
M.Ü. Uyar, A.Y. Duale, and M.A. Fecko (Eds.): TestCom 2006, LNCS 3964, pp. 103 – 117, 2006.
© IFIP International Federation for Information Processing 2006

Generating Test Cases for Web Services Using Extended
Finite State Machine

ChangSup Keum1, Sungwon Kang2, In-Young Ko2,
Jongmoon Baik2, and Young-Il Choi1

1 BcN Research Division,
Electronics and Telecommunications Research Institute

{cskeum, yichoi}@etri.re.kr
2 School of Engineering,

Information and Communications University
{kangsw, iko, jbaik}@icu.ac.kr

Abstract. Web services utilize a standard communication infrastructure such as
XML and SOAP to communicate through the Internet. Even though Web ser-
vices are becoming more and more widespread as an emerging technology, it is
hard to test Web services because they are distributed applications with numer-
ous aspects of runtime behavior that are different from typical applications. This
paper presents a new approach to testing Web services based on EFSM (Ex-
tended Finite State Machine). WSDL (Web Services Description Language) file
alone does not provide dynamic behavior information. This problem can be
overcome by augmenting it with a behavior specification of the service. Rather
than domain partitioning or perturbation techniques, we choose EFSM because
Web services have control flow as well as data flow like communication proto-
cols. By appending this formal model of EFSM to standard WSDL, we can
generate a set of test cases which has a better test coverage than other methods.
Moreover, a procedure for deriving an EFSM model from WSDL specification is
provided to help a service provider augment the EFSM model describing dy-
namic behaviors of the Web service. To show the efficacy of our approach, we
applied our approach to Parlay-X Web services. In this way, we can test Web
services with greater confidence in potential fault detection.

1 Introduction

A Web service is any service available on the Internet that uses a standardized XML
messaging system and is not tied to a operating system or programming language. In
other words, Web service is a collection of components that are wrapped with SOAP
(Simple Object Access Protocol) interfaces so they can exchange XML-based (Extensi-
ble Markup Language) messages [1]. Using Web Services, companies can integrate ex-
isting business applications into new and innovative business applications, publish them
as services, discover and subscribe to other services, and exchange information [2].

Some testing techniques that are used to test software components are being
extended to Web services. A few papers have presented testing techniques for Web
services, but the dynamic discovery and invocation capabilities of Web services bring
up many testing issues. Existing Web service testing methods try to take advantage of

104 C. Keum et al.

syntactic aspects of Web service rather than semantic, dynamic, and behavioral in-
formation because standard WSDL is not capable of containing such information.
Therefore, they focused on testing of single operations rather than testing sequences of
operations. Furthermore, they heavily rely on the test engineers’ experience.

 In this paper, we propose a new approach to test Web services. This idea stems from
similarities between communication protocol testing and stateful Web services testing.
Web services can be either stateless or stateful. Stateful Web services have several
operations which affect the service’s state that are used by other operations. Operations
in stateless Web service do not change the service’s internal states. Each operation in
Web services has a request and response message with parameters. It is hard to test such
Web services because they are distributed applications with numerous runtime be-
haviors that are different from typical applications. Service consumers usually have to
use black-box testing because specifications are available but design and implementa-
tion details of Web services are not available. The specification is written in WSDL
(Web Services Description Language). Unfortunately, current WSDL does not contain
sufficient information for a consumer to test the available Web services. Although a
few technologies exist to verify syntactic aspects of the interactions, it is very difficult
to find out whether Web services behave correctly with all possible messages.

Specifically, protocol testing and Web services testing both require to perform some
message exchanges and to analyze the result. Furthermore, it is more important to test
sequences of messages than to test of single message. Also these two testing methods
are basically based on the black-box approach. In black-box testing, specification has a
strong influence on testing. Stateful Web services have reactive characteristics similar
to communication protocols; therefore specification languages for Web services are
favored which precisely define the temporal ordering of interactions. FSM (Finite State
Machine) model is often used for defining the temporal order of interaction. However,
the FSM model is often too restrictive for defining all aspects of a Web service speci-
fication because a Web service has input and output messages with data parameters. In
contrast with FSM, EFSM [3] includes additional variables, input and output events
including parameters. It consists of transitions which are characterized by a so-called
enabling predicate and a transition action. Therefore an extended FSM model seems to
be a very promising model for describing Web services behaviors.

