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Abstract. The goal of recent high-speed TCP implementations is to allow sci-
entists who have access to new high-speed networks to efficiently transfer large
datasets to their remote colleagues. As of yet, there is no standard high-speed
TCP. Because of this, scientists using one high-speed protocol may find them-
selves sharing a link with scientists using a different high-speed protocol. Previ-
ous work has evaluated such inter-protocol performance, but only with both flows
starting at the same time — an unlikely situation. We perform an evaluation study
using ns-2 to investigate the performance of competing high-speed TCP flows
where one flow enters a network in which another high-speed flow has already
reached its maximum data rate. The fairest result would be for the existing flow to
cede half of its bandwidth to the new flow in order to allow both flows to evenly
share the link. Our results show that in most cases this does not happen, but rather
one high-speed flow dominates the other. Surprisingly, it is not always the exist-
ing flow that dominates.

Keywords: High-speed TCP, congestion control, performance evaluation, net-
work simulation.

1 Introduction

Recently, several new variants of TCP have been developed to take advantage of high
capacity networks. It has been shown that Standard TCP, which handles most Inter-
net traffic, has limitations when a single connection attempts to send data at very high
speeds (i.e., faster than 100 megabits per second) over long distances [6]. These new
high-speed variants of TCP were designed to solve the limitations with high-speed
transfers while maintaining reliability and fairness to Standard TCP flows. The most
prominent of these are HighSpeed TCP (HS-TCP) [6l [7]], Scalable TCP (S-TCP) [10],
FAST TCP [8.9]], H-TCP [15], BIC-TCP [18]], and CUBIC [13].

The target users of high-speed protocols are scientists who have access to fast,
long-distance links that connect them to their colleagues in other locations. Distributed,
collaborative applications for analyzing large data sets require a reliable and fast mech-
anism for distributing the data. Since the use of a dedicated high-speed link from one
lab to another is prohibitively expensive, it is more likely that a network of connected
research labs, much like the National LambdaRail project [1], will be developed. Sci-
entists cannot rely on a single high-speed flow being allowed to consume the entire
capacity of a link. The high-speed flow will likely have to share the capacity with other
high-speed flows, as well as flows from low-speed applications such as web, email,
and file sharing. Further, it may not be the case that a single high-speed technology is
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adopted by the entire community, but that several of these TCP variants will co-exist on
the same links. For this reason, these new high-speed TCP implementations should be
tested in an environment as close as possible to their likely real-world deployment.

Most previous work (including [2} 13} [16} [17]) has investigated either how these high-
speed TCP implementations perform individually on dedicated links or how fairly they
share link bandwidth with Standard TCP. Bullot et al. [3]] determined that most of these
protocols compete rather fairly against each other when two flows using different pro-
tocols share a single link, but they only tested the case where both flows started at the
same time. Unlike Bullot ef al., we assume that one flow is sending at a high data rate
before another high-speed flow enters the network. The ideal outcome should be for the
existing flow to cede half of its bandwidth to the new flow so that both can fairly share
the link.

We ran sets of experiments in the ns-2 network simulator [12]] where we tested two
competing high-speed TCP flows in the situation where one flow started well before
the other flow. We studied all combinations of HS-TCP, S-TCP, FAST, H-TCP, BIC-
TCP, and CUBIC in a network with a 622 Mbps (OC-12) bottleneck and a 100 ms
RTT. We ran experiments with the maximum router queue buffer length at 100% of the
bandwidth-delay product (BDP), 20% of the BDP, and 40 packets. We consider this to
be the first step in a larger study of high-speed TCP protocols that also investigates the
impact of other parameters such as RTTs, background traffic, reverse path traffic, and
queuing mechanism.

We find that a 20% BDP router queue buffer results in high link utilization for
these flows, intra-protocol fairness suffers when competing flows are started at differ-
ent times, S-TCP is too aggressive in obtaining throughput from other high-speed flows,
and in general, most of the high-speed protocols are not fair when competing with other
high-speed protocols.

2 Background

All of the high-speed protocols that we evaluate attempt to be fair to Standard TCP
flows that might be sharing the link. These protocols use Standard TCP when the TCP
window w is less than a threshold value, and only use the high-speed version when w is
above the threshold. Here we present a very brief overview of each of the protocols.

