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Abstract. We consider the problem of clustering data into k ≥ 2 clus-
ters given complex relations — going beyond pairwise — between the
data points. The complex n-wise relations are modeled by an n-way array
where each entry corresponds to an affinity measure over an
n-tuple of data points. We show that a probabilistic assignment of data
points to clusters is equivalent, under mild conditional independence as-
sumptions, to a super-symmetric non-negative factorization of the clos-
est hyper-stochastic version of the input n-way affinity array. We derive
an algorithm for finding a local minimum solution to the factorization
problem whose computational complexity is proportional to the num-
ber of n-tuple samples drawn from the data. We apply the algorithm
to a number of visual interpretation problems including 3D multi-body
segmentation and illumination-based clustering of human faces.

1 Introduction

We address the fundamental problem of grouping feature vectors (points) on
the basis of multi-wise similarity or coherency relationships among n-tuples of
points. The case of pairwise (n = 2) relationships has drawn much attention
in statistical, graph theoretical and computer vision literature. For example, a
clustering task of a collection of points x1, ...,xm in Euclidean space Rn may
be induced by a symmetric “affinity” matrix Kij = e−‖xi−xj‖2/σ2

which would
serve as the input to a process aimed at assigning the m points into k ≥ 2 classes.
The greatly popular “spectral” clustering technique, for example, looks for the
k leading eigenvectors of a normalized version of K as a new coordinate system
which in ideal settings would map the original coordinates of the points to k
points in Rk, one per each cluster [10, 11]. Graph theoretical methods perform
normalization on the affinity matrix (producing the Laplacian of K) whereby
the second smallest eigenvector splits the points into two clusters [15, 8], and
more recently it was shown that conditionally independent statements on the
unknown labels given the data points lead to the finding that K = GG�, G ≥ 0,
where G contains the probabilistic assignments of points to clusters [20].

It has been recently pointed out by a number of authors [1, 5, 21] that for
many computer vision and machine learning applications a pairwise affinity re-
lationship among points does not capture the complexity of the problem. For
example, if a parametric model requires d points for a definition, then n ≥ d +1
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points can be used to provide an affinity value by taking the square residual error
∆2 of the least-squares fit of the n points to the model and translating it into a
probability value κ(xi1 , ...,xin) = e−∆2/σ2

, where 1 ≤ i1, ..., in ≤ m. The affini-
ties form an n-way (tensor) super-symmetric array Ki1,...,in = κ(xi1 , ...,xin)
which like as above is the input for a clustering of the m points into k ≥ 2
clusters. Computer vision applications for parametric models include (i) 3D-
from-2D multi-body segmentation where under an affine model one would need
n ≥ 5 points to determine an affinity value [17] and under a perspective model
n ≥ 9 points are required [9]; (ii) segmenting 3D objects taken from the same
pose but under varying illumination conditions — for matte surfaces ignoring
self-shadowing one would need n ≥ 4 pictures for determining an affinity, i.e.,
the likelihood that the four pictures are of the same 3D surface [13], and (iii)
multi-model selection in general.

We address in this paper the problem of clustering m points into k ≥ 2 clusters
given an n-way super-symmetric affinity array K ∈ [m] × .. × [m] = [m]×n. We
will first describe the state of the art in this domain and then proceed to describe
our contribution.

1.1 Previous Work on n-Way Clustering and Our Approach

Clustering from an n-way affinity array is new to computer vision and machine
learning but has been a topic of extensive research in VLSI and PCB clustering
placement since the early 70s. A convenient representation of the problem is
given by a hypergraph, with m vertices and

(
m
n

)
different hyper-edges, where the

vertices correspond to the points (circuit elements in VLSI) to be clustered into
k ≥ 2 parts and the hyper-edges (nets connecting circuit elements) correspond
to subsets of vertices where the degree n of an edge is the number of vertices
spanned by it.

The techniques employed by the VLSI/PCB community for hypergraph par-
titioning into clusters are largely heuristic in nature — for a review see [2].
The recent work coming out from the vision and machine learning communities
[1, 5, 21] seek an approximate graph that best resembles the original hypergraph.
For example, [1] define a pairwise affinity as a weighted average over all n-tuple
affinities containing the two points in question — this can be viewed as a projec-
tion of the original tensor K onto a two-dimensional matrix by a weighted sum
of its the slices. Similarly, [5] defines a pairwise affinity between points xr,xs as
a sum of products Kr,i2,...,inKs,i2,...,in over all i2, ..., in. Finally, [21] performs a
multiplicative normalization with the vertices degrees (the sum of weights inci-
dent to a vertex) as part of creating a Laplacian of the hypergraph. Both [1, 21]
are consistent with graph theoretical research which define hypergraph Lapla-
cians by summing up all the weights incident to pairs of vertices [12], while the
work of [5] is inspired by “high order SVD” literature (referenced therein).

