Using TIMEDTTCN-3 in Interoperability Testing
for Real-Time Communication Systems

Zhiliang Wang', Jianping Wu', Xia Yin', Xingang Shi*, and Beihang Tian'

! Department of Computer Science and Technology, Tsinghua University,
Beijing, P.R. China, 100084
{wzl, yxia, tbh}@csnetl.cs.tsinghua.edu.cn,
jianping@cernet.edu.cn
% Network Research Center, Tsinghua University,
Beijing, P.R. China, 100084
shixg@cernet.edu.cn

Abstract. Interoperability testing is an important technique to ensure the quality
of implementations of network communication software, and real-time protocol
interoperability testing is an important issue in this area. TIMEDTTCN-3 is a
real-time extension of test specification language TTCN-3. In this paper, test
notations for real-time interoperability testing are studied. Test behavior trees
are constructed from specifications of system under test and then transformed to
TiMEDTTCN-3 test cases. We also investigate real-time TTCN and analyze the
insufficiency of its capabilities in specifying time constraints. Possible exten-
sions for real-time TTCN are given to specify real-time interoperability test
cases. From the comparisons between the two real-time test notations, it can be
concluded that TIMEDTTCN-3 is more powerful and flexible than real-time
TTCN and can be suitable for real-time interoperability testing.

1 Introduction

In order to ensure the quality of communication software, protocol test techniques are
widely used. Conformance testing is the basic method of protocol testing, which can
be used to test whether an implementation conforms to its protocol specification. As
the complement of conformance testing, interoperability testing is often used to test
whether two or more protocol implementations can communicate with each other
correctly and inter-operate as a whole system to perform functions specified in proto-
col specifications. Interoperability testing is necessary because (1) It is difficult to
perform exhaustive conformance testing, that is, a conformance test suite can hardly
ensure 100% test coverage; (2) Many optional features may be contained in network
protocols, and moreover vendors perhaps have their own extensions, so if two imple-
mentations implement different options, problems on interoperability will happen.
Interoperability testing is also being performed by IETF and ETSI in the process of
protocol design ([KDO3]). Interoperability testing events have been organized by
these organizations.

In the area of interoperability testing, [Hao97] proposed a TTCN-2 based
framework for interoperability testing, [VBTO1] presented a formal framework for

M.U. Uyar, A.Y. Duale, and M.A. Fecko (Eds.): TestCom 2006, LNCS 3964, pp. 324 -340] 2006.
© IFIP International Federation for Information Processing 2006

Using TiMEDTTCN-3 in Interoperability Testing 325

interoperability testing and several interoperability relations were defined to guide test
generation. Interoperability test generation is an important issue in this field. In most
works of test generation, the basic idea is to model the interoperability system under
test as a system of communicating finite state machines and generate test sequences
for the composition of these machines ([RC90]). Based on this idea, a series of test
generation techniques have been proposed ([KSK00, SKKJ03, TKS03, SKCKO04,
ETSYO04]). Different from the above literatures, [HLSGO04] proposed an efficient
method only considering the specification of one protocol entity. By this method,
there is no need to generate the composition machine and the state space explosion
can be alleviated.

But in most real-life network protocols, not only the behaviors of input and output,
but also their time of occurrence should be considered, that is, such protocols can be
modeled by real-time systems. In order to test real-time systems, we should check if
the I/O behaviors act under the specified time constraints. In the field of real-time
testing, many methods of conformance testing have been proposed. In most of these
works, Timed Automaton [AD94] or its variants have been used to specify real-time
system. [SVDO1, EDKO02] converted timed automaton to grid automaton, and applied
existing test generation methods for finite state machine (FSM) to it. But this method
suffers from the state space explosion problem. [HNTC99] presented a test generation
method of executability decision. [KIMO03, KT04, LMNO04, BB04] defined timed
conformance relations, and proposed associated test generation methods. As far as we
know, [WWYO04] is the first work to study interoperability testing of real-time sys-
tems. An interoperability test generation method of time dependent protocols was
presented in [WWYO04].

In this paper, we focus on the problems of test notations suitable for interoperabil-
ity testing of real-time communication systems, i.e., how to specify test cases. The
testing and test control notation version 3(TTCN-3) ([TTCN3, GHRSO03]) is a new
test specification language standardized by ETSI (European Telecommunications
Standards Institute), which is a new version and redesign of TTCN (tree and tabular
combined notation) ([TTCN]). TIMEDTTCN-3 ([DGNO02]) is a real-time extension of
TTCN-3. [DGNO3] presented a method of generating 7IMEDTTCN-3 code from MSC
test specifications; and [NDGO04] used TiMEDTTCN-3 in specifying real-time commu-
nication patterns. In this paper, we intend to use TIMEDTTCN-3 in real-time interop-
erability testing. Following the test generation method presented in [WWYO06], a
parameterized test behavior tree will be generated from the formal model of system
under test (SUT). Parameters in the test behavior tree are relative time intervals be-
tween IO events. In this paper, firstly the test behavior tree will be converted from the
view of SUT to the view of test system, which is an intermediate notation of test
cases. Then we give transformation rules to transform such a test behavior tree to a
TIMEDTTCN-3 test case.

We also investigate the real-time extension of TTCN - real-time TTCN ([WG99])
and intend to use real-time TTCN to specify test cases. But unfortunately, we find that
real-time TTCN has no enough capabilities to specify timed interoperability test
cases. We also give possible extensions of real-time TTCN on the syntactical and
semantic levels to specify test cases. Based on the transformation results to
TIMEDTTCN-3 and extended real-time TTCN test cases, we compare the two test
notations mainly on the capabilities of specifying hard real-time requirements.