HS-TCP: When an acknowledgment (ACK) is received, HS-TCP increases w by a
(w)/w. When one or more losses is detected in an RTT, HS-TCP sets w to (1 — b(w))w.
The goal is for a more aggressive increase and less aggressive decrease than Standard
TCP in low-loss environments (i.e, environments where w is allowed to grow past the
threshold, LowWindow). Current implementations of HS-TCP use a lookup table to
determine the values of a(w) and b(w). Recommended settings allow a(w) in the range
of [1, 72] segments and b(w) in the range [0.1, 0.5].

S-TCP: S-TCP is a simplification of HS-TCP, where the window adjustment functions
a(w) and b(w) no longer depend on w. When the congestion window w is greater than
LowWindow, S-TCP sets a to 0.01w (so that w increases by 0.01 for each returning
ACK) and b to 0.125. Like HS-TCP, when w is less than LowWindow, S-TCP behaves
like Standard TCP.
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FAST TCP: FAST TCP is a delay-based protocol that uses increasing RTTs as a form
of congestion notification. In FAST, the congestion window w is updated every other
RTT based on a function of the observed RTT and o, the number of segments that
FAST attempts to keep in the network. If the RTT increases, FAST may decrease w
even though loss has not occurred. Upon loss, FAST TCP behaves the same as Standard
TCP (i.e., it reduces w by half and enters TCP loss recovery).

H-TCP: H-TCP increases w based on A, the time between successive congestion events,
and P, the ratio of the minimum-observed RTT to the maximum-observed RTT. H-
TCP uses AL (default of 1 second) as a threshold for entering high-speed mode. Upon
detection of packet loss, w = Bw, where 0.5 < B < 0.8. These settings allow H-TCP
to be RTT-fair, meaning that flows with longer RTTs will see similar throughput to
flows with shorter RTTs. In addition, H-TCP flows in high-speed mode (where A > AL)
will cede some of their throughput to newer flows that have not yet reached high-speed
mode.

BIC-TCP: Like H-TCP, BIC-TCP strives to maintain RTT-fairness. BIC-TCP sets a
minimum window size Wp,, maximum window size wy.y, and a target window size
Wiarget» Which is the midpoint between w,;; and wy,q,. BIC-TCP uses a binary search
algorithm to reach the target window size (with a maximum increment of S,,,,, segments
in one step). When loss occurs, wy,,, is set to the current window size w, and wy,;;, is
set to the reduced window size (1 — 3)w, where B = 0.125. A new target W ger 18
then computed (as the midpoint between wy,;;, and wy,.,). When the congestion window
reaches the target without experiencing loss, the current window size becomes the new
minimum (wy,;, = w) and a new target is computed.

CUBIC: CUBIC is a modification of BIC-TCP with the goal of improving on BIC-
TCP’s fairness. In CUBIC, the window increase is determined by a cubic function
w = C(t — K)* 4+ Wyax, where C is a constant used for scaling, ¢ is the time since the
window was last reduced, W, is the size of the window just before the window was
last reduced, and K = Q/ WinaxB/C, where B is a constant decrease factor. When a loss
occurs, the window is reduced to W3, where p = 0.8.

3 Methodology

We ran all experiments in the ns-2 network simulator using the topology shown in
Figure [Tl Two senders are on the left side of the network, and two receivers are on the
right side of the network. Each end node is connected to a router by a 1 Gbps link with
a propagation delay of 1 ms. The two routers are connected by a 622 Mbps bottleneck
link with a 48 ms propagation delay. This topology gives each sender a 100 ms round-
trip time (RTT). The network has a bandwidth-delay product (BDP) of 7775 1000-byte
segments, and drop-tail queuing is used at both routers. We performed the full set of
experiments with three different router queue buffer lengths: 100% of the BDP, 20%
of the BDP, and 40 segments. To ensure that TCP window size is not a limiting factor,
each TCP connection has a maximum window size of 67,000 segments, which is about
64 MB. In each simulation, two connections are started, one from node 0 and one from
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Fig. 1. Network Topology

node 1. The first connection (flow 1) is started at time O, and the second connection
(flow 2) is started 50 seconds later. Each simulation is run for 500 seconds.

Even though using the same RTT for both flows could cause synchronized loss, we
were more concerned with factoring out the effects of RTTs on our results. Previous
work [18] has shown that many of the high-speed protocols are not RTT-fair, meaning
that flows with shorter RTTs achieve higher throughput than flows with longer RTTs. In
order to concentrate on the effects of competing flows, we chose to equalize the RTTs.

