

V.N. Alexandrov et al. (Eds.): ICCS 2006, Part I, LNCS 3991, pp. 1043 – 1046, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Implementing Predictable Scheduling in RTSJ-Based
Java Processor

Zhilei Chai1,2, Wenbo Xu1, Shiliang Tu2, and Zhanglong Chen2

1 Center of Intelligent and High Performance Computing, School of Information Engineering,
Southern Yangtze University

214122 Wuxi, China
2 Department of Computer Science and Engineering, Fudan University

200433 Shanghai, China
zlchai@fudan.edu.cn

Abstract. Due to the preeminent work of the RTSJ, Java is increasingly ex-
pected to become the leading programming language in embedded real-time
systems. To provide an efficient real-time Java platform, a Real-Time Java
Processor (HRTEJ) based on the RTSJ was designed. This Java Processor effi-
ciently implements the scheduling mechanism proposed in the RTSJ, and offers
a simpler programming model through meliorating the scoped memory. Special
hardwares are provided in the processor to guarantee the Worst Case Execution
Time (WCET) of scheduling. In this paper, the scheduling implementation of
this Java Processor is discussed, and its WCET is analyzed as well.

1 Introduction

Currently, to provide an efficient Java platform suitable for real-time applications,
many different implementations are proposed. These implementations can be gener-
ally classified as Interpreter (such as RJVM [1] and Mackinac [2]), Ahead-of-Time
Compiler (Anders Nilsson et al [3]) and Java Processor (such as aJile-80/100 [4]
and JOP [5]). Comparing with other implementing techniques, Java Processor is pref-
erably being used in embedded systems because of its advantages in execution
efficiency, memory footprint and power consumption.

The scheduling predictability is a basic requirement for real-time systems. The
Real-Time Specification for Java (RTSJ) [6] makes some major improvements to
Java’s thread scheduling. Many of the current real-time Java platforms implement
scheduling based on the RTSJ, such as Mackinac, RJVM and aJile etc, most of which
allow threads to be allocated in heap memory. JOP implements a new and simpler
real-time profile other than the RTSJ.

In this paper, the scheduling implementation in our RTSJ-based real-time Java
Processor is introduced. None of the thread in this Processor is allocated in heap and
the interference of Garbage Collector is totally avoided. Comparing with JOP,
the profile of the HRTEJ Processor is more close to the RTSJ and dynamic thread
creation and termination are supported.

1044 Z. Chai et al.

2 Scheduling Implementation in the HRTEJ Processor

Based on the optimization method proposed in our previous work [7], to guarantee the
real-time performance of the HRTEJ Processor, standard Java class files was proc-
essed by the CConverter (the program we designed to preprocess the Java class file)
before being downloaded into the processor’s memory. During this phase, all the
process interfering predictability such as Class loading, verifying and resolution are
handled. Some other optimizing operations are processed simultaneity. All the
Classes needed in the application are loaded and linked before execution. The mem-
ory layout produced by the CConverter is displayed as a binary sequence. All of the
strings, static fields and other data can be accessed by their addresses directly.

2.1 Thread Management Mechanism in the HRTEJ Processor

There are some thread related registers in the HRTEJ Processor to facilitate the pre-
dictability of the scheduling as follows:

Run_T, Ready_T, Block_T and Dead_T: n-bit (n is the width of the data path) reg-
isters to record the queues of threads which are running, ready, blocked and dead. A
thread can be put into a queue by setting corresponding bit of that register to ‘1’ ac-
cording to its priority.

ThisThread: recording the object reference of current running thread.
Wait_Base: The base address of the static fields WaitObject0~n-1 in figure 1.
STK_base0~n-1: the stack base address of each thread.
LTMAddr0~n-1: the LTMomory base address of each thread.
The HRTEJ Processor can support n threads at most with unique priority from 0 to

n-1 (0 is the highest priority).These threads can be created and terminated dynami-
cally.

Creating a new thread just as creating a general object, but the object reference of
this thread should be put into the corresponding static field ‘Thread0~n-1’ according
to its priority. The Scheduler terminates a thread by moving the corresponding ‘1’
from other queues to the Dead_T. The Scheduler always chooses the thread corre-
sponding to the leftmost ‘1’ in Ready_T to dispatch and execute.

Fig. 1. Tread Object Structure of the HRTEJ Processor

 Implementing Predictable Scheduling in RTSJ-Based Java Processor 1045

When scheduling occurs, the context of the thread being preempted is saved at the
top of its stack. The thread object and its corresponding context are shown in fig. 1.

Wait Method Implementation: When a thread calls the wait method and blocks
itself, it records the reference of the waited object in corresponding static field
WaitObject0~n-1. This static field will be checked when notifying a thread. WaitOb-
ject0~n-1 is used to record the locked object waited by each thread.

Join Method Implementation: Using the instance field ‘join’ to record the object
reference of the thread to wake up when current thread is finished.