We utilize the EFSM model to test Web services. Since current WSDL does not
contain sufficient information for a test engineer to test the available Web services,
temporal ordering information is added to describe Web services behaviors. EFSM
(Extended Finite State Machine) is well suited for describing Web services behavior
because it has the control part of the specification represented by pure FSM model and
the data part represented by the transition predicates and actions.

There are many benefits to constructing test cases on the basis of a formal model
specification such as EFSM. The benefits arise from the ability to precisely describe
and reason about potential faults. In particular, it means that test can be applied uni-
formly, with greater confidence in their fault detecting potential, and with the possi-
bility of full automation. Using an EFSM formal specification for a Web service, we
can generate test cases from the specification automatically if we are equipped with an
appropriate tool set such as EFSM analyzer, test case generator, and monitor.

The remainder of the paper is organized as follows. After reviewing existing Web
service testing methods in Section 2, we present a procedure from a WSDL specifica-
tion to an EFSM model and introduce test case generation algorithm using EFSM in

 Generating Test Cases for Web Services Using Extended Finite State Machine 105

Section 3. An application example is provided to show the efficiency of our method in
Section 4. We conclude the paper with a discussion of future work in Section 5.

2 Related Works

In this section, we review various methods for test cases generation for Web services
and discuss drawbacks of existing Web service testing.

Heckel and Mariani [4] generate test cases for Web services with individual rules by
selecting “likely” inputs. Possible inputs are further restricted by the preconditions of
the GT (graph transformation) rules [5]. This suggests the derivation of test cases using
a domain-based strategy, known as partition testing [6]. The idea is to select test cases
by dividing the input domain into subsets and choosing one or more elements from each
domain [7]. The execution of an operation can alter parts of service’s state that are used
by other operations. GT rules specify state modifications at a conceptual level. By
analyzing these rules we can understand dependencies and conflicts between opera-
tions without inspecting their actual implementation. In this method, data-flow testing
technique is used to test the interaction among production rules if creation of nodes and
edge is interpreted as “definition” and deletion as “use” [8]. Conceptually, each op-
eration (rule) can add or remove nodes and edges to or from the conceptual state, and
change the values of attributes. Authors expect sequences of operations, which include
the creation of an entity and its subsequent uses are likely to expose (state-based) fault.

In short, this method applies existing domain-based testing (partitioning testing) to
the GT rules to generate test cases which cover validation of both single operation and
sequences. The major problem of this method is that the definition of GT rules does not
contain the temporal aspects (control flow) of message interactions. This method only
considers data-flow to generate test cases for sequences of operations. This means that
[4] has no test criteria for control flow. Furthermore, splitting the input domain into
subsets relies on the tester’s experience. This could cause non-uniform and biased tests
for Web services.

In the paper [9], data perturbation is used as main method for testing Web service
components. The testing process operates by modifying request messages, retransmit-
ting messages, and analyzing the response messages for correct behavior. To do this
process, value data perturbation modifies values in SOAP messages in terms of the
types of the data. Data value perturbation relies on ideas from boundary value testing
[10]. Test cases are derived from default boundary values of XML schemas. Tests are
created by replacing each value with each boundary value, in turn, for appropriate type.

Concisely, the authors present a new approach to testing Web services based on data
perturbation. Data perturbation uses two methods to test Web services: data value
perturbation and interaction perturbation. However, this approach relies strictly on
syntactic information about the XML messages, does not use behavior information.
They consider only the selection of appropriate input parameter values. The sequences
of operations in Web service are not considered. They just focus on testing of single
operation of Web service.

Li et al. [11] provide some techniques for various kinds of Web Services testing such
as unit testing, functional testing, performance testing, Load/stress testing, security
testing and authorization testing. They provide detailed information on the key aspects
of Web service testing features related with performance, authorization, and security.

106 C. Keum et al.

Furthermore, they designed an automatic testing tool including SOAP-based log
analysis, script generator, recorder, and monitor. However, there is no detailed infor-
mation on the method of test cases generations in their paper.