We tested six high-speed protocols (HS-TCP, S-TCP, FAST, H-TCP, BIC-TCP, and
CUBIC) by running a set of six experiments for each protocol and maximum router
queue buffer size. Within each set, flow 1 uses the same protocol, and flow 2 uses a
different one of the six protocols. For example, in the HS-TCP set, flow 1 is always
HS-TCP and flow 2 is either HS-TCP, S-TCP, FAST, H-TCP, BIC-TCP, or CUBIC.

For each protocol, we used the parameters recommended by the protocol’s authors.
More details of the experimental setup we used (including ns-2 scripts) can be found at
http://www.cs.clemson.edu/ mweigle/research/hstcp/.

We use the asymmetry metric from Bullot ez al. [3]] to evaluate the fairness of the var-
ious proposals. This metric, as opposed to the Chiu and Jain fairness index [4]], provides
information about which flow is more aggressive rather than just if the flows share the
link fairly. The asymmetry metric is defined as A = (¥; — %) /(%) + %), where &; is the
average throughput obtained for flow i. Average throughput was measured starting at
time 250 seconds to focus on steady-state throughput. The closer the asymmetry metric
A is to 0, the more fair the distribution of throughput. The closer A is to 1, the more flow
1 dominates the transfer, and the closer A is to -1, the more flow 2 dominates.

4 Results

We found that with a router queue buffer length of 40 packets, utilization suffered, with
many pairs of flows together obtaining less than 50% of the total link capacity. A queue
buffer length of 100% BDP provides the best link utilization, but may be an unrealistic
size for real networks. In our network, 100% BDP is 7775 packets, which is larger than
the maximum queue size on many commercial routers[] With a 20% BDP queue buffer
length, the maximum queue size was 1555 packets (in the range of commercial routers)
and all experiments had a total link utilization of 99%-100%. With regard to fairness,

! For example, Cisco routers typically have a default output queue size of 40 packets, with a
maximum size of 4096 packets.
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Fig. 2. We show the absolute value of the asymmetry metric. Each experiment is represented by
two rectangles, in which the pattern on the left indicates flow 1’s protocol and the pattern on the
right indicates flow 2’s protocol. The taller rectangle indicates the flow that received the larger
share of the throughput. We divide the experiments into 5 regions based on fairness.

the results obtained with the 20% BDP queue buffer length were slightly fairer in many
cases than with either 100% BDP or 40 packets. For the remainder of the paper, we
focus on results obtained with a queue buffer length of 20% BDP. We sorted the results
of the experiments into five regions, based on the absolute value of A for the experiment
(Figure 2). We will discuss the experiments that fell into each region separately. In
general for all experiments, the behavior of the flows reached some steady state before
the simulation ended. For each region, we will show graphs of the congestion window
(in segments) for two representative experiments.

4.1 Regionl

In Figure Bl we show the congestion windows of two representative experiments from
Region 1, which represents the fairest of the protocol pairings. Three out of the four
pairings are intra-protocol (H-TCP, HS-TCP, and CUBIC), which is not surprising.
Since both flows are running the same AIMD window adjustment algorithm, they
should eventually converge to a fair share no matter when the individual flows are
started [4]. For the intra-protocol pairings that fall into Region 1, the two H-TCP flows
are the fastest to converge - around time 150 seconds. Since we do not measure through-
put for computing A until time 250, the H-TCP intra-protocol pairing has an A value of
0.0. The CUBIC intra-protocol flows do not converge until about 450 seconds, and the
two HS-TCP flows do not converge until about 500 seconds.

The pairing of H-TCP and BIC-TCP when H-TCP starts first is the only inter-
protocol experiment in Region 1. When the order of protocols is reversed though, the
behavior is much less fair (falls into Region 4), with BIC-TCP controlling most of the
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Fig.3. Region 1: We show the congestion window for the H-TCP intra-protocol and CUBIC
intra-protocol experiments

throughput. H-TCP is able to cede some of the bandwidth when the BIC-TCP flow en-
ters late, but when the roles are reversed, BIC-TCP does not cede a fair share of the
bandwidth to the entering H-TCP flow. The behavior of both BIC-TCP and H-TCP
is dependent upon competing traffic, especially if that traffic is causing the queue to
overflow. Both of these protocols include a time since last loss factor in their window
adjustment policies (BIC-TCP implicitly and H-TCP explicitly). These protocols will
increase their aggressiveness the longer they go without experiencing a loss. This is in
contrast to protocols like HS-TCP or S-TCP whose aggressiveness only depends on the
current window size.

