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Abstract. Generalized Belief Propagation (gbp) has proven to be a
promising technique for performing inference on Markov random fields
(mrfs). However, its heavy computational cost and large memory re-
quirements have restricted its application to problems with small state
spaces. We present methods for reducing both run time and storage
needed by gbp for a large class of pairwise potentials of the mrf. Fur-
ther, we show how the problem of subgraph matching can be formulated
using this class of mrfs and thus, solved efficiently using our approach.
Our results significantly outperform the state-of-the-art method. We also
obtain excellent results for the related problem of matching pictorial
structures for object recognition.

1 Introduction

Many tasks in Computer Vision, such as segmentation and object recognition,
can be given a probabilistic formulation using Markov random fields (mrf). A
popular method for performing inference on mrfs is Belief Propagation (bp) [1].
It is well known that on tree-structured mrfs, bp can be used to efficiently per-
form exact inference. For a general mrf, Yedidia et al. [2] proved that bp con-
verges to stationary points of Bethe approximation of the free energy. They also
proposed the Generalized Belief Propagation (gbp) algorithm which converges
to stationary points of (the more accurate) Kikuchi approximation. Despite out-
performing bp in terms of convergence and accuracy, there are few uses of gbp

reported in the literature as it is computationally feasible only when the number
of labels of the mrf is small.

Recent work has focused on tackling the problem of computational cost of mes-
sage passing methods such as bp and gbp. Felzenszwalb and Huttenlocher [3, 4]
put forward a method for speeding up message passing algorithms such as
Viterbi, Forward-Backward and bp for a large class of pairwise potentials (e.g.
Potts and linear model), when the labels are regularly discretized points in the
parameter space. In our previous work [5], we extended these results to general
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mrfs. However, little consideration thus far has been given to speeding up gbp,
with the exception of Shental et al. [6] who describe an efficient gbp algorithm
but only for the special case where the pairwise potentials form an Ising model.

The problem of reducing the large memory requirements has also met with
little success. Felzenszwalb and Huttenlocher [4] observe that, when performing
bp on a bipartite graph, the messages going to only a subset of sites are changed
at each iteration. This allows them to reduce the memory requirements for grid
graphs by half. Vogiatzis et al. [7] suggest a coarse-to-fine strategy for bp by
grouping together similar labels. However this is restricted to labels lying on
a grid. More importantly, it substantially changes the problem such that the
messages and beliefs computed at any stage are not necessarily equivalent to
those corresponding to the original mrf.

In this paper, show how to reduce the computational cost and memory re-
quirements of gbp for a large class of pairwise potentials which we call the robust
truncated model. This model divides all pairs of labels for the neighbouring sites
into compatible and incompatible pairs and truncates the pairwise potentials
of the incompatible pairs to a constant (see section 2 for details). Many vision
applications such as object recognition [5], stereo and optical flow [4] use special
cases of this model. Typically, the number of compatible labels nC for a given
label is much less than the total number of labels nL, i.e. nC � nL.

We exploit the fact that, since the pairwise potentials of incompatible pairs
of labels are constant, it results in many redundant computations in gbp which
can be avoided. Let nR be the number of regions formed by clustering the sites
of the mrf and nM be the size of the largest region. The main contributions of
the paper are the following:

• We reduce the time complexity of gbp to O(nRnMnnM−1
L nC), (i.e. by a

factor of nL/nC). Since nC � nL for mrfs used in vision, this makes gbp

computationally feasible (section 3).
• We observe that the approach described in [4] to reduce the memory require-

ments of bp by half for bipartite graphs can be extended to gbp (section 4).
• We show how the memory requirements of gbp can be reduced drastically

(by a factor (nL/nC)nM−1) for a special case of the robust truncated model
which can be used in various vision applications. Again, since nC � nL, gbp

becomes memory efficient and thus, practically useful (section 4).
• We formulate the problem of subgraph matching using the special case of

the robust truncated model and solve it accurately using the efficient gbp

algorithm. Our results significantly outperform the state-of-the art methods
(section 5).