In the paper [12], the authors propose a method of extending WSDL to describe
dependency information which is useful for Web service testing. They suggest several
extensions such as input-output dependency, invocation sequences, hierarchical func-
tional description, and concurrent sequence specification. Similar to [11], there is no
test case generation method and experimental data using the extension.

In summary, the existing Web service testing methods try to take advantage of syn-
tactic aspects of Web service rather than behavioral aspects of Web services because
standard WSDL does not contain such information. Therefore, they focused on the test
of single operations instead of sequences of operation. One of disadvantages using
those methods is that they rely on test engineer’s experience. This could lead to
non-uniform and biased testing. All these problems can be solved by augmenting be-
havior information to WSDL file. The behavior information holds control and data
dependencies of Web service operations because the information is represented as an
EFSM formal model. Using the augmented EFSM model, we can generate test cases
which cover control and data paths thoroughly. In the next section, we describe our
approach in detail.

3 Test Cases Generation for Web Services Using EFSM

In this section, we describe our test generation approach for Web services in detail. In
Section 3.1, we first give a procedure for deriving an EFSM model from a WSDL
specification of a service and illustrate the procedure with a banking Web service
example. Once an EFSM model is constructed, test cases can be generated easily us-
ing a well-known algorithm as described in Section 3.2.

3.1 Modeling Web Service with EFSM

A WSDL specification is used to describe how to access a Web service and what op-
erations it can perform. However, a WSDL specification does not provide sufficient
information for Web service test derivation because it only provides the interface for
the service. An EFSM starts from an initial state and moves from one state to another
through interactions with its environment. The EFSM model extends the FSM model
with variables, statements and conditions. An EFSM is a 6-tuple <S, s0, I, O, T, V>,
where S is a non-empty set of states, s0 is the initial state, I is an non-empty set of input
interactions, O is a non-empty set of output interactions, T is a non-empty set of tran-
sitions, and V is a set of variables. Each element of T is a 5-tuple of the form:
<source_state, dest_state, input, predicate, compute_block>, where “source state” and
“dest state” are states in S corresponding to the starting state and the target state of t,
respectively; “input” is either an input interaction from I or empty; “predicates” is a
predicate expressed in terms of variables in V, the parameters of the input interaction
and some constants, and “compute-block” is a computation block consisting of as-
signment and output statements. We will only consider deterministic EFSMs that are
completely specified. In addition, the initial state is always reachable from any state
with a given valid context.

 Generating Test Cases for Web Services Using Extended Finite State Machine 107

Is Web service
stateful?

Is Web service
stateful?

Step1: Analyze the WSDL and informal specification
and fill the WSDL analysis template

Step 2: Classify control and data variables and construct a state
machine based on the combination of control variables

Step 4: Supplement transitions using the operation information
in the WSDL analysis template

Use other Web service
test derivation methods

No

Yes

WSDL
Informal spec.

EFSM

Step 3: Adjust the state machine with state reduction and merging

Fig. 1. Procedure for deriving an EFSM model from a WSDL description of a service

Figure 1 presents our procedure for deriving EFSM model from a WSDL specifi-
cation. First of all, we have to decide whether the Web service to be modeled is stateful
or not. A Stateful Web service in general can be modeled as an EFSM. Stateful Web
service has several operations which change the service’s internal state that are used by
other operations. In that case, the operations may response with different output mes-
sages according to the internal state of Web service server. If the Web service is
stateless, then we have to use other Web service testing methods such as [4] and [9].
Otherwise, we continue with Steps 1 through 4.

Step 1). We analyze the WSDL specification and the web service specification in informal
language and fill the WSDL analysis template shown in Table 1. Each row of Table 1
describes an operation with its name, its parameter types and its return value type together
with its pre-condition and post-condition for each operation in WSDL specification.