4.2 Region2

Figure ] shows the congestion windows for two representative pairings from Region 2.
Both the FAST and BIC-TCP intra-protocol experiments fell into this region. Neither
of these pairings converged by time 500, which is why these did not fall into Region
1 instead. All of the inter-protocol experiments in Region 2 involved H-TCP, including
both pairings of H-TCP and HS-TCP. In these experiments, HS-TCP obtained more
throughput than H-TCP even when HS-TCP started later. With CUBIC and H-TCP,
even though H-TCP started later, it gained higher throughput than CUBIC.

For the FAST intra-protocol experiments, when the flows start at different times, flow
1 occupies its share of the queue (according to o) and keeps the queue stable. When the
second flow enters, its estimate of the minimum RTT is inaccurate because it sees the
queuing delay caused by flow 1’s packets as the minimum. With this underestimate of
the actual queuing delay, flow 2 takes more than its fair share of the network resources.
This problem does not occur when competing with other types of protocols because the
other protocols drive the queue to overflow and drain completely.
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Fig. 4. Region 2: We show the congestion window for both pairings of H-TCP and HS-TCP. The
top graph shows when HS-TCP is flow 1, and the bottom graph shows when H-TCP is flow 1.

4.3 Region3

In Figure Bl we show the congestion windows of two representative experiments from
Region 3. The experiments in this region all produced very similar results. Ten of the
thirteen experiments involved FAST. Since FAST is a delay-based protocol, as the queu-
ing delay increases, FAST adjusts its window either by increasing more slowly than
before, or by decreasing, depending on the degree of the increase in the queuing delay.
When competing against loss-based protocols that have to fill the queue to determine
when available bandwidth is exhausted, FAST will see poorer performance than when
competing against flows that are also sensitive to changes in the queuing delay (i.e.,
another FAST flow). When we look at the queue size in experiments where the FAST
flow starts first, the queue size is very stable — the queue neither fills nor drains. (This
behavior, though is very dependent upon the size of the queue buffer and on FAST’s o
parameter.) Once the second flow enters, the queue becomes bursty. For all of these ex-
periments, the FAST flow sees lower throughput than the other protocols. This is more
a characteristic of how FAST competes against loss-based protocols than the aggres-
siveness of the other protocols.

One interesting point about FAST is its competition with S-TCP. The experiments
in which S-TCP competed with FAST fall into Region 3. All other experiments in-
volving S-TCP fall into Region 5, where S-TCP is always the more aggressive flow.
FAST keeps its share of packets in the queue even as S-TCP drives the queue to over-
flow. Additionally, since FAST backs off as the queuing delay increases, it is able
to avoid much of the loss caused by S-TCP overflowing the queue. Once both flows
are in steady-state, the queue never completely drains, resulting in very high link
utilization.

Also in Region 3 are both pairings of BIC-TCP and HS-TCP. For these, flow 1 sees
higher throughput regardless of the protocol. When competing against each other, both
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Fig. 5. Region 3: We show the congestion window for the pairings of FAST and S-TCP and of
BIC-TCP and HS-TCP

of these protocols are too aggressive in keeping bandwidth already obtained and not
aggressive enough in grabbing its share of bandwidth from the existing flow.

4.4 Region4

In Figure[6l we show the congestion windows of two representative experiments from
Region 4. All but one of the pairings in Region 4 contain a CUBIC flow, and in all of
these CUBIC gets less throughput than its competitor. Over all of the experiments, the
only time that CUBIC saw higher throughput than its competitor was against FAST, but
we have already mentioned that this is more due to FAST’s behavior than CUBIC’s. The
designers of CUBIC consciously made the protocol behave less aggressively than BIC-
TCP so that it would be fairer to competing flows. We see that two CUBIC flows share
more fairly than two BIC-TCP flows, but CUBIC is not aggressive enough when com-
peting against other protocols. One reason for the behavior we see might be due to the
synchronized loss patterns that we get in a study such as ours without background traf-
fic. Like BIC-TCP and H-TCP, CUBIC has an window increase function that depends
upon the time elapsed between successive congestion events. If CUBIC can avoid some
losses when the queue overflows (i.e., the other flows see loss, but not CUBIC), then
the CUBIC flow will be able to gain some of the available bandwidth released when the
other flow backs off.