326 Z. Wang et al.

The rest of the paper is structured as follows. Section 2 gives the formal model
Communicating Multi-port TIOA (CMpTIOA) to specify interoperability system
under test; and as a working example, a simple real-time communication protocol
system is specified by using this model. In Section 3, test architecture is given and test
behavior trees will be generated. In Section 4, we give transformation rules from test
behavior trees to TIMEDTTCN-3 test cases. In Section 5, we investigate real-time
TTCN and draw a comparisons between TIMEDTTCN-3 and real-time TTCN. Conclu-
sion and future work are given in Section 6.

2 Preliminaries

2.1 Multi-port TIOA

Timed Automaton ([AD94]) is a widely-used model of real-time system. TIOA
(Timed Input Output Automata [EDKO02]) is a variant of Timed Automaton, which
distinguishes whether an action is an input or output. To specify an entity interact-
ing with more than one other entities, we extend TIOA to Multi-port TIOA as
follows.

Definition 1. Multi-port Timed Input Output Automaton (MpTIOA)
A Timed Input Output Automaton with n ports (for short, np-TIOA) is a 6-tuple (L, 1,
o0 T), where,

e [is a finite set of locations;

e [t has n ports communicating with environment, which are denoted as Py, Py, ..., P,
respectively;

e [is an n-tuple: I=(I};, I, ..., I,,), where [,(k=1,2,...,n) is the set of input action sym-

bols of port Py; /=1, 01, U---UI is the set of input action symbols; An input ac-
tion symbol occurring in port Py can be denoted as P,?a (aE1);

e (Ois an n-tuple: 0=(0;, O,, ...0,), where Oy(k=1,2,...,n) is the set of output action
symbols of port P; O=0, 0, U---U 0, is the set of output action symbols.

An output action symbol occurring in port Py can be denoted as P!b (bE Oy);

e [’ € Lis the initial location;

e (C is a finite set of clocks {t;, 1, ..., tic}, where, ICl is the number of clocks;.
v;ER'(non-negative real numbers) is the clock value of #;; Vv = (v;,v,, -, vq) de-
notes a clock valuation;

e Tis a set of transitions: (,a,P,R,I")e T , where, [,I'e L are the source and destina-

tion locations; ae TUO is an input or output action symbol; P is the time con-
straint, which is a Boolean conjunction over linear inequalities P(V); The subset
R c C specifies the clocks to be reset to 0. The transition (,,a,P,R,l')e T can be

also denoted as -2, 1 O

Using TiIMEDTTCN-3 in Interoperability Testing 327

In the model, we assume that time constraints of transitions are all the format of
ANvi~d), where ~€ {<, >, <, >, =}, and de R". We distinguish two urgency types
([BST98]) of transitions implicitly: (1) Lazy, for transitions with input actions, means
that input actions may be not taken because they are controlled by environment (such
a property is also called “Unforced Inputs™); and (2) Delayable, for transitions with
output actions, means that the corresponding output action must be taken during such
transitions’ enabling time.

The semantics of MpTIOA can be defined as a TIOTS (Timed Input Output Tran-
A,.,—) , where A, =1 and A =0 . We denote

sition System) (S,S,,4:,,Apu>
as the set of all IO symbols. Its states are the pairs s =([,v), where

Act=A, UA,
le L is a location, v = (v;,v,, *-, V) 18 a clock valuation. S is the set of all possible

n’

1

states. =< SX(Act URT)X S is the set of transitions. There are two types of transi-
tions: Timed transitions and Discrete transitions. Timed transitions model time
progress, which are the form (/,v)—d—>(l,\7'), where de R™ is the delaying time,
V=v+d=v+ (d,d,---,d), and in this period, no discrete transitions occur. Discrete
transitions (I,v) —*—(I’,7") correspond to execution of the transition (/,a,P,R,l’) in
MpTIOA, where P is satisfied by v (P(V)=true) and v’ is obtained by updating v
according to R.

2.2 Communicating Multi-port TIOA

To specify an interoperability system under test including two or more entities, we
introduce a formal model Communicating MpTIOA (CMpTIOA). In the model,
MpTIOA can model each single entity, and all these entities in the system can com-
municate with each others via channels between different MpTIOAs.

Definition 2. Communicating Multi-port Timed Input Output Automata (CMpTIOA)
A Communicating MpTIOA is composed of a set of MpTIOAs M and a set of chan-
nels Ch, where,

(1) M={M,; M,, ..., M,} is a finite set of m MpTIOAs;

2) Ch={Cyli j=1 2 .., m A i#]j}is a finite set of channels between
MpTIOAs: C;ECh represents the communicating channel from MpTIOA
M; to M;. O

In the definition of CMpTIOA, channels behave like FIFO queues. Intuitively, the
semantic of channels is that outputs of MpTIOA M, can be transferred via channel C;
to be inputs of M;. In this paper, we assume that transfer time of actions in communi-
cating channels can be neglected, that is, the channels are lossless and non-delayed.

Definition 3. Port Mapping Relations of CMpTIOA

Port Mapping Relations R of CMpTIOA M is an m-tuple: R=(R;, R,,..., R,), where
R(k=1,2,...,m) is the Port Mapping Relations of MpTIOA M,; R, is a set of Port Map-
ping Relations for all ports of M;: Ri={r;, r»,..., r,}, where n is the port number of M,
and r(i=1,2,..., n) can be the format of 1) P;-> M;:P,(j#k), which means that the port

328 Z. Wang et al.

P; of My is connected to the port P, of M; via the channel Cyj; 2) P;-> env, which
means that the port P; of M, is connected to the external environment of the system. O

According to the above definitions, we can get the abstract topology of the system
under test. We furthermore denote the ports communicating with the external envi-
ronment as "external ports"; and others as "internal ports". Inputs/outputs on exter-
nal/internal ports are "external/internal inputs/outputs".