For example, Table 2 shows the WSDL analysis template filled out for a banking
Web service. From WSDL description, we find out that the banking Web service pro-
vides four public operations, i.e. openAccount, deposit, withdraw, and closeAccount.
The operation openAccount expects a single parameter init which means an initial
deposit, and returns an account number identifier. The operation closeAccount expects
a single parameter id, which means account number, and returns the result of operation
such as ResultOK and Error. The operations deposit and withdraw expect two pa-
rameters id (identifier) and v(value), and return results such as ResultOK and Error. In
Table 2, value holds the balance of the bank account created by openAccount operation
and accountId means account number.

Step 2). To construct EFSM, it is necessary to classify variables in the pre-condition
and post-condition of Table 2 into control variables and data variables. Then a

108 C. Keum et al.

Table 1. WSDL analysis template

operation pre-condition post-condition
name:
parameter:
return:

… …

… … …

Table 2. WSDL analysis template for banking Web service

operation pre-condition post-condition
name: openAccount
parameter: init
return: identifier

init > 0
value’ = init
accountId > 0

name : deposit
parameter: id, v
return : res

accountId = id
v > 0

value’ = value + v
accountId > 0

name : withdraw
parameter: id, v
return : res

accountId = id
value >= v

value’ = value - v
accountId > 0

name : closeAccount
parameter: id
return : res

accountId = id
accountId = 0
¶ value’ = 0

Table 3. Classification of variables for banking Web service

operation pre-condition post-condition

control
variable

data
variable

control
variable

data
variable

name: openAccount
parameter: init
return: identifier

- init
accountId

value
init

name : deposit
parameter: id, v
return : res

accountId
v
id

value -

name : withdraw
parameter: id, v
return : res

accountId
value

v
id

value -

name : CloseAccount
parameter: id
return : res

accountId id
accountId

value
-

combination of different values of the control variables makes a state of the EFSM
under construction. For the banking Web service example, there are two control vari-
ables accountId and value. Table 3 presents the classification of variables for banking
Web service.

 Generating Test Cases for Web Services Using Extended Finite State Machine 109

Figure 2 shows an initial version of EFSM for the banking Web service. The states
are constructed by combining possible value range of control variables. The variable
accountId and value have two possible values: range 0 and greater than 0. If the control
variables have value 0, it means that it is not initialized yet. When the variable ac-
countId is initialized by openAccout operation, the variable has a value greater than 0
until it is closed by closeAccout operation. After initialization, the variable value keep a
balance greater than 0 according to the operation withdraw and deposit. Therefore, we
make four different states with combinations of the two control variables. Then we
associate transitions with the appropriate operations by examining the pre-condition
and post-condition of an operation.

value = 0
accountId = 0

value = 0
accountId = 0

value = 0
accountId > 0

value = 0
accountId > 0

value > 0
accountId = 0

value > 0
accountId = 0

value > 0
accountId > 0

value > 0
accountId > 0

openAccount closeAccount

deposit

withdraw

withdraw

Fig. 2. EFSM construction with control variables

Step 3). It is desirable to reduce states in the initial version of EFSM model because
first often the number of states would be otherwise huge and second there is a possi-
bility that unreachable states may exist. For example, the state with value >0 and ac-
countId = 0 is an unreachable state. Unreachable states should be deleted for the state
reduction. Some states could be merged into one state according to test engineer’s
judgment. Figure 3 gives an enhanced EFSM obtained by removing an unreachable
state and merging two states into a state named Active. For human readability, we as-
sign a meaningful name to each state.

Step 4). To make a concrete transition in EFSM, operation information in the WSDL
is used. An operation has input and output message. Input message is transformed into
input event and output message is transformed into output event in the transition.
Pre-condition is transformed into guard condition in the transition. Post-condition is
transformed into actions in the transition. Figure 4 shows our final EFSM model de-
rived from the WSDL specification for the banking Web service.