• We obtain excellent results for the related problem of matching pictorial
structures [8] for object recognition by using the efficient gbp algorithm
(section 5).

It should be noted that our methods are applicable to other related message
passing algorithms such as Viterbi, Forward-Backward, bp and tree-reweighted
message passing [9]. For completeness, we first briefly describe the bp and gbp

algorithms in the next section.
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2 Belief Propagation and Its Generalization

This section briefly describes the standard belief propagation (bp) algorithm
for performing inference on mrfs and formulates it using the canonical frame-
work. This framework is then extended which results in the Generalized Belief
Propagation (gbp) algorithm [2].

An mrf is defined by nS sites along with a symmetric neighbourhood rela-
tionship N(.) on them, i.e. i ∈ N(j) if and only if j ∈ N(i). Each site i can
take a label xi ∈ Xi. We assume that the sets Xi are finite and discrete, i.e.
|Xi| = nL < ∞. Associated with each configuration x of the mrf is its joint
probability given by

Pr(x1, ..., xnS ) =
1
Z

∏

ij

φij(xi, xj)
∏

i

φi(xi). (1)

Here, φi(xi) is the unary potential of site i having label xi, φij(xi, xj) is the
pairwise potential for two neighbouring sites i and j having labels xi and xj

respectively and Z is the partition function. Note that the above equation as-
sumes the mrf to be pairwise. However, this is not restrictive as any mrf can
be converted into a pairwise mrf [2]. Performing inference on the mrf involves
either determining the map configuration or obtaining the marginal posterior
probabilities of each label. In this paper, we describe our approach in the con-
text of max-product bp which provides the map configuration while noting that
it is also equally applicable to sum-product bp which provides the marginal
posteriors.

bp is a message passing algorithm proposed by Pearl [1]. It is an efficient
approximate inference algorithm for mrfs with loops where each site i iteratively
passes a message to its neighbouring site j. The message is a vector of dimension
nL whose elements are calculated as

mt
ij(xj) ← α max

xi

φij(xi, xj)φi(xi)
∏

k∈N(i)\j

mt−1
ki (xi), (2)

where α is a normalization constant and N(i)\j is the set of all neighbouring
sites of i excluding j. Note that xj is used to index the message vector in the
above equation such that mt

ij(xj) corresponds to the xth
j element of the vector

mt
ij . All messages are initialized to 1 and convergence is said to be achieved when

the rate of change of all messages drops below a threshold. At convergence, the
belief of a site i having a label xi is given by

bi(xi) ← αφi(xi)
∏

j∈N(i)

mji(xi), (3)

and the map estimate is obtained by choosing the label x∗
i with the highest belief

for every site i.
Yedidia et al. [2] proved that bp converges to the stationary points of the

Bethe approximation of the free energy which clusters the sites of the mrf into
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regions of size at most 2. We denote the set of sites belonging to a region r by
S(r). Region s is considered a sub-region of r if and only if S(s) ⊂ S(r). Further,
s is a direct sub-region of r if and only if the set s ∪ i is not a sub-region of r,
for all regions i.

Every region r passes a message mr→s to each of its direct sub-regions s.
In order to compactly express what follows, we adopt the following notation.
The message mr→s(xs) is simply written as mr→s (i.e. the indexing is dropped).
For example, mij→j stands for mij→j(xj) in the following equations. We define
M(r) to be the set of messages going into a sub-region of r or going into r itself
while starting outside r and its sub-regions. Let t be the set of all sites which
belong to r but not to s, i.e. t = r\s. The message update rule is given by

mr→s ← α max
xt

φt(xt)
∏

mr′→s′∈M(r)\M(s)

mr′→s′ . (4)

The potential φt(xt) is defined as the product of the unary potentials of all sites
in r\s and of all pairwise potentials between sites in r. It is easily verifiable that
the above update equation is the same as equation (2). Upon convergence, the
belief of r is given by

br ← αφr(xr)
∏

mr′→s′∈M(r)

mr′→s′ . (5)