The idea of projecting the hypergraph onto a graph is not without merit.
However, the projection from a high-order affinity array to a pairwise affinity
would have a high SNR for simple problems. Problems with a small number
of clusters having a high number of points per cluster relative to the affinity
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degree would benefit from the projection approach. Generally, however, a pro-
jection induces information-loss and the pairwise affinities will get increasingly
obscured with increasing affinity degree — and since we have here a “curse of
dimensionality” effect, a rapid decline of pairwise affinity SNR is expected with
increasing problem complexity.

Rather than performing a projection we work with the full affinity tensor.
Our approach enables us to define any affinity degree we desire — including
one obtained by projection of the original tensor to a lower degree one, and in
particular to a pairwise affinity. Starting from a super-symmetric tensor K of
any degree, we show that a general probabilistic argument on conditional in-
dependence introduces a simple connection between K and the desired m × k
probabilistic partition matrix G ≥ 0. The connection is two fold (i) the “bal-
ancing” requirement on the cluster sizes requires K to be hyper-stochastic, and
(ii) G is obtained by a super-symmetric non-negative factorization (SNTF) of
K. The algorithm we derive for performing the SNTF is based on a positive-
preserving gradient descent scheme. The scheme also supports partial sampling
of the affinity tensor which is necessary since it is practically impossible to fill
in, or even store, a full high-degree affinity array. The complexity of the update
step is O(mkp) where p ≤ (

m
n

)
is the number of samples.

The work presented here is an outgrowth of our algebraic treatment of
pairwise affinity clustering showing that K is completely positive [20] and of
a general treatment of tensor ranks and conditional independence with latent
variables [14].

2 Probabilistic Clustering from n-Way Affinity Arrays

Let D = {x1, ...,xm} be points in Rd which we wish to assign to k clusters
C1, .., Ck and let yi ∈ {1, ..., k} be the associated (unknown) labels. We assume
that we have a way to measure the probability, which for now is simply an affinity
measure in the range (0, 1], that any n-tuple of points xi1 , ...,xin , 1 ≤ ij ≤ m,
belong to the same cluster. For example, if we know that the clusters are defined
as n−1 dimensional subspaces, then k(xi1 , ...,xin) = e−∆, where ∆ is the volume
defined by the n-tuple, would be a reasonable measure of n-tuple affinity.

Given the affinities k(xi1 , ...,xin), which form an n-way array K indexed
by Ki1,...,in, we wish to assign a probability gr,s = P (ys = r | D) of point
xs belonging to cluster Cr. The desired membership probabilities form a non-
negative m × k matrix G = [g1, ...,gk], thus our goal is to find G given K. We
will derive below an algebraic constraint on the n-way array K and relate it, by
means of factorization and linear constraints, to the desired matrix G.

Consider the labels yi as latent variables and assume that y1⊥...⊥ym | D,
i.e., that the labels are independent of each other given the entire set of data
points. Then, the probability P (yi1 = r, ..., yin = r | D) that xi1 , ...,xin belong
to cluster Cr, is factorizable:

P (yi1 = r, ..., yin = r | D) = P (yi1 = r | D) · · · P (yin = r | D).
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The probability that the n-tuple are clustered together is given by marginaliza-
tion:

Ki1,...,in =
k∑

r=1

P (yi1 = r | D) · · · P (yin = r | D) =
k∑

r=1

gr,i1 · · · gr,in ,

which translate to the fact that K should be a rank=k super-symmetric tensor:

K =
k∑

r=1

g⊗n
r , gr ≥ 0,

where g⊗n denotes the rank-1 tensor g ⊗ g ⊗ ... ⊗ g. In other words, the cluster
assignment probabilities are related to a non-negative super-symmetric factor-
ization of the input n-way array K. To complete the algebraic relation between
K and G we need to consider the constraints on K such that the n-way affinity
array will indeed represent a distribution:

Proposition 1. Given uniform priors on the distribution of labels, i.e., P (yi =
j) = 1/k for all i = 1, ..., m, the n-way array K must be hyper-stochastic:

∑
i1,..,ij−1,ij+1,...,in

Ki1,...,in =
(m

k

)n−1
1, j = 1, ..., n

where 1 is the m-dimensional vector (1, ..., 1).