110 C. Keum et al.

InitialInitial

ActiveActive

openAccount

closeAccount

withdraw deposit

Fig. 3. Enhanced EFSM with state reduction and merging

InitialInitial

ActiveActive

t1: ?openAccount_Rq(init)
init > 0
value := init
!openAccount_Rp(accountId)

t2: ?deposit_Rq(id,v)
id == accountId
v > 0
value := value + v
!deposit_Rp(‘ResultOK’)

t3: ?withdraw_Rq(id,v)
id == accountId
value >= v
value := value - v
!withdraw_Rp(‘ResultOK’)

t4: ?closeAccount_Rq(id)
id == accountId
!closeAccount_Rp(‘ResultOK’)

Fig. 4. Final EFSM for banking Web service

3.2 Test Cases Generation Algorithm Using EFSM

In the paper [3], the authors provide a comparison of single EFSM-based test genera-
tion methods. We choose Bourhfir’s algorithm [13] as our test case generation method
for Web services because the algorithm considers both control and data flow with
better test coverage. The control flow criterion used is UIO (Unique Input Output)
sequence [14] and the data flow criterion is “all-definition-uses” criterion [15] where
all the paths in the specification containing a definition of a variable and its uses are

 Generating Test Cases for Web Services Using Extended Finite State Machine 111

generated. Moreover, the algorithm uses a technique called cycle analysis to handle
executability of test cases.

The detailed algorithm is described in Figure 5. For each state S in the EFSM, the
algorithm generates all its executable preambles (a preamble is a path such that its first
transition’s initial state is the initial state of the system and its last transition’s tail state
is S) and all its postambles (a postamble is a path such that its first transition’s start state
is S and its last transition’s tail state is the initial state). To generate the
“all-definition-uses” paths, the algorithm generates all paths between each definition of
a variable and each of its uses and verifies if these paths are executable, i.e., if all the
predicates in the paths are true. After the handling executability problem, the algo-
rithms removes the paths which is included in the already existing ones, completes the
remaining paths (by adding postambles) and adds paths to cover the transitions which
are not covered by the generated test cases.

Algorithm. Extended FSM Test Generation
Begin

Generate the dataflow graph G form the EFSM specification
Choose a value for each input parameter influencing the control flow
Call Executable-Du-Path-Generation(G) procedure
Remove the paths that are included in already existing ones
Add a postamble to each du-path to form a complete path
Make it executable for each complete path using cycle analysis
Add paths to cover the uncovered transitions
Generate its input/output sequence using symbolic evaluation

End.

Procedure Executable-Du-Path-Generation(flowgraph G)

Begin
Generate the shortest executable preamble for each transition
For each transition T in G

For each variable v which has an A-Use in T
For each transition U which has a P-Use or a C-Use of v

Find-All-Paths(T,U)
EndFor

EndFor
EndFor

End;

Fig. 5. Test case generation algorithm using EFSM

The following definitions that appeared in the paper [3] were used in the algorithm:

• A transition has an assignment-use (A-Use) of variable x, if x appears at the
left-hand side of an assignment statement in the transition.

• When a variable x appears in the input list of a transition, the transition is said to
have an input-use (I-Use) of variable x.

• A variable x is a definition (referred to as def), if x has an A-use or I-use.

112 C. Keum et al.

• When a variable x appears in the predicate expression of a transition (Provided
Clause), the transition has a predicate-use or P-Use of variable x.

• A transition is said to have a computational-use or C-use of variable x, if x occurs in
an output primitive or an assignment statement at the right-hand side.

• A path (t1,t2,…,tk,tn) is said to a def-clear-path with respect to (w.r.t) a variable x if
t2,…,tk do not contain defs of x.

• A path (t1,…,tk) is a Du-path (definition-uses) w.r.t a variable x, if x ∈ def (t1) and
either x ∈ c-use(tk) or x ∈ p-use(tk), and (t1,…,tk) is a def-clear-path w.r.t x from t1 to tk.

In Table 4 shows a part of test cases and test sequences without input parameters for
the EFSM in Figure 5.

Table 4. Test cases for the banking Web service

No Test Cases Input/Output Sequence
1 t1, t4 ?openAcount_Rq!openAccount_Rp

?closeAccountRq !closeAccount_Rp
2 t1,t2,t4 ?openAcount_Rq!openAccount_Rp

?deposit_Rq!deposit_Rp
?closeAccountRq !closeAccount_Rp

3 t1,t3,t4 ?openAcount_Rq!openAccount_Rp
?withdraw_Rq!withdraw_Rp
?closeAccountRq !closeAccount_Rp