The standard bp algorithm can be considered a special case of Generalized
Belief Propagation (gbp). gbp converges to the stationary points of the Kikuchi
approximation (which is more accurate than Bethe approximation) by allowing
for regions of size more than 2. Fig. 1 shows an example of this for an mrf with 4
sites which results in 10 regions. It also shows the corresponding messages along
with their directions. We define M(r, s) to be the set of all messages starting
from a sub-region of r and going to s or its sub-region. Then the gbp update
equation is given by

mr→s ← α max
xt

φt(xt)
∏

mr′→s′∈M(r)\M(s) mr′→s′
∏

mr′′→s′′∈M(r,s) mr′′→s′′
, (6)

where t = r\s. Note that, like bp, the message mr→s in gbp is also indexed by
xs. For example, mijk→ij stands for mijk→ij (xi, xj) and thus, can be interpreted
as an nL ×nL matrix. Table 1 lists all the sets M(r) and M(r, s) for the example
mrf in Fig. 1. Using equation (6), the messages mij→i and mijk→ij are given by

mij→i ← α max
xj

φj(xj)φij(xi, xj)mijk→ijmjk→j , (7)

mijk→ij ← α max
xt

φk(xk)
∏

p,q∈{i,j,k} φpq(xp, xq)mjkl→jkmkl→k

mik→imjk→j
. (8)

Robust Truncated Model. In this paper, we consider the case where the
pairwise potentials φij(xi, xj) form a robust truncated model such that

φij(xi, xj) = fij(xi, xj), if xi ∈ Ci(xj),
= τij , otherwise, (9)
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Fig. 1. Left. An example mrf with four sites. The solid lines show the interactions
between the sites and describe a neighbourhood relationship on them. The dotted lines
show the clustering of the sites into regions of size 3. Right. The sites are grouped to
form ten regions for canonical gbp. The resulting messages and their directions are also
shown using the arrows. For example, the top left arrow shows the message mijk→ij

and the bottom left arrow shows the message mij→i.

Table 1. Messages belonging to the sets M(r) and M(r, s) for each region r and its
direct sub-region s shown in Fig. 1

r M(r)
{ijk} mjkl→jk, mkl→k

{jkl} mijk→jk, mij→j , mik→k

{ij} mijk→ij , mik→i, mjk→j

{ik} mijk→ik, mij→i, mjk→k,
mkl→k

{jk} mijk→jk, mjkl→jk, mij→j ,
mik→k, mkl→k

r M(r)
{kl} mjkl→kl, mik→k,

mjk→k

{i} mij→i, mik→i

{j} mij→j , mjk→j

{k} mik→k, mjk→k,
mkl→k

{l} mkl→l

r s M(r, s)
{ijk} {ij} mik→i,

mjk→j

{ijk} {ik} mij→i,
mjk→k

{ijk} {jk} mij→j , mik→k

{jkl} {jk} mkl→k

{jkl} {kl} mjk→k

where Ci(xj) defines the subset of labels of i which are ‘compatible’ with xj .
In other words, the cost for an incompatible pair of labels is truncated to τij .
Included in this class are the commonly used Potts model i.e. fij(xi, xj) = dij ,
∀xi ∈ Ci(xj), the truncated linear model i.e. fij(xi, xj) = exp(−|xi−xj |) and the
truncated quadratic model i.e. fij(xi, xj) = exp(−(xi −xj)2). In most problems,
fij(xi, xj) > τij and the number of labels nC in Ci(xj) are much smaller than
nL, i.e. nC � nL. Such mrfs have been successfully used for applications such as
object recognition [5] and stereo [4]. Next, we describe our fast gbp algorithm.