Priority Inheritance Implementation: If a thread wants to enter a synchronization
block which another lower priority thread is in, then the Priority Inheritance must be
taken. In the HRTEJ Processor, a simple method to implement the Priority Inheritance
is adopted. Two threads sharing the same synchronization object exchange their prior-
ity, and record the old priority in the Exchange field. When the thread exits the syn-
chronization area, it takes the original priority back again.

As discussed above, special hardwares are used in the HRTEJ Processor to ensure
the predictability of WCET. The clock cycles of thread scheduling, dispatching, and
other thread related mechanisms are all predictable in the HRTEJ Processor. The
implementations of other scheduling related mechanisms described in [7] and [8], will
not be discussed anymore.

3 Evaluation and Discussion

The HRTEJ differs from JOP in supporting dynamic thread creation and termination,
ATC, nested scoped memory, and dynamic allocation of shared objects, which pro-
vides a more flexible programming model. Table 1 shows the comparison of some
bytecodes execution cycles between the JOP and the HRTEJ. It is displayed that the
average execution cycles of the HRTEJ is smaller than that of JOP.

Table 1. Clock Cycles of Bytecode Execution Time

 HRTEJ(min) HRTEJ(max) JOP
iload iadd
iinc
ldc
if_icmplt
getfield
getstatic
iaload
invoke
invoke static
dup
new
iconst_x
astore_x / aload_x
return
goto

3
8
7
8
6
7
3

42
39
2

10
2
3

20
3

3
8
8

10
7
8
3

43
39
2

12
2
5

20
5

2
11
10

6
25
17
30

128
101

x
x
x
x
x
x

1046 Z. Chai et al.

Estimating the WCET of tasks is essential for designing and verifying real-time
systems. As a rule, static analysis is a necessary method for hard real-time systems.
Hence, the WCET of an application (Demo.java) is statically analyzed in this paper to
demonstrate the real-time performance of the HRTEJ Processor.

The bytecodes compiled from Demo.java can be mainly partitioned into 3 parts
(one part a thread). In each part, the WCET of the general bytecode is known accord-
ing to table 1. For the finite loop in thread t0, its WCET can be calculated as
100*WCET (general code + LTMemory + start() + Scheduling). The LTMemory
operation is predictable as mentioned in [8], and the WCET of the scheduling and
method start() is also predictable. So, the real-time performance of the whole applica-
tion can be guaranteed.

Furthermore, the maximal allocation of the LTMemory space in this application is
S(t0)+S(t1) instead of S(t0)+100*S(t1). S(t) denotes the space of thread t. Another
advantage of this processor is that Java programmers just need creating and entering a
LTMemory space to use instead of denoting the memory size.

4 Conclusions

The multithreading mechanism is vital for real-time systems to handle the concurrent
events in the real world. The RTSJ defines more accurate semantics for the predict-
able scheduling. It makes Java become popular in embedded real-time systems. In this
paper, the RTSJ based scheduling mechanism implemented in our Java Processor is
introduced. With special architectural supporting, all the WCET of the thread related
mechanisms are predictable. Because heap memory is not used, this Processor is suit-
able for hard real-time applications.

References

1. http://www.cs.york.ac.uk/rts/
2. G. Bollella, B. Delsart, R. Guider, C. Lizzi, and F. Parain, "Mackinac: making HotSpot/spl

trade/ real-time," presented at Eighth IEEE International Symposium on Object-Oriented
Real-Time Distributed Computing, ISORC 2005, 45 – 54.

3. A. Nilsson and S. G. Robertz, "On real-time performance of ahead-of-time compiled Java,"
presented at Eighth IEEE International Symposium on Object-Oriented Real-Time Distrib-
uted Computing, ISORC 2005, 372 – 381.

4. http://www.ajile.com/
5. M. Schoeberl, “JOP: A Java Optimized Processor for Embedded Real-Time Systems”,

http://www.jopdesign.com/thesis/thesis.pdf, 2005
6. G. Bollela, J. Gosling, B. Brosgol, P. Dibble, S. Furr, D. Hardin and M. Trunbull, “The

Real-Time Specification for Java”, Addison Wesley, 1st edition,2000.
7. Z. L. Chai, Z. Q. Tang, L. M. Wang, and S. L. Tu, "An Effective Instruction Optimization

Method for Embedded Real-Time Java Processor," 2005 International Conference Parallel
Processing Workshops, Oslo, Norway, pp. 225-231, 2005.

8. Z. L. Chai, Z. L. Chen, and S. L. Tu, “Framework of Scoped Memory in RTSJ-Compliant
Java Processor”, Mini-Micro Systems, accepted.

	Introduction
	Scheduling Implementation in the HRTEJ Processor
	Thread Management Mechanism in the HRTEJ Processor

	Evaluation and Discussion
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