2.3 A Simple Real-Time Communication Protocol

We specify a simple real-time communication protocol by using MpTIOA. Fig. 1 (a)
shows the specification of such a protocol, which is a 2p-TIOA with two ports
(U and 1) and two clocks {t;, t,}. Iy={A}, Oy={B,C}, [,=0,={a,b,c}. The initial loca-
tion is ‘0’. The protocol can be specified informally as follows:

(1) Initiate a connection to a remote entity actively

If an input ‘A’ is received from port U in the initial location 0, the protocol entity should
initiate a connection to a remote entity actively; In this transition (0,U?A true,{t;,t;},1),
the two local clocks t; and t, should be reset to 0. Within 2 time units, an output ‘a’
should be sent from port / to remote entity, and the clock t; should be reset to O (transi-
tion (1,/a,[t;<2],{t;},2)). After that, three cases should be considered:

(a) Receiving an input ‘b’ from port [in time, i.e., transition
2,17b,[t>1,1,<2],{ },3), indicates that the connection can be established;

(b) Receiving an input ‘b’ from port [too late, i.e., transition
(2,017b,[t,>2],{t;},4), indicates that the connection cannot be established;

(c) Receiving an input ‘c’ from port /, i.e., transition (2,/?c true,{t,},4), indicates
that the connection cannot be established.

If the connection can be established, an output ‘B’ should be sent to port U, i.e.,
transition (3,U!B,[2<t,<3],{},0); else, an output ‘C’ should be sent to port U, i.e.,
transition (4,U!C,[t;<1],{},0).

(2) Respond a connection request from a remote entity passively

(a) Sending an output ‘b’ to port /, i.e., transition (5,/!b,[1<t;<3],{ },0);
(b) Sending an output ‘c’ to port /, i.e., transition (5,!c,[t;<3],{ },0).

To test interoperability, we make an assumption that both specifications and im-
plementations are input-complete, that is, they can accept any inputs at any loca-
tions. To make a specification input-complete, some self-loop transitions can be
added to it, which indicates that a specification ignores the unspecified input ac-
tions. Fig. 1(b) shows an input-complete specification after adding self-loops to
Fig. 1(a).

Fig. 2 shows an example of a system under test specified by CMpTIOA, which is a
real-time communication system containing two real-time protocol entities. M={M,,
M.}, Ch={C},, C;;}. The specifications of M; and M, are both the MpTIOA of Fig.
1(b). We use subscript 1, 2 on ports and actions to distinguish them. Port Mapping
Relations are ({U;->env, [;->M,:1,}, {U,->env, [,->M;:1;}).

Using TiMEDTTCN-3 in Interoperability Testing 329

[t>=1,6,<2

1C[t,<1]
JIC[t<1] /it t}
/it

(a) Specification of a MpTIOA (b) an input-complete specification

Fig. 1. A simple real-time protocol specified by using MpTIOA

U, A I U,
Al—> —€p> «— A
M M, ==
B],C|<— % —VBz,CZ
a,b,c

SUT

Fig. 2. An example of CMpTIOA

3 Test Behavior Tree

3.1 Test architecture

To test interoperability of protocol system, test architecture should be defined firstly.
Fig. 3 shows test architecture that can be used to test SUT in Fig. 2. In the test archi-
tecture, there are two types of access points to SUT in the test system: PCO (Point of

habe &

Test Syslem

Fig. 3. Test architecture used to test SUT in Fig.2

330 Z. Wang et al.

Control and Observation) and PO (Point of Observation). PCOs have capabilities of
control and observation, which can either apply stimuli to or receive responses from
SUT; and POs only have capabilities of monitoring the interactions of SUT. In Fig. 3,
PCO1 and PCO?2 are connected to the external ports U; and U, respectively, and only
one PO is contained in test architecture to monitor the IO behaviors in channel C;,
and C2 I-

3.2 Generating Test Behavior Tree

In [WWYO06], based on timed interoperability relations, a test generation method was
presented. This method starts from the formal model of SUT, and as a result, a pa-
rameterized test behavior tree can be generated. Such a test behavior tree is just an
intermediate notation. In this paper, we do not intend to introduce this method in
detail.

Fig. 4 is a part of resulting parameterized test behavior tree. Leaf nodes of a test
behavior tree are the verdict “pass” or “fail”. For “fail” verdict, it is also necessary to
indicate which implementation the fault is located in. The other internal nodes repre-
sent the tester’s knowledge of the SUT’s current global states, denoted as (sl, o

s™), where s' £ 1',v) (i =1,2,...,m), representing local states of M,. The root node is
the initial global state GSy= (s.,sp,....,s)') of SUT, where s) = 1;,%) (i =1,2,...,m).
Edges between nodes are labeled as possible input/output events and their time con-
straints in SUT. Parameters d,(i=0,1,2,...) in a test behavior tree represent relative
time intervals between the two consecutive 10 events. There are two types of parame-
ters: controllable parameters are time intervals between an external input event and
its last IO event in the tree, and their values should be set in test cases in advance, so
such parameters are controllable for test system, e.g., dy in Fig. 4; uncontrollable
parameters are time intervals between an internal or external output event and its last
IO event, and their values are dependent on SUT and only can be retrieved on the
process of test execution and cannot be set in advance, so such parameters are uncon-
trollable for test system, e.g., d;, >, d; in Fig. 4.