Proof: From the definition of G we have that the rows sum to 1:
∑

r P (ys =
r | D) =

∑
r grs = 1. Therefore, the uniform priors means that each column sums

to m/k:
∑

s grs = m/k. The rows and columns sums propagate to a (scaled)
hyper-stochastic constraint on K:

∑
i1,..,ij−1,ij+1,...,in

Ki1,...,in
=

k∑
r=1

gr,ij

∑
i1,..,ij−1,ij+1,...,in

gr,i1 · · · gr,ij−1gr,ij+1 · · · gr,in

=
k∑

r=1

gr,ij

(∑
i1

gr,i1

)
· · ·

⎛
⎝∑

ij−1

gr,ij−1

⎞
⎠

⎛
⎝∑

ij+1

gr,ij+1

⎞
⎠ · · ·

(∑
in

gr,in

)

=
(m

k

)n−1 k∑
r=1

gr,ij
=

(m

k

)n−1

Note that the hyper-stochasticity constraint is “balanced partitions” in disguise.
The uniform prior assumption in fact constraints the dataset to form k “bal-
anced” clusters. Since we do not wish to enforce strictly a balanced partition we
will seek only a “soft” version of the hyper-stochastic constraint by adopting the
following scheme: (i) find a hyper-stochastic approximation F to the input affin-
ity array K, and (ii) given F , perform a super-symmetric non-negative tensor
factorization (SNTF), i.e., find g1, ...,gk ≥ 0 that minimize the Frobenius norm
‖F − ∑

r g⊗n
r ‖2.
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Finding a hyper-stochastic approximation to K can be done by repeating a
normalization step which is an extension of the symmetrized Sinkhorn [16, 20]
rows and columns normalization procedure for matrices. The following propo-
sition forms a normalization algorithm which converges to a super-symmetric
hyper-stochastic array:

Proposition 2. For any non-negative super-symmetric n-way array K(0), iter-
ating the process:

K
(t+1)
i1,...,in

=
K

(t)
i1,...,in

(ai1 · · · ain)1/n
,

where
ai =

∑
i2,...,in

Ki,i2,...,in , i = 1, ..., m

converges to a hyper-stochastic array.

The proof is in Appendix B. In the pairwise affinity (n = 2) case, the results
above state that K = GG� and that prior to factorizing K we should normalize
it by replacing it with F = D−1/2KD−1/2 where D is a diagonal matrix holding
the row sums of K. If we iterate this normalization procedure we will obtain a
doubly-stochastic approximation to K. This is consistent with [20] which argues
that the conditional independence statements yi⊥yj | D lead to the finding that
K = GG� which also underlies the k-means, spectral clustering and normalized
cuts approaches. In other words, the conditional independence assumptions we
made at the start are already built-in into the conventional pairwise affinity
treatment — we have simply acknowledged them and extended them beyond
pairwise affinities.

3 The SNTF Algorithm

We are given a n-way affinity array K ∈ [d1] × .... × [dn] with di = m being
the number of data points to be clustered. An entry Ki1,...,in with 1 ≤ ij ≤ m
denotes the (un-normalized) probability of the n-point tuple xi1 , ...,xin to be
clustered together. The tensor K is super-symmetric because the probability
Ki1,...,in does not depend on the order of the n points. Furthermore, we can
ignore entries with repeating indices and focus only on the case i1 �= ... �= in
(this is crucial for the success of the algorithm). For practical reasons, we would
like to store only a single representative of each n-tuple (instead of n! entries),
thus we focus only on the entries i1 < i2 < ... < in. Accordingly, we define the
order-restricted Frobenius (semi) norm:

‖K‖2
o =< K, K >o=

∑
1≤i1<i2<...<in≤m

K2
i1,...,in

,

where < A, B >o is the inner-product (restricted to strictly ascending order)
operation. Note that when K is super-symmetric then

‖K‖2
o =

1
n!