3 Fast Generalized Belief Propagation

We now present a method for making gbp computationally efficient for mrfs
whose pairwise potentials form a robust truncated model. This is a more general
case than the Ising model addressed in [6]. Note that the choice of regions for gbp

is not of concern in this paper since our method is independent of it. However,
for clarity, we will only describe the method for mrfs that form complete graphs
and where regions are formed by clustering all possible combinations of three
sites. The extension to any other mrf is trivial. In this case, there are two types
of messages: (i) mij→j is the message that region {i, j} passes to site j and,
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(ii) mijk→jk is the message that region {i, j, k} passes to region {j, k}. Using
equation (6), these messages are given by

mij→j ← α max
xi

φi(xi)φij(xi, xj)
∏

n∈S\{i,j}
mni→imnij→ij , (10)

and

mijk→jk ← α max
xi

φi(xi)
∏

p,q∈R φpq(xp, xq)
∏

n∈S\R mni→imnij→ijmnik→ik

mij→jmik→k
, (11)

where R = {i, j, k} and S is the set of all nS sites of the mrf. Obviously, most of
the computational cost is contributed by messages mijk→jk which can be reduced
significantly by making use of the special form of the pairwise potentials.

Since for any pair of sites i and j, most of the pairwise potential φij(xi, xj)
are constant (i.e. τij), considerable speed-up is achieved by pre-computing all
the terms which are common in the message update equations (10) and (11). In
order to compute the messages mij→j , we define

ri(xj) = α max
xi

φi(xi)
∏

n∈S\{i,j}
mni→imnij→ij , (12)

and
r′i(xj) = α max

xi∈Ci(xj)
φi(xi)fij(xi, xj)

∏

n∈S\{i,j}
mni→imnij→ij . (13)

The message mij→j is given by max{r′i(xj), τijri(xj)}. Note that no speed-up is
obtained for the messages mij→j except in the special case of τij = 0 when each
message can be computed as max{r′i(xj)} (i.e. independent of ri(xj)) in O(nC)
time, where nC is the number of labels in Ci(xj). However, as noted above, the
real concern is to reduce the complexity of the messages mijk→jk .

We define

qik(xj) =
√

α max
xi /∈Ci(xj)

√
φi(xi)

∏
n∈S\{i,j,k} mnij→ij

√
mni→i

mij→j
, (14)

and

q′i(xj , xk) = α max
xi∈Ci(xj,xk)

φi(xi)
∏

{p,q}∈R φpq

∏
n∈S\R mnij→ijmnik→ikmni→i

mij→jmik→k
,

(15)
where R = {i, j, k} and Ci(xj , xk) = Ci(xj) ∪ Ci(xk). The time complexities of
calculating qik(xj) and q′i(xj , xk) for a particular xj and xk are O(nL) and O(nC)
respectively. Once these terms have been computed, the message mijk→jk can
be obtained in O(1) time as max{q′i(xj , xk), φjkτijqik(xj)τikqij(xk)}.

The computational complexity of the overall algorithm is O(n3
Sn2

LnC) (i.e. the
number of messages). This is significantly better than the O(n3

Sn3
L) time taken
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by ordinary gbp when nL is very large. Again, for the special case of τij = 0, the
messages can be computed even more efficiently as q′i(xj , xk), without computing
the terms qik(xj). Note that the terms qik(xj) and qij(xk) would be computed
using the same label xi /∈ Ci(xj , xk) in equation (14) as the pairwise potentials
φij(xi, xj) and φik(xi, xk) are constant for all such xi (proof in appendix). Thus,
the messages computed would be exactly equal to the messages in equation (11).

In general, this approach reduces the time complexity of gbp from
O(nRnMnnM

L ) to O(nRnMnnM−1
L nC), where nR is the number of regions and

nM is size of the largest region. For example, in the case of bp over a complete
graph, the only messages are of the form mij→j which can be computed effi-
ciently using the above method in O(n2

SnLnC) time instead of O(n2
Sn2

L) time
required by ordinary bp. Note that this is the same factor of speed-up obtained
by the method described in [3] which cannot be extended to the gbp algorithm.
Algorithm 1 shows the main steps involved in reducing the computational cost
of gbp. Next, we describe our memory-efficient gbp algorithm.

Algorithm 1. Fast Generalized Belief Propagation

1. Using equations (12) and (13), calculate ri(xj) and r′
i(xj), ∀ sites i, j and labels

xj .
2. Compute mij→j ← max{r′

i(xj), τijri(xj)}.
3. Using equations (14) and (15), calculate qik(xj) and q′

i(xj, xk), ∀ i, j, k, xj and
xk.