Parameterized test behavior tree in Fig. 4 is described from the view of SUT. To
generate executable test case, at first, it should be converted to the test behavior tree
which is described from the view of test system. The basic idea is to convert edges of
the original tree to nodes of the resulting tree, and associate each IO event with one
access point of test system; e.g., for test architecture of Fig. 3, IO events on the port
U; of M, are associated with PCO1, events on U, of M, are associated with PCO2 and
events on the two internal ports /; and /, are all associated with PO. On PCO1 and
PCO2, input/output actions of SUT should be converted to sending/receiving test
events of test system. On PO, all actions should be converted to receiving test events
of test system.

Fig. 5 shows the resulting test behavior tree described from the view of test system:
the root node represents the start point of the test; other internal nodes are labeled as
test events and their time constraints; black leaf nodes represent pass verdicts, and
gray leaf nodes represent fail verdicts. In the timing axis on the right of the tree, the
global time for the same level of test events occurring are denoted as 74i=0,1,2,...),
so relative time intervals between two consecutive events are d=T1;,;-T; (i=0,1,2,...).

Using TiMEDTTCN-3 in Interoperability Testing

GSo [(0,(0,0)(0,(0,0)
Li:(Uy?A1,do)

(1,(0,0)),(0(do.do))

Ii:(/1'a,dy)
[di<2]

(2,(0.d)),

| Other

L:h%

Li(ltb.ds)
[1<dy<3]

(2,(d2,drtda)),

(

0.0.0) (00,09

I;:,7b
[dx>1 :;na
di+dy<

1:4,7b
[difrd>2]

’ (3,(d2,drtdy)), ‘ ’ (4,(0,d+dy)),

(4,(0.di+dy)),

(0,(0,0) (0,(0,0)) 0,(da,-))
L:|(UnBLds) T (U318, d3) L:|(U1!Cyd3)

[2<di+dy+d5<3] [ds<1] [ds<1]

(0.(--)), 0,(--)), 0,-)),
0,(--)) (0.(--) 0,(--))

Fig. 4. A part of parameterized test behavior tree (from the view of SUT)

@ rass
O FAIL

PO?a, d;
[di<2]

(M (®) 9 A0InHd

(1)PO?%, d,

[1<d,<3 and d>1

and d;+d,<2 1

(2) PO%, d

[1<d,<3 and d,+d,>2 |

(3) PO%, dofdr<3 |

(4) PO%, doJda<1 or d>>3]

start I To
do
Y
PCO1'A}, doy A T,
d
PO?a, d]
[di>2] x T,
PO?other
dy
Y
A T
d3
) 4 T,
2 13)(14)(15) "T
(5) PO%c, dy[d;>3] (10) PCO1?C,, d3[ds<1]
(6) PO?other (11) PCOI1?Cy, d;3[ds>1]

(7) PCO17B,, ds (13) PCO17C,, d3[ds<1]
[2<di+dytd3<3] (14) PCO12C,, d3[ds>1]

(8) PCO17B,, d; (9)(12)(15)PCO1?0ther
[1(2<d;+dy+ds<3) |

Fig. 5. Test behavior tree (from the view of test system)

331

332 Z. Wang et al.

We have proved in [WWYO06], all time constraints on each test event can be repre-
sented by a conjunction over a set of linear inequalities on parameters (see Lemma
1), e.g., on the time point T, time constraints of node (1) are [1<d,<3 and d,>1 and
d;+d,<2] ([1<d,<3 and d;+d,<2]).

Lemma 1. On the time point Ty, time constraints of the test event nodes can be repre-
sented by a conjunction over a set of linear inequalities on d;(i=0,1,...,k-1). m]

4 Transformation to TIMEDTTCN-3 Codes

4.1 TIMEDTTCN-3

TIMEDTTCN-3 ([DGNO2]) is a real-time extension of TTCN-3([TTCN3]). In
TIMEDTTCN-3, the concept of absolute time is introduced, so TIMEDTTCN-3 provides
a capability of testing hard real-time requirements. TIMEDTTCN-3 (1) introduces a
new verdict conf to indicate functional pass but no-functional fail; (2) introduces the
concept of absolute time and provides mechanisms of retrieving the current local time
and delaying the execution of a test component; (3) extends the TTCN-3 logging
mechanism; (4) supports both online and offline evaluation.

4.2 Transformation to TIMEDTTCN-3 Test Cases

Now we consider how to convert a test behavior tree to a TIMEDTTCN-3 test case. In
this paper, for the sake of simplicity, only test architecture with one single main test
component is considered. Firstly, not considering time constraints, a test behavior tree
can be converted to a TTCN-3 test case easily: Pre-order traversing method can be
used to covert a test behavior tree to dynamic behaviors of a TTCN-3 test case. In a
test behavior tree, each node of sending event corresponds to a TTCN-3 statement of
send operation, and each node of receiving event corresponds to a TTCN-3 statement
of receive operation. The nodes of the same level in a test behavior tree can be repre-
sented by using alt statements of TTCN-3, which are called a set of alternatives.
When reaching a leaf node of the test behavior tree, a verdict should be set by using a
setverdict statement, and the test case will be stopped.

Now we consider time constraints in test behavior trees and give transformation
rules from test behavior trees to TIMEDTTCN-3 test cases.

(1) Get global time values of nodes in the test behavior tree

In TIMEDTTCN-3, the concept of absolute time is introduced. To get global time values
of nodes, e.g., Ty, T, T, ... in Fig. 5, now operations in TIMEDTTCN-3 can be used. The
now statements should be placed directly after the associated statements of receive
operations that correspond to nodes of receiving events. For example, in Table 1, for the
receive operation of line 9 corresponding to node (b) or (c) in Fig. 5, a now statement is
placed directly in line 10 to get the global time and store it in a float variable T2.