∑
i1 �=... �=in

K2
i1,...,in
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which is the restriction of the Frobenius norm to non-repeating indices. As men-
tioned in the previous section, we pass K through a normalization process and
obtain a normalized version denoted by F . Our goal is to find a non-negative
matrix Gm×k whose columns are denoted by g1, ...,gk such as to minimize the
following function:

f(G) =
1
2
‖F −

k∑
j=1

g⊗n
j ‖2

o,

We derive below a positive-preserving update rule: gr,s ← gr,s − δrs∂f/∂gr,s. We
start with the derivation of the partial derivative ∂f/∂gr,s. The differential df
is derived below:

df = d
1
2

< F −
k

j=1

g⊗n
j , F −

k

j=1

g⊗n
j >o=<

k

j=1

g⊗n
j − F , d(

k

j=1

g⊗n
j ) >o

= <
k

j=1

g⊗n
j − F ,

j

(dgj) ⊗ g⊗(n−1)
j + gj ⊗ (dgj) ⊗ g⊗(n−2)

j + ... + g⊗(n−1)
j ⊗ dgj >o

The partial derivative with respect to gr,s (the s’th entry of gr) is:

∂f

∂grs
=<

k∑
j=1

g⊗n
j − F , es ⊗ g⊗(n−1)

r + ..... + g⊗(n−1)
r ⊗ es >o

where es is the standard vector (0, 0, .., 1, 0, ..0) with 1 in the s’th coordinate.
It will be helpful to introduce the following notation: let 1 ≤ i2 < ... < in ≤ m
and let 1 ≤ s ≤ m be different from i2, ..., in, then s → i2, .., in is an ascending
n-tuple index (i.e., s is inserted into i2, ..., in in the appropriate position). Thus,
for example:

< F,a ⊗ b ⊗ b + b ⊗ a ⊗ b + b ⊗ b ⊗ a >o=
∑

i1 �=i2<i3

Fi1→i2,i3ai1bi2bi3

Using the above short-hand notation, the partial derivative becomes:

∂f

∂gr,s
=

k∑
j=1

gj,s

∑
s�=i2<...<in

n∏
q=2

gj,iqgr,iq −
∑

s�=i2<...<in

Fs→i2,..,in

n∏
q=2

gr,iq (1)

We will be using a “positive preserving” gradient descent scheme grs ← grs −
δrs∂f/∂grs. Following [7] we set the gradient step size δrs as follows:

δrs =
grs∑k

j=1 gj,s

∑
s�=i2<...<in

∏n
q=2 gj,iqgr,iq

(2)

After substitution of eqn. 2 into the gradient descent equation we obtain a mul-
tiplicative update rule:

grs ← grs

∑
s�=i2<...<in

Fs→i2,..,in

∏n
q=2 gr,iq∑k

j=1 gj,s

∑
s�=i2<...<in

∏n
q=2 gj,iq gr,iq

(3)
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The update rule preserves positivity, i.e., if the initial guess for G is non-negative
and F is super-symmetric and non-negative, then all future updates will maintain
non-negativity. The proof that the update rule reduces f(G) and converges to a
local minima is presented in Appendix A.

There are a couple of noteworthy points to make. First, removing from con-
sideration entries in F that correspond to repeated indices makes the energy
function f(gr,s) be quadratic (when all other entries of G are fixed) which in
turn is the key for the update rule above to reduce the energy at each step. Sec-
ond, each sample of n-tuple corresponds to n! entries of the affinity tensor K.
As the dimension grows, any algorithm for processing K becomes unpractical as
simply recording the measurements is unwieldy. The scheme we presented above
records only the

(
m
n

)
entries 1 ≤ i1 < ... < in ≤ m instead of mn in return

for keeping a lexicographic order during measurement recording and during the
update process of gr,s (access to Fs→i2,...,in).

Next, for large arrays, the need to sample all the possible (ordered) n-tuples
out of m points introduces an excessive computational burden. In fact, it is
sufficient to sample only a relatively small fraction of all n-tuples for most clus-
tering problems. The sampling introduces vanishing entries in K that do not
correspond to low affinity of the corresponding n-tuple but to the fact that the
particular tuple was not sampled — those should be weighted-out in the crite-
ria function f(G). A “weighted” version of the scheme above requires merely a
straightforward modification of the update rule:

grs ← grs

∑
s�=i2<...<in

Ws→i2,...,inFs→i2,..,in

∏n
q=2 gr,iq∑k

j=1 gj,s

∑
s�=i2<...<in

Ws→i2,...,in

∏n
q=2 gj,iqgr,iq

(4)

where Wi1,...,in ≥ 0, i1 < ... < in, is a weight associated with the entry Ki1,...,in .
In particular we are interested in the binary weighting scenario where the weight
is zero if the n-tuple xi1 , ...,xin was not sampled and ’1’ otherwise. To summarize,
the n-way clustering algorithm is presented below:

1. Construct K: sample n-tuples xi1 , ...,xin , i1 < ... < in, and set Ki1,...,in =
k(xi1 , ...,xin). Set Wi1,...,in = 1.

