2-tuple DT(Ci,Cj), which
means that component Ci and Cj can communicate directly with each other without
any security procedures. The interface trust relationship between components is a 2-
tuple IT(Ci,Cj), which means that Ci and Cj cannot communicate directly with each
other without any security procedures. But they can avoid that by communicating
with the third party components.

When there is no direct trust relationship but interface trust relationship between
client components and object components, it is certain that we can find a sequence of
components which begins in a client component and ends in an object component,
where every two adjacent elements are directly trusted. This sequence is named as the
security agent sequence. Every element in it is named as the security agent.

4 Experiments and Results

We take the size of a message as a parameter of a task, and set up two environments,
one using security agents, and the other not. We set the size of message in turn as: 4K,
16K, 64K, 128K, and 512K. The clients’ credibility levels are fixed to B-SEC. The
obtained data is shown in Table 1, with the format of “without agent/with agent”:

1058 D. Yu et al.

Table 1. Performance of security agents

message size client 1 client 2 client 3
4K 7.4/2.9 8.1/3.6 10.4/4.1
16K 11.6/10.5 14.1/14.3 15.3/14.8
64K 34.3/43.7 47.6/51.9 50.9/59.1
128K 56.2/85.3 68.3/102.4 88.2/120.7
512K 196.3/304.8 237.9/395.6 279.8/463.7

The above data is the time of transmitting messages of the corresponding size from
a client to a server for 40 times, measured in seconds. In Table 1 we can see that for
light-weight tasks, using security agents is better. But for heavy-weight tasks, it is
better to carry out security procedures and then communicate with the server directly.

References

1. T. Ylönen, T. Kivinen, M. Saarinen, T. Rinne, and S. Lehtinen. "SSH Protocol Architec-
ture", Internet Engineering Task Force, work in progress, (2002).

2. D.E. Bernholdt, W.R. Elwasif, James A. Kohl, and Thomas G. W. Epperly. A component
architecture for high-performance computing. In Proceedings of the Workshop on Perform-
ance Optimization via High-Level Languages (POHLL-02), New York, NY, June 2002.

3. R.L. Rivest, B.Lampson. SDSI - A Simple Distributed Security Infrastructure. Working
document from http://theory.lcs.mit.edu/cis/sdsi.html

4. N. Damianou, N. Dulay, E. Lupu, M. Sloman, Ponder: A Language for specifying Man-
agement and Security Policies for Distributed Systems, Imperial College Research Report
DoC2001, January,2001.

5. Lacoste, G. (1997) SEMPER: A Security Framework for the Global Electronic Market-
place. IIR London.

6. Li Yang, Zhou Yi, Wu ZhaoHui. Abstract Software Architecture Model based on Network
Component. Journal of Zhejiang University, Engineering Science, 2004, 38(11):1402-1407.

7. A. Thomas, Enterprise JavaBeans: Server Component Model for Java, White Paper, Dec.
1997, http://www.javasoft.com/products/ejb/.

8. M. S. Sloman, J. Magee, “An Architecture for Managing Distributed Systems”, Proceedings
of the Fourth IEEE InternationalWorkshop on Future Trends of Distributed Computing Sys-
tems, pp. 40-46, IEEE Computer Society Press, September, 1993.

9. Lupu, E. C. and M. S. Sloman (1997b). Towards a Role Based Framework for Distributed
Systems Management. Journal of Network and Systems Management 5(1): 5-30.

	Introduction
	Client Classification and Security Domains
	Security Agent
	Experiments and Results
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