(2) Get the real values of uncontrollable parameters
In the test behavior tree, uncontrollable parameters are time intervals between an
internal or external output event and its last IO event, which can be calculated only in

Using TiMEDTTCN-3 in Interoperability Testing

Table 1. The TiMEDTTCN-3 test case for the test behavior tree in Fig. 5

333

1
"
3
U
5
6
7
8

0
10
11
12
13
14
15
16
17

18
19
20
21
22

23
24
25
26
R7
28
29
B0
31
B2

B3
B4
B5
B6
B7
B8
B9
10
41

testcase testcasel() runs on simple_rtp {
var float TO,T1,T2,T3,T4; //global clock
var float d1,d2,d3; //time interval
TO := self . now;
T1:=TO0 + 1;
resume(T1) ; //wait until T1 point
PCOl.send(Al); //node (a)
alt { //alt 1
[1PO.receive(a) {
T2 := self.now;
dl :=T2-TI;
if(d1 <2){ //mode (b)
alt { //alt2
[1PO.receive(b) {
T3 :=self.now;
d2 :=T3-T2;
if((d2>1) and (d2<3)
and ((d1+d2)<2)){ /mode(1)
alt { //alt3
[IPCO1.receive(B1) {
T4 := self.now;
d3:=T4 -T3;
if(((d1+d2+d3)>2) and
((d1+d2+d3)<3)){/Mmode(7)
setverdict(pass);
} else { //mode (8)
setverdict(conf);
}
}
[IPCOl.receive { //node(9)
setverdict(fail);
}
} /lend of alt 3
} else if((d2>1) and (d2<3)
and ((d1+d2)>=2)){ //node(2)
alt { //alt4
[IPCO1.receive(C1) {
T4 := self.now;
d3 :=T4 -T3;
if(d3 < 1) { //node (10)
setverdict(pass);
} else { //node (11)
setverdict(conf);

}

42
U3
U4
Us
U6
U7
U8
19
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83

}
[IPCO1.receive{ //node(12)

setverdict(fail);
}
} /lend of alt 4
} else { //mode(4)
setverdict(conf);
}
}
[1PO.receive(c) {
T3 := self.now;
d2 :=T3-T2;
if(d2 < 3) { //node (3)
alt { //alt5
[1PCOl.receive(C1) {
T4 := self . now;
d3:=T4 - T3;
if(d3 < 1) { //node(13)
setverdict(pass);
} else { //node(14)
setverdict(conf);
}
}
[1PCOl.receive {//node (15)
setverdict(fail);
}
} /lend of alt 5
} else { //mode (5)
setverdict(conf);
}

}
[1PO.receive { //node (6)

setverdict(fail);

}
} //end of alt 2

} else {

setverdict(conf);

[1PO.receive {
setverdict(fail);

84 } //end of alt 1
85 } //end of test case

334 Z. Wang et al.

the process of test execution. In TIMEDTTCN-3, assignment statements can be used
to get the real values of such parameters. These values can be calculated by expres-
sions on global time values, in fact, d=T;,;-T; (i=0,1,2,...). For example, an uncontrol-
lable parameter d; can be calculated by an assignment statement in line 11.

(3) Implementation of controllable parameters

In the test behavior tree, controllable parameters are time intervals between an exter-
nal input event and its last IO event, which should be set in advance. To implement
such parameters, resume statements can be used. For example, we set the controllable
parameter dy in Fig. 5 to 1 time unit, so this parameter can be implemented by line
4~7 in Table 1, which means that after waiting 1 time unit from the time point T,
PCO1 will send Al to SUT.

(4) Online evaluations and verdicts setting

Only online evaluation can be used to test hard real-time requirements in real-time
interoperability testing. According to Lemma 1, Time constraints of the test event
nodes on the time point Ty can be represented by a conjunction over a set of linear
inequalities on parameters d;(i=0,1,...,k-1). Until the time point Ty, values of all un-
controllable parameters have been calculated by transformation rule (2) and values of
all controllable parameters have been set in advance, so during the testrun, Mathe-
matical formulae on the values of d,(i=0,1,...,k-1) can be used in online evaluations
on the time point Ty. In the example of Table 1, the if statement of line 17 checks if
the test event node (1) is reached by using the condition 1<d2<3 and d1+d2<2.

When verdict nodes of the test behavior tree are reached, verdicts should be set by
using setverdict statements. Besides pass or fail verdicts, if functional requirements
are satisfied, i.e., received messages are correct, but non-functional requirements are
violated, i.e., time constraints are not satisfied, a conf verdict should be set. In the
example of Table 1, setverdict statement in line 23 set a pass verdict for node (7) in
Fig. 5; and setverdict statement in line 25 set a conf verdict for node (8) in Fig. 5.

According to above transformation rules, the test behavior tree in Fig. 5 can be
converted to the TIMEDTTCN-3 test case with about 85 lines codes shown in Table 1.

S Comparisons with Real-Time TTCN

5.1 Real-Time TTCN

Real-time TTCN ([WG99)) is a real-time extension of TTCN-2, which is a previous
version of TTCN-3. Table 2 is an example of real-time TTCN behavior description.
Real-time TTCN extends TTCN-2 both on the level of syntax and semantics. In real-
time TTCN, an assumption is made that execution of each statement is instantaneous.
On the syntactical level, real-time TTCN adds two columns in dynamic behavior
description table: Time and Time options column. Time columns are used to define
the earliest and latest execution times (EET and LET) to constrain relative time inter-
val between the associated test event statement and a previous or earlier test event. In
real-time TTCN, two types of methods for specifying EET and LET are defined: (1)
Define the two values by using time expressions directly, which indicate relative time
interval between the execution time of the associated statement and its previous state-
ment (just the parent node in the test behavior tree). In the example of Table 2, line 1

Using TiMEDTTCN-3 in Interoperability Testing 335

is defined by two constants directly, and line 3 is defined by using a time name, which
should be defined in Time Declaration table and be evaluated by an assignment
statement before use (line 2). (2) Define the two values by using Labels, which indi-
cate relative time interval between the execution time of the associated statement and
its earlier statement that labeled as this Label. For example, in Table 2, line 5 defines
time constraints (L1+WFN, L1+LET), which means that the time interval between the
execution time of line 5 and line 1 are from WFN to LET. The two types of specifica-
tions are different from the starting time points for relative time interval. In real-time
TTCN, entries in Time Options columns are combinations of M and N. On the seman-
tics level, [WG99] defines its operational semantics and formal semantics based on
timed transition system.