4 t1,t3,t2,t4 ?openAcount_Rq!openAccount_Rp
?withdraw_Rq!withdraw_Rp
?deposit_Rq!deposit_Rp
?closeAccountRq !closeAccount_Rp

5 t1, t2, t3, t4 ?openAcount_Rq!openAccount_Rp
?deposit_Rq!deposit_Rp
?withdraw_Rq!withdraw_Rp
?closeAccountRq !closeAccount_Rp

4 Application to Parlay-X Web Services

To show that our method can be effectively used for nontrivial real world problems,
we applied it to Parlay-X Web services [16]. Parlay-X is a Web Services framework
for telecommunications domain. The architecture of the framework in which Parlay-X
Web services operate is shown in Figure 6. A Parlay-X Web service, Third Party
Call, is used to create and manage a call initiated by an application. The overall scope
of this Web service is to provide functions to application developers to create a call in
a simple way. Using the Third Party Call Web service, application developers can
invoke call handling functions without detailed telecommunication knowledge. The
Third Party Call Web service provides four operations: MakeCall, GetCallInforma-
tion, EndCall, and CancelCall.

For comparison, we generated test cases for the Third Party Call Web service
with three different methods, i.e. the method of Heckel et al [4], the method of
Offtutt et al [9] and finally our method. For the method of Heckel et al [4], we defined a

 Generating Test Cases for Web Services Using Extended Finite State Machine 113

domain based on GT production rules. Eight production rules for the four operations
were found. After that, we found attributes for each production rule. Test cases are
generated by fixing a boundary value for at least one of them and randomly generating
the other two values. In addition, we generated test cases using incorrect inputs for each
rule. The sequences of operations are generated by analyzing dependencies and con-
flicts of operations. Finally, 36 test cases were generated using this method. For the
method of Offtutt et al [9], 40 test cases were generated through the analysis of
boundary values of message parameters.

Parlay Gateway

Parlay X Web Services

Parlay X APIs

Parlay APIs

Parlay X
Applications

Parlay
Applications

Network Protocols
(e.g. SIP, INAP etc)

Network Elements

Increasing
abstraction

1. Third Party Call
2. Call Notification
3. Short Messaging
4. Multimedia Messaging
5. Payment
6. Account Management
7. Terminal Status
8. Terminal Location
9. Call Handling
10. Audio Call
11. Multimedia Conference
12. Address List

Management
13. Presence

Fig. 6. Architecture of Parlay-X Web services

IdleIdle

ConnectedConnectedCanceledCanceled

ProgressProgress

TerminatedTerminated

t1

t2

t3

t4

t5

t6

t9

t12
t7

t8

t10

t11

t13

t14

t15

Fig. 7. EFSM model for the third party call Web service

114 C. Keum et al.

Transition Input/Output/Computation
t1 ?MakeCall_Rq(cgNum,cdNum)

callId := GenerateCallId()
!MakeCall_Rp(callId)
status := Initial

t2 ?CancelCall_Rq(id) id == callId
status := Canceled
set timer

t3 ?EndCall_Rq(id) id == callId
status := Canceled
set timer

t4 ?NoAnswer id == callId
errCode := SVC0001
!ServiceError(id, errCode)
status := Canceled
set timer

t5 ?GetCallInformation_Rq(id) id == callId
!GetcallInformation_Rp(status)

t6 ?CallConnected
status := Connected

t7 ?GetCallInformation_Rq(id) id == callId
!GetcallInformation_Rp(status)

t8 ?GetCallInformation_Rq(id) id == callId
!GetcallInformation_Rp(status)

t9 ?CancelCall_Rq(id) id == callId
errCode := SVC0260
!ServiceError(id, errCode)

t10 ?CallTerminated
status := Terminated
set timer

t11 ?EndCall_Rq(id) id == callId
status := Terminated
set timer

t12 ?GetCallInformation_Rq(id) id == callId
!GetcallInformation_Rp(status)

t13 ?EndCall_Rq(id) id == callId
errCode := SVC0261
!ServiceError(id, errCode)

t14 expire_timer
t15 expire_timer

Fig. 7. (continued)

To generate test cases using our method, we followed the procedure described in
Section 3.1. First, we analyzed the WSDL specification of Third Party Call and the
informal specification of the Third Party Call Web service. For Step 2, three control
variables were identified by analyzing the WSDL analysis template. Then we con-
structed an EFSM based on these three control variables and the four operations. The
final EFSM shown in Figure 7 has five states and fifteen transitions. Using the EFSM
and the algorithm described in Section 3.2, 95 test cases were generated for Third
Party Call. Table 5 shows some of the test cases for Third Party Call Parlay-X Web
service.