4.5 Region5

All of the experiments in Region 5 contain at least one S-TCP flow, and the S-TCP
flow always sees much higher throughput than the other flow. In Figure [/l we show
how aggressive S-TCP is in obtaining and keeping bandwidth. The top graph shows
S-TCP when competing against a BIC-TCP flow that is using the entire link before the
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Fig. 6. Region 4: We show the congestion window for both pairings of CUBIC and BIC-TCP.
The top graph shows CUBIC as flow 1, and the bottom graph shows when BIC-TCP is flow 1.
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Fig.7. Region 5: We show the congestion window for the pairings of BIC-TCP and S-TCP and
of S-TCP and H-TCP. Note that on the bottom graph, the line for HTCP is not visible as its
congestion window was very close to 0.

S-TCP flow begins. Relatively quickly, S-TCP increases its window and pushes BIC-
TCP down to very little throughput. In the bottom graph, S-TCP is competing against
an H-TCP flow that enters late. The congestion window of the H-TCP flow is not visible
on the graph because the S-TCP flow does not back off long enough after loss to allow
the H-TCP flow to take advantage of the newly available bandwidth. S-TCP in essence
is a MIMD (multiplicative increase, multiplicative decrease) protocol instead of the
standard AIMD. Chiu and Jain [4] have shown that MIMD protocols do not converge
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to fairness. With S-TCP, the higher the window, the larger the amount of increase. So,
when S-TCP does encounter loss, it is able to increase its window very quickly to take
back the available bandwidth it had given up.

4.6 Flows Starting at the Same Time

We also ran experiments where we started both flow 1 and flow 2 at the same time. We
found that intra-protocol results improved for all cases, with convergence times essen-
tially going to 0. The improvement was most dramatic for S-TCP, shown in Figure[8] In
the top graph, we see the same behavior as when S-TCP was competing with H-TCP in
Figure [/l When the two S-TCP flows start at the same time (and since they have the
same RTT), the windows match and the competition is fair. Once one of the S-TCP
flows gains an advantage, it will keep increasing its advantage due to its MIMD win-
dow adjustment algorithm.

FAST also improves its intra-protocol fairness performance when both flows start
at the same time. When discussing the intra-protocol FAST results in Region 2, we
mentioned that the later-joining, second FAST flow has an inaccurate estimate of the
minimum RTT. When both FAST flows start at the same time, they both have the same
estimate of the minimum RTT (and thus, the queuing delay).

We found that flow start-time also had an effect on BIC-TCP. When BIC-TCP and
either HS-TCP or H-TCP started at the same time, BIC-TCP increased its window ag-
gressively and did not let the other flows share fairly. The behavior was very similar
to results obtained when the BIC-TCP flow started first and either an HS-TCP or an
H-TCP flow joined later.
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Fig. 8. We show the congestion window for two intra-protocol experiments with S-TCP. The top
graph is when flow 1 starts 50 seconds before flow 2, and the bottom graph shows when both
flows start at the same time. Note that on the top graph, the line for flow 2 is not visible as its
congestion window was very close to 0.
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For all of the other pairings, the start time did not seriously impact fairness. In gen-
eral, protocols that were so unfair that they overtook the flow that started first were still
unfair when the flows started at the same time.

5 Conclusions and Future Work

We studied the performance of two competing TCP flows in the scenario where one
flow enters the network after the other flow has fully utilized the link. We evaluated
the performance of six high-speed protocols using three different router queue buffer
lengths. We concentrated on the results obtained with a queue buffer length of 20%
BDP, which provided high link utilization and a realistic buffer size. We make the fol-
lowing findings:

— In general, most of the high-speed protocols are not fair when competing with other
high-speed protocols.

— Intra-protocol fairness suffers when the flows are started at different times, due to
slower convergence times.

— The performance of S-TCP and FAST do not depend upon the competing flow, but
rather are dependent only upon their own operation.

— S-TCP s too aggressive in obtaining bandwidth, even when competing with another
S-TCP flow.

As part of our future work, we would like to add background HTTP traffic and re-
verse path traffic to simulate typical non-high-speed Internet traffic that may be sharing
the link with the high-speed flows. Also, we plan to study how using active queue
management (AQM) techniques in these more realistic environments might affect the
high-speed protocols. For this work, we plan to build upon previous studies of AQM
and high-speed protocols [16, (17, [18].
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