Table 2. An example of real-time TTCN behavior description ([WG99])

Test Case Dynamic Behaviour
Nr | La | Time Time Behaviour Description | C [V | Comments
Options
1 L1]24 M A ? DATA_ind Time Label
2 (NoDur := 3) Time Assignment
3 2, NoDur A ! DATA ack
4 A ? DATA_ind
5 L1+WFN, | M, N B ? Alarm
L1+LET

5.2 Problems in Transformation from Test Behavior Tree to Real-Time TTCN

We consider how to transform a test behavior tree to a real-time TTCN test case. Not
considering time constraints, the method of transformation is similar to the one for
TTCN-3. Now consider time constraints of each node in the test behavior tree of Fig.
5. For controllable parameters, three cases should be considered:

Case 1: Node (3) PO?c, d,[d,<3]

In this case, d; is just the time interval between the execution time of this statement
and its previous statement corresponding to its parent node in the test behavior tree, so
the first method of specifying EET and LET in real-time TTCN can be used: EET3, =
O, LET(3) =3.

Case 2: Node (7) PCO17B|, d;[2<d;+d,+d;<3]

In this case, d;+d,+d; = T, - T, is just the time interval between the execution time of
this statement and the statement corresponding to node (a), so the second method of
specifying EET and LET in real-time TTCN can be used: Label the statement corre-
sponding to node (a) as L1, then EET(;, = L1+2, LET(;) = L1+3. See Table 3.

Case 3: Node (2) PO?Db, d,[1<d,<3 and d;+d,>2]

This case is most complicated. In this case, time constraints of the node are 1<d,<3
and d;+d,>2: on the one hand, 1<d,<3 indicates the time interval between the execu-
tion time of this statement and its parent statement; on the other hand, d;+d,=T; - T},
so d;+d»,>2 indicates the time interval between the execution time of this statement

336 Z. Wang et al.

and the statement corresponding to node (a) must be not less than 2 time units. Thus
neither the two methods of specifying EET and LET can satisfy the two real-time
requirements at the same time. If real-time TTCN should be used in real-time interop-
erability testing, real-time TTCN must be extended to solve this problem.

For uncontrollable parameters, their values should be set in advance, so the relative
time intervals corresponding to such parameters must be fixed values. In this case,
EET and LET are the same. For example, in Table 4, line 1 represents the node (a) in
the test behavior tree, so its EET and LET are both 1 time unit.

Table 3. Real-time TTCN representation of Node (7) in Fig. 5

Test Case Dynamic Behaviour
Nr | La | Time TOpt | Behaviour Description C | V| Com-
ments
1 L1 PCO1!A1 Node (a)
22 e
3 L1+2,L1+3 PCO17B1 P | Node (7)
R

Table 4. the real-time TTCN test case for the test behavior tree in Fig. 5

Test Case Dynamic Behaviour

Nr | La | Time TOpt | Behaviour Description |C|V | Comments
1 L1 1 PCOI1!A1 Node (a)
R L2 |02 PO?%a Node (b)
3 1, 2-T(L2)+T(L1) PO?b Node (1)
‘“ L1+2,L1+3 M PCO17B1 P | Node (7)
5 PCO1?otherwise F | Node (9)
6 max(2-T(L2)+T(L1),1), 3 PO Node (2)
U 0,1 PCOI1?C1 P | Node (10)
8 PCO1?otherwise F | Node (12)
9 0,3 PO?c Node (3)
10 0,1 PCOI1?2C1 P | Node (13)
11 PCO1?0otherwise F | Node (15)
12 0,1 PO F | Node (4)
13 PO?otherwise F | Node (6)
14 PO?0otherwise F

5.3 Possible Extensions of Real-Time TTCN

In this section, we give a suggestion of possible extensions of real-time TTCN for
interoperability testing of real-time communication system.

In the Case 3 of Section 5.2, time constraints can also be represented as
max(2-d;,1)<d,<3, where the return value of the function max() is the maximal value of
parameters. With different values of d;, the values of max(2-d;,1) are possibly different:
in fact, when d;<1, max(2-d;,1)=2-d;, so time constraints can be represented as 2-
d;<d,<3; when d;>1, max(2-d;,1)=1, so time constraints are 1<d,<3. If the above vari-
ous cases are distinguished in dynamic behavior descriptions, test cases will become

Using TiMEDTTCN-3 in Interoperability Testing 337

very fussy. To avoid such a problem, a uniform syntax can be used. Here, the concept of
absolute time must be introduced in real-time TTCN just like in ZIMEDTTCN-3. Possi-
ble extensions for real-time TTCN on the syntactical level can be as follows.

(1) Introduce a timestamp recording function T(): for a lable L, T(L) returns the
absolute time value of the execution time for the statement labeled as L;

(2) Introduce the third type of method for specifying EET and LET: the mean-
ings of EET and LET are the same with the first type of specifying method,
i.e., time constraints of the relative time interval between the execution time
of the associated statement and the previous statement corresponding to its
parent node; in the expressions of EET and LET, function T(), max() and
min() can be used.