2. Normalize K: apply the iterative normalization scheme which generates F
(Prop. 2).

3. Factor F : starting with an initial guess for G ≥ 0, iteratively update the
entries gr,s one at a time using eqn. 4 until convergence is reached.

Note that only sampled entries participate in the algorithm, therefore the com-
plexity of each update step (eqn. 4) is a constant factor of the number of samples.
The complexity of the algorithm is O(mkp) where p ≤ (

m
n

)
is the number of sam-

ples (number of non-vanishing entries of W ).

4 Experiments

We begin by studying the performance of the SNTF algorithm on synthetic
data compared to the graph projection methods [1, 5, 21]. A comparative study



602 A. Shashua, R. Zass, and T. Hazan

−6 −4 −2 0 2 4 6

−4

−2

0

2

4

6

8

0% 0.5% 1% 1.5% 2% 2.5%
0%

10%

20%

30%

40%

50%

60%

70%

hyperedges %

e
rr

o
r 

ra
te

 %

SNTF

Graph Projection with SNTF

Graph Projection with NC

(a) (b)

2 4 6 8 10 12 14 16 18 20 22
0

10

20

30

40

50

60

70

SNTF

Graph Projection with SNTF

Graph Projection with NC

Sigma

e
rr

o
r 

ra
te

 %

2 2.5 3 3.5 4 4.5 5
0

5

10

15

20

25

30

35

40

45

n

e
rr

o
r 

ra
te

 %

(c) (d)

Fig. 1. Synthetic study of clustering m = 200 points arranged in k = 5 3rd-order
curves (i.e., affinity degree is n = 5). See text for details on each display.

of graph projection against outlier rejection algorithms (like RANSAC) and the
multi-level hypergraph partitioning algorithms used in the VLSI community was
presented in [1] showing a significant advantage to graph projection. Therefore
we will focus our comparative study on the performance relationship between
SNTF and graph projection.

The graph projection approximates the original hypergraph with a graph
followed by spectral clustering. In practice, when the affinity degree n is large
one needs to use sampling, i.e., during the projection not all hyper-edges are used
since their number grows exponentially with the affinity degree ([5] addressed the
sampling issue). We expect the graph projection to work well when the problem
is “simple”, i.e., when a projection from

(
m
n

)
hyper-edges to

(
m
2

)
edges can be

done with minimal information loss – in those cases it is worthwhile to reduce
the problem size from a hypergraph to a graph rather than working directly with
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Fig. 2. 3D-from-2D motion segmentation. (a) shows a picture with 76 points over four
separate bodies, (b,c) show the resulting four columns of the partition matrix G using
SNTF with a 9-way affinity array. The bottom row shows the results after projecting
the affinity array onto a matrix. The projection resulted in significant information-loss
which caused performance degradation.

the full affinity tensor. On the other hand, when the number of points is large or
when the affinity degree is high, one would expect a significant information-loss
during projection with a resulting degraded performance.

In our first experiment we generated m = 200 points in the 2D plane laying
on k = 5 3rd-order polynomials with added Gaussian noise. The number of
hyper-edges (entries of the affinity tensor K) is

(200
5

)
and since a 3rd-order 1D

polynomial is determined by four coefficients we have n = 5. We ran SNTF,
graph projection using Normalized-Cuts (NC) and graph projection using SNTF
(i.e., the same algorithm described in this paper but for n = 2). We varied the
runs according to the sampling percentage ranging from 0.02%−2.5% of sampled
hyper-edges. Fig. 1a shows the input data and Fig. 1b shows the clustering error
percentage of the three runs per sampling. The error of the SNTF is indeed
higher than the graph projection when the sampling is very low (0.02%), i.e.,
when the affinity tensor is very sparse and thus the projection onto a graph
(matrix) does not suffer from information-loss. As the sampling rate increases
the performance of the SNTF on n = 5 original affinity tensor significantly
outperforms both graph projection runs and reaches perfect clustering much
earlier (0.2% compared to 1.5% sampling). Fig. 1c compares the error rate of
SNTF and graph projections (NC and SNTF with n = 2) using 0.15% sampling



604 A. Shashua, R. Zass, and T. Hazan

Fig. 3. Segmenting faces under varying illumination conditions. See text.

rate while varying σ used in computing the affinity from the residual ∆, i.e.,
e−∆2/σ2

. One can see that the SNTF on the original affinity degree n = 5
consistently outperforms clustering over graph projections — regardless of the
clustering technique.