 Generating Test Cases for Web Services Using Extended Finite State Machine 115

Table 5. Test cases for Parlay-X Web service Third Party Call

No Test cases

1 ?MakeCall !CallId, ?GetCallInformation !CallStatus ?CallConnected ?CancelCall
!ServiceError ?GetCallInformation !CallStatus ?CallTerminated ?TimeOut

2 ?MakeCall !CallId ?CallConnected ?CancelCall !ServiceError ?CallTerminated
?TimeOut

3 ?MakeCall !CallId ?GetCallInformation !CallStatus ?CallConnected ?CancelCall
!ServiceError ?CallTerminated ?TimeOut

4 ?MakeCall !CallId ?CallConnected ?GetCallInformation !CallStatus ?CancelCall
!ServiceError ?CallTerminated ?TimeOut

5 ?MakeCall !CallId, ?GetCallInformation !CallStatus ?CallConnected ?GetCallIn-
formation !CallStatus ?CancelCall !ServiceError ?CallTerminated ?TimeOut

Table 6. Comparison of test criteria

 Data flow criterion Control flow criterion
Method of Heckel et al [4] all-definitions-uses -
Method of Offtutt et al [9] - -
Our method all-definitions-uses UIO sequence

A test suite is a set of test cases and is said to satisfy a coverage criterion if for every
entity defined by coverage criterion, there is a test case in the test suite that exercises
the entity. Each method used in our experiment had its own test coverage criterion. The
comparison of test coverage criterion for three methods is summarized in Table 6.

The method [9] had no test coverage criterion, but we could generate test cases
easily through examining types of message parameters. There is a trade-off in choosing
test coverage criteria. The program could be more thoroughly tested with the stronger
criterion. However, usually the cost incurred by test cases generation and testing is
negligible compared to the cost incurred by the presence of faults in programs.

Test cases and results of different methods are summarized in Table 7. As we ex-
pected, our method located more faults than the other methods even though it spent
more time for executing a test case. Our method spent more time than other method
because test cases generated using our method consist of the complex sequences of
operations but almost all test cases generated using other method is made of a single
operation. To show the efficacy of our method, the number of test cases and the ac-
cumulated number of faults detected are analyzed in Figure 8. As shown in Figure 8,
our method detected many faults in the early phase of testing. Our methods detected
many errors that occurred during executing complex sequences of operations. For
example, the operation GetCallInformation worked well in the initial state and the
progress state, but the operation caused an error when it executed in the connected state.
The method [4] located some faults related with boundary value and incorrect input
values in the case of testing for single operations. However, the sequences of operations
derived from the method [4] were not effective for locating faults. Even if the method
[4] expected the data flow coverage criterion “all-definitions-uses” for generated test
cases, the generated test cases using relations of conflicts and casual dependencies
between productions rules did not find out any faults which were located by our

116 C. Keum et al.

method. During testing using the method [9], it was difficult to find faults because
faults rarely occurred when we executed single operations with different boundary
values. Only two faults related with message parameter value with maximum length
were founded.

Table 7. Test cases and results

Method of
Heckel et al [4]

Method of Offutt
et al [9] Our method

Number of test cases
generated 36 40 95

Number of faults found 5 2 18

total execution time
(sec.) 90 80 859

average execution time
(sec.) 2.5 2 9

0

5

10

15

20

10 20 30 40 50 60 70 80 90

of test cases

#

o
f

f
a
u
lt
s

Our method Method of Offutt Method of Heckel

Fig. 8. Number of test cases and number of faults found

5 Conclusion

In this paper, we presented a new test cases generation method for Web services. The
key idea is to augment a WSDL specification with an EFSM model that precisely de-
scribes the dynamic behavior of the service specified in the WSDL specification.
Generally speaking, modeling an EFSM for a Web service is not a trivial task. To
make this task easy and systematic, we suggested a procedure to derive an EFSM
model from WSDL description of a service.