Proposition 1. In real-time interoperability testing, all time constraints of each node
in test behavior trees can be represented as EET and LET by the above syntactical
extensions.

Proof. According to Lemma 1, on the time point Ty, time constraints of the test event
nodes can be represented by a conjunction over a set of linear inequalities on
d(i=0,1,...,k-1). So on the time point Ty, (k=0,1,2...), time constraints of d; can be
reduced to the two following formats: (1) d, < f(d,d,---.d,_;) or (2)
d,.z2gld,d,--.d,_,), here, f(d,d,--.d,_;) and g(d,d,--,d, ;) are both linear
expressions on dy, dj,..., di.;; thus EET and LET of the statement corresponding to
this node can be represented as max{ g(d,.d,,---,d,_;) } and min{ f(d,.d,,---.d,_;) }
respectively. Because of d; =T;,;-T; (i=0,1,2,...), so EET and LET also can be repre-
sented as max{ g'(T,,T,,---,T,) } and min{ f'(T,,T,,---,T,) }, here, g'(T,,T,,---,T,)
and f(T,,T,---,T,) are expressions by using T;,-7; in instead of d; in
gld,d,--,d, ;) and f(d,d, --.d,_,) respectively, and they are all linear expres-
sions on Ty Tj,..., T;. If a label is attached to the corresponding statement, 7;

(i=0,1,2,...) can be get by function T(). Thus EET and LET of the statement can be
specified by using function T(), max() and min().]

On the semantics level, we can also refine operational semantics for the syntactical
extensions. Before evaluating a set of alternatives, the values of EET and LET for
each alternative should be evaluated at first. If the value of EET for one statement is
greater than LET, the corresponding statement should be ignored in the process of
evaluation, and test execution should not be stopped.

By using these extensions of real-time TTCN, the test behavior tree shown in
Fig. 5 can be converted to a real-time TTCN test case in Table 4.

5.4 Comparisons Between TIMEDTTCN-3 and Real-Time TTCN

Since TIMEDTTCN-3 is a real-time extension of TTCN-3, it has also the characteris-
tics of TTCN-3. In this section, we compare TIMEDTTCN-3 with real-time TTCN
only from the aspect of the capability of real-time testing. From the discussions in
Section 4 and 5, we can see that

338 Z. Wang et al.

(1) TiMEDTTCN-3 is powerful enough to specify time constraints in real-time in-
teroperability testing; even more complicated time constraints can be evalu-
ated easily by retrieving current absolute time, storing its value in a variable
and passing it to expression statements. In real-time TTCN, no concept of ab-
solute time is introduced; only Time and Time Options columns are added to
Dynamic Behavior table to specify the earliest and latest execution times,
which are constraints of time intervals relative to a fixed time point. So
real-time TTCN cannot specify some complicated real-time requirements; one
example of such situations has been analyzed in Case 3 of Section 5.2. To
remedy this gap, real-time TTCN should be extended both on the syntactical
and semantic levels.

(2) TiMEDTTCN-3 is more flexible than real-time TTCN for its style like common
programming languages in specifying real-time requirements. However, the
style of real-time TTCN is more compact and formal.

(3) The semantics of TIMEDTTCN-3 is straightforward and simple, just like a com-
mon programming language. However, the semantics of real-time TTCN is a lit-
tle more complicated, especially the two time options are fussy and impenetrable.

(4) TiMEDTTCN-3 supports both online and offline evaluations, so it has the ca-
pabilities of evaluating both hard and soft real-time requirements and it can be
used not only real-time testing but performance testing. However, real-time
TTCN has only capabilities of evaluating hard real-time requirements.

6 Conclusion

TIMEDTTCN-3 is a real-time extension of TTCN-3. In this paper, we use
TIMEDTTCN-3 in real-time interoperability testing. From system specifications, test
behavior trees can be generated. Then transformation rules from such intermediate
notations to TIMEDTTCN-3 test cases are given. We also investigate a real-time exten-
sion of TTCN - real-time TTCN. Since this notation has not enough capabilities of
specifying time constraints in real-time interoperability testing, we extend real-time
TTCN to fill in such a gap and transform test behavior trees to extended real-time
TTCN test cases. From the comparisons between the two real-time test notations, it
can be concluded that TiMEDTTCN-3 is more powerful and flexible than real-time
TTCN and can be more suitable for real-time interoperability testing.

We have implemented initial prototypes of test execution for both real-time TTCN
and TIMEDTTCN-3. In our future work, we plan to study real-time interoperability
testing under distributed test architecture and use the TIMEDTTCN-3 based test system
in real-life timed interoperability testing.

Acknowledgments

This work is partially supported by the National Natural Science Foundation of China
under Grant No. 90104002 and No. 60572082/F010110, and 973 Program of China
under Grant No. 2003CB314801.

Using TiMEDTTCN-3 in Interoperability Testing 339

References

[AD9%4] R. Alur and D. Dill. A theory of timed automata. Theoretical Computer Science,
1994, 126(2): 183-235.

[BB0O4] L. B. Briones, E. Brinksma. A Test Generation Framework for quiescent Real-
Time Systems. Workshop on Formal Approaches to Testing of Software
(FATES) 2004: 64-78.

[BSTI8] S.Bornot, J.Sifakis, S. Tripakis. Modeling Urgency in Timed Systems.
COMPOS'97, LNCS 1536, Springer Verlag, 1998.

[DGNO2] Z. Dai, J. Grabowski, and H. Neukirchen. Timed TTCN-3 -- A Real-Time
Extension for TTCN-3. Testcom2002: 407-424.