It is possible to use the SNTF framework in coarse-to-fine manner by generat-
ing affinity tensors of degree q = 2, 3, ..., n by means of projection. Starting from
q = 2 (graph) we recover the partition matrix G and use it as the initial guess
for the SNTF of level q + 1 and so forth. In other words, the SNTF framework
allows the flexibility to work with projections of the original affinity tensor, but
instead of being limited to a projection onto a graph we could work with any
affinity degree. Fig. 1d shows the percentage of error on the same data but with
0.02% sampling (where we have seen that the graph projection has the upper-
hand) using the coarse-to-fine approach. One can see that the error remains
fixed compared to an increasing error for each projection level when the SNTF
does not use the resulting partition matrix of the previous level as an initial
guess. This also confirms that there is a tradeoff between the complexity of the
energy landscape introduced in high-degree affinities and the information loss
introduced by aggressive projections. Ideally, one should work with a projection
to the smallest affinity degree with minimal information loss. The advantage of
the SNTF framework is that we are free to choose the affinity degree, whereas
with graph projection the affinity degree is set to n = 2.

We move next to a 3D motion segmentation experiment. Fig. 2a shows a
frame from “Matrix Reloaded” where we track 76 points arranged on four dif-
ferent moving bodies: the background (moving due to camera motion) and three
separate people moving independently from the background motion. The points
were tracked across two successive frames and our task is to perform a segmen-
tation (clustering) of the points and assign each point to the proper moving
body. It is well known that under perspective projection each pair of matching
points pi, p

′
i in the image plane represented in homogenous coordinates satisfy a

bilinear constraint: p′�i Fpi = 0 where F is a 3 × 3 matrix iff the corresponding
3D points are part of a single moving object [9]. Therefore, we need n = 9 points
in order to obtain an affinity measurement, i.e., the likelihood that the 9-tuple
arise form the same moving object. The affinity tensor has

(76
9

)
entries and we

sample roughly one million entries from it with a proximity bias, i.e., once a
point is sampled the next point is biased towards close points according to a
Normal distribution. We ran SNTF with k = 4 clusters on the 9-degree (sam-
pled) affinity tensor. Fig. 2b,c shows the four columns of the partition matrix G.
Recall that the entries of each column represent the assignment probability of
the corresponding point to the cluster associated with the column. The values
of G induce a clear-cut segmentation of the points to four separate bodies and
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the assignments are shown in Fig. 2a as varying color and shape. This particular
segmentation problem is sufficiently challenging both for the graph projection
approach and to the geometric-specific methods of [19, 18]. With regard to graph
projection, the projection from a 9-degree affinity to a pairwise affinity is very
aggressive with significant information-loss. Fig. 2e,f shows the four columns of
G recovered from SNTF with n = 2 (followed by a projection) — one can see
that one of the moving bodies got lost.

Finally we ran an experiment on segmenting faces under varying illumination
conditions. It is well known that under certain surface property assumptions
(Lambertian) the space of pictures of a 3D object ignoring cast-shadows lie
in a 3D subspace [13]. We therefore need a 4th-degree affinity measured over
quadruples of pictures. Fig. 3 shows a sequence of pictures of a person under
varying illumination conditions adopted from the AR dataset. We had 21 pictures
spanning three different persons and we ran SNTF using 4-degree affinity tensor
with k = 3 clusters. The three columns of the partition matrix G are shown in
the right display. The pictures are unambiguously assigned to the correct person.
Similar results of comparable quality were also obtained by graph projection.
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A Proof of Convergence: The Update Rule

Let f(grs) be the energy as a function of grs (all other entries of G remain
constant) and let g′rs be the updated value according to eqn. 3. We wish to show
that if we make a gradient descent with a step size δrs given by eqn. 2 (which as
we saw leads to a positive-preserving update), then f(g′rs) ≤ f(grs). They key
is that δrs is smaller than the inverse second derivative:

Proposition 3. The update scheme g′rs = grs − δrs∂f/∂grs, with δrs given by
eqn. 2 and the partial first derivative is given by eqn. 1, reduces the optimization
function, i.e., f(g′rs) ≤ f(grs).