In summary, the main contributions of this paper are as follows: First, this paper
introduces a new Web service testing method that augments WSDL specification with
an EFSM formal model and applies a formal technique to Web service test generation.
Second, using the EFSM based approach, we can generate a set of test cases with a very

 Generating Test Cases for Web Services Using Extended Finite State Machine 117

high test coverage which covers both control flow and data flow. Third, we applied our
method to an industry level example and showed the efficacy of our method in terms of
test coverage and fault detection.

One of drawbacks of our approach is the overhead to generate test cases based on an
EFSM. Even if we suggest a procedure to derive an EFSM model from a WSDL
specification, it may require additional jobs besides Figure 1 to complete a fully de-
scribed EFSM in case of very complicated WSDL files. The algorithm described in
Section 3.3 is also a heavy-weight algorithm. Without any automatic tool for generating
test cases using EFSM, it is a very tedious task to generate test cases manually.

In this paper, we focused on testing of a Web service with single EFSM derived from
a WSDL specification. For future work, we plan to extend our method to treat more
complex situations such as test cases generation for compositions of Web services.

References

1. E. Cerami, Web Services Essentials, O’Reilly, 2002.
2. D. Booth, H. Haas, F. McCabe, E. Newcomer, M. Champion, C. Ferris, and D. Orchard,

Web Services Architecture. W3C working group note, W3C, 2004.
3. C. Bourhfir, E.Aboulhamid, F.Khendek, and R.Dssouli, “Test cases selection from SDL

specifications,” Computer Networks 35(6), pp.693-708, 2001.
4. R. Heckel and L. Mariani, “Automatic Conformance Testing of Web Services,” FASE

2005, LNCS 3442, pp. 34 – 48, 2005.
5. P. Baldan, B.Konig, and I.Sturmer, “Generating test cases for code generators by unfolding

graph transformation systems,” Proc. 2nd Intl. Conference on Graph Transformation,
Rome, Italy, 2004.

6. L. White and E. Cohen, “A domain strategy for computer program testing.” IEEE Trans-
actions on Software Engineering 6, pp. 247–257, 1980.

7. E. Weyuker and B. Jeng, “Analyzing partition testing strategies,” IEEE Transactions on
Software Engineering 17, pp. 703–711, 1991.

8. S. Rapps, and E. Wejuker, “Data flow analysis techniques for program test data selection,”
6th Intl. Conference on Software Engineering. pp. 272–278, 1982.

9. J. Offutt and W. Xu, “Generating Test Cases for Web Services Using Data Perturbation,”
ACM SIGSOFT SEN, 2004.

10. B. Beizer, Software Testing Techniques, Van Nostrand Reinhold, Inc, New York NY, 2nd
edition, 1990.

11. Y. Li, M. Li, and J. Yu, “Web Service Testing, the Methodology, and the Implementation of
the Automation-Testing Tool,” GCC2003, LNCS 3032, pp.940-947, 2004.

12. W.T.Tsai, R. Paul, Y. Wang, C. Fan, and D. Wang, “Extending WSDL to Facilitate Web
Services Testing,” HASE 2002, 2002.

13. C. Bourhfir, R. Dssouli, E.Aboulhamid, and N.Rico, “Automatic executable test case gen-
eration for EFSM specified protocols,” IWTCS’97, pp.75-90, 1997.

14. K.Sabnani and A.Dahbura, “A new Technique for Generating Protocol Tests,” ACM
Comput. Commun. 15(4), 1985.

15. Weyuker, E.J. and Rapps, S., “Selecting Software Test Data using Data Flow Information”,
IEEE Transactions on Software Engineering, April, 1985.

16. Parlay X Working Group, Parlay-X White Paper, http://www.parlay.org, 2002.

	Introduction
	Related Works
	Test Cases Generation for Web Services Using EFSM
	Modeling Web Service with EFSM
	Test Cases Generation Algorithm Using EFSM

	Application to Parlay-X Web Services
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