[DGNO03] Z. Dai, J. Grabowski, H. Neukirchen. Timed TTCN-3 Based Graphical Real-
Time Test Specification. TestCom 2003: 110-127.

[EDKO2] A. En-Nouaary, R. Dssouli, F. Khendek. Timed Wp-method: testing real-time
systems. IEEE Transactions on Software Engineering, 2002, 28(11): 1023 -1038.

[ETSY04] K. El-Fakih, V. Trenkaev, N. Spitsyna and N. Yevtushenko. FSM Based Interop-
erability Testing Methods for Multi Stimuli Model. TestCom 2004: 60-75.

[GHRSO03] J. Grabowski, D. Hogrefe, G. Réthy, 1. Schieferdecker, et al. An introduction to
the testing and test control notation (TTCN-3). Computer Networks, 2003, 42(3):
375-403.

[Hao97] R. Hao. Research on Protocol Conformance and Interoperability Testing based on
Formal Methods (In Chinese). PhD thesis, Tsinghua University, P. R. China, 1997.

[HLSGO04] R. Hao, D. Lee, R.K. Sinha and N. Griffeth. Integrated System Interoperability
Testing With Applications to VolIP. IEEE/ACM Transactions on Networking,
2004, 12(5): 823-836.

[HNTC99] T. Higashino, A. Nakata, K. Taniguchi, and A. R. Cavalli. Generating test cases
for a timed I/O automaton model. IFIP TC6 12th International Workshop on
Testing Communicating Systems, 1999: 197-214.

[KDO03] P. Krémer and S. Dibuz. Framework and Model for Automated Interoperability
Test and Its Application to ROHC. Testcom2003: 243 - 257.

[KIMO3] A. Khoumsi, T. Jéron and H. Marchand. Test cases generation for nondeterminis-
tic real-time systems. Workshop on Formal Approaches to Testing of Software
(FATES) 2003, LNCS 2931: 131-146.

[KSKO00] S. Kang, J. Shin, and M. Kim. Interoperability Test Suite Derivation for Commu-
nication Protocols. Computer Networks, 2000, 32(3): 347-364.

[KTO04] M. Krichen and S. Tripakis. Black-Box Conformance Testing for Real-Time
Systems. SPIN 2004: 109-126.

[LMNO4] K. Larsen, M. Mikucionis, B. Nielsen. Online Testing of Real-time Systems
Using Uppaal. Workshop on Formal Approaches to Testing of Software
(FATES) 2004: 79-94.

[NDGO4] H. Neukirchen, Z. Dai, J. Grabowski. Communication Patterns for Expressing
Real-Time Requirements Using MSC and Their Application to Testing. TestCom
2004: 144-159.

[RCI0] O. Rafiq and R. Castanet. From conformance testing to interoperability testing.
The 3rd Int. Workshop on Protocol Test Systems, 1990.

[SKCKO04] S. Seol, M. Kim, S. T. Chanson, and S. Kang. Interoperability Test Generation

and Minimization for Communication Protocols Based on the Multiple Stimuli
Principle. IEEE Journal on Selected Areas in Communications (JSAC), 2004,
22(10): 2062-2074.

340 Z. Wang et al.

[SKKIJ03]

[SVDOI1]

[TKS03]

[TTCN]

[TTCN3]

[VBTOI1]

[WG99]

[WWYO04]

[WWYO06]

S. Seol, M. Kim, S. Kang and J. Ryu. Fully Automated Interoperability Test
Suite Derivation for Communication Protocols. Computer Networks, 2003,
43(6): 735-759.

J. Springintveld, F. Vaandrager, and P.R. D'Argenio. Testing Timed Automata.
Theoretical Computer Science, 2001, 254(1-2): 225-257.

V. Trenkaev, M Kim, and S. Seol. Interoperability Testing Based on a Fault
Model for a System of Communicating FSMs. TestCom 2003, LNCS 2644: 226—
242.

ITU-T Recommendation X.292 (1998): OSI Conformance Testing Methodology
and Framework for Protocol Recommendations for ITU-T Applications—The
Tree and Tabular Combined Notation (TTCN). ITU-T, Geneva (Switzerland).
ETSI European Standard (ES) 201 873-1 V2.2.1 (2002-08): The Testing and Test
Control Notation version 3; Part 1: TTCN-3 Core Language. European Tele-
communications Standards Institute (ETSI), Sophia-Antipolis (France), 2002.

C. Viho, S.Barbin and L. Tanguy. Towards a formal framework for interoperabil-
ity testing. FORTE 2001: 51-68.

T. Walter, J. Grabowski. A framework for the specification of test cases for real-
time distributed systems. Information & Software Technology, 1999, 41(11-12):
781-798.

Zhiliang Wang, Jianping Wu, Xia Yin. Towards Interoperability Test Generation
of Time Dependent Protocols: a Case Study. IEEE Globecom2004, Vol. 2: 589-
594.

Zhiliang Wang, Jianping Wu and Xia Yin. A Formal Framework to Interopera-
bility Testing for Real-time Systems. Submitted.

	Introduction
	Preliminaries
	Multi-port TIOA
	Communicating Multi-port TIOA
	A Simple Real-Time Communication Protocol

	Test Behavior Tree
	Test architecture
	Generating Test Behavior Tree

	Transformation to \sc{TIMED}TTCN-3 Codes
	$\sc{TIMED}TTCN-3
	Transformation to $\sc{TIMED}TTCN-3 Test Cases

	Comparisons with Real-Time TTCN
	Real-Time TTCN
	Problems in Transformation from Test Behavior Tree to Real-Time TTCN
	Possible Extensions of Real-Time TTCN
	Comparisons Between \sc{TIMED}TTCN-3 and Real-Time TTCN

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