Proof: The second derivative is:

∂2f

∂grs∂grs
=

∑
s�=i2<...<in

n∏
q=2

g2
r,iq

,
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and the step size δrs satisfies:

δrs =
grs∑k

j=1 gj,s

∑
s�=i2<...<in

∏n
q=2 gj,iqgr,iq

≤ grs

gr,s

∑
s�=i2<...<in

∏n
q=2 g2

r,iq

=
1

∂2f/∂grs∂grs

The Taylor expansion of f(grs + h) with h = −δrs∂f/∂grs is:

f(g′rs) = f(grs) − δrs(
∂f

∂grs
)2 +

1
2
δ2
rs(

∂f

∂grs
)2

∂2f

∂grs∂grs
,

from which follows:

f(grs) − f(g′rs) = δrs(
∂f

∂grs
)2(1 − 1

2
δrs

∂2f

∂grs∂grs
) ≥ 0,

since δrs∂
2f/∂grs∂grs ≤ 1.

We apply the update rule in a Gauss-Seidel fashion according to a row-major
raster scan of the entries of G (a row-major raster scan has the advantage of en-
abling efficient caching). Since the energy is lower-bounded, twice differentiable,
and is monotonically decreasing via the update rule, yet cannot decrease beyond
the lower bound (i.e., positive preserving), then the process will converge onto
a local minimum of the optimization function 1

2‖F − ∑k
j=1 g⊗n

j ‖2 with entries
with repeated indices ignored.

B Proof of Convergence: Normalization Scheme

We prove the following proposition:

For any non-negative super-symmetric n-way array K(0), without vanishing
slices, iterating the process:

K
(t+1)
i1,...,in

=
K

(t)
i1,...,in

(ai1 · · · ain)1/n
, (5)

where
ai =

∑
i2,...,in

Ki,i2,...,in , i = 1, ..., m

converges to a hyper-stochastic array.

Proof: we define the hyper-permanent (following the definition of hyper-
determinant [4]):

hperm(K) =
∑

σ2∈Sm

· · ·
∑

σn∈Sm

m∏
i=1

Ki,σ2(i),...,σn(i),
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where Sm is the permutation group of m letters. Let K ′ be the n-way array
following one step of the normalization step described in eqn. 5. We have:

m∏
i=1

(aiaσ2(i) · · · aσn(i))1/n =
m∏

i=1

(an
i )1/n =

m∏
i=1

ai,

from which we can conclude that:

hperm(K ′) =
1∏m

i=1 ai
hperm(K).

To show that the normalization scheme monotonously increases the hyper-
permanent of the n-way array we need to show that

∏m
i=1 ai ≤ 1. From the

arithmetic-geometric means inequality it is sufficient to show that
∑m

i=1 ai ≤ m.
From the definition of ai we have:

m∑
i=1

ai =
∑

i,i2,...,in

Ki,i2,...,in

1
(aiai2 · · · ain)1/n

. (6)

From the arithmetic-geometric means inequality (
∏m

i=1 xi)1/m ≤ (1/m)
∑

i xi,
replace xi with 1/ai (recall that ai > 0) and obtain:

1
(a1a2 · · · am)1/m

≤ 1
m

m∑
i=1

1
ai

,

and in general for any n-tuple 1 ≤ i1 < ... < in ≤ m:

1
(ai1 · · · ain)1/n

≤ 1
n

(
1

ai1

+ ... +
1

ain

). (7)

By substituting the inequality eqn. 7 into eqn. 6 while noting that:

∑
i,i2,..,in

Ki,i2,...,in

1
aij

=
m∑

ij=1

1
aij

∑
i,i2,...,ij−1ij+1,...,in

Ki,i2,...,ij−1ij+1,...,in = m,

we obtain that
∑

i ai ≤ m as required. Therefore, we conclude so far that
each step of the normalization scheme increases the hyper-determinant of the
previous step. The hyper-permanent is bounded from above since:

hperm(K) ≤
m∏

i=1

ai ≤ 1,

therefore the process must converge. The process converges when hperm
(K ′) = hperm(K) which can happen only of a1 = ... = am = 1.
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