4. Compute mijk→jk ← max{q′
i(xj , xk), φjkτijqik(xj)τikqij(xk)}.

5. Obtain the beliefs using equation (5).

4 Memory-Efficient Generalized Belief Propagation

We now present two approaches to reduce the memory requirements of gbp.
The first approach extends the method of Felzenszwalb and Huttenlocher [4] for
reducing the memory requirements of bp by half on bipartite graphs. The basic
idea is that for a bipartite graph with the set of regions A∪B, the message that a
region in A passes to its sub-regions depends only on the messages coming from
the regions in B and vice versa. In other words, if we know the messages coming
from B, we can compute the messages within A. This suggests the strategy
of alternating between computing messages for regions in A and B, thereby
reducing the memory requirements by half.

We now describe the second approach which requires that τij = 0 for all pairs
of site i and j. It is not surprising that further constraints need to be imposed
on the robust truncated model. As mentioned above, the problem of reducing
memory requirements has proven to be more difficult than that of reducing
the time complexity and has met with limited success so far. However, we will
demonstrate in section 5 that this restricted robust truncated model is still useful
in a wide variety of vision applications.

The basic idea is to reduce the state space of the original mrf by dividing it
into smaller mrfs whose labels are a subset of the labels of the original mrf.
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However, these subsets are chosen such that the messages and beliefs computed
on them are equivalent to those that would be obtained for the original prob-
lem. Specifically, we observe that when τij = 0, the messages mij→j and mijk→jk

can be calculated using only r′i(xj) and q′i(xj , xk) for all iterations of the gbp

algorithm. Since r′i(xj) and q′i(xj , xk) (and therefore the messages and the be-
liefs) are computed using Ci(xj) and Ci(xk), it would be sufficient to only include
these in the smaller mrfs. Thus, each of smaller mrfs contains a subset of labels
such that if xj is included in an mrf, then Ci(xj) is also included in that mrf,
for all sites i. These mrfs can then be solved one at a time using Algorithm 1
thereby greatly reducing the memory requirements since nC � nL. Moreover,
this approach does not increase the computational cost of the fast gbp algo-
rithm described in the previous section. Algorithm 2 illustrates the main steps
of memory-efficient gbp.

Algorithm 2. Memory-Efficient Generalized Belief Propagation

1. Choose a subset of labels xi for i. Choose all the labels xj ∈ Cj(xi), ∀ sites j.
2. Solve the resultant small mrf using Algorithm 1. Note that ri(xj) and qik(xj) need

not be calculated.
3. Repeat step 2 with a different subset until all beliefs have been computed.

Note that our second approach achieves a considerable reduction in mem-
ory (of factor (nL/nC)nM−1) by restricting the form of the robust truncated
model. Further, it is applicable to any general topology of the mrf, i.e. it is
not restricted to only bipartite graphs. We now demonstrate our approach for
subgraph matching and object recognition.

5 Experiments

In order to demonstrate the effectiveness of our approach, we generated several
complete mrfs whose pairwise potentials form a robust truncated model with
τij = 0. The regions are formed by clustering all possible combinations of three
sites. Fig. 2 shows the average time and memory requirements for different values
of the nC/nL (averaged over 100 mrfs). Note that when nC = nL our approach
reduces to the standard gbp algorithm. However, when nC � nL, it provides a
significant reduction in time and memory requirements.

We now formulate two important problems, subgraph matching and object
recognition, using the special case of the robust truncated model (i.e. τij = 0). It
is observed that in both cases nC � nL which allows us to solve these problems
accurately using our fast, memory-efficient gbp algorithm.

5.1 Subgraph Matching

We use the fast, memory-efficient gbp algorithm to solve the problem of sub-
graph matching. Given two graphs G1 = {V1, E1} and G2 = {V2, E2}, subgraph
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Fig. 2. Left: Average time taken by the efficient gbp algorithm for 100 random complete
mrfs whose pairwise potentials satify the special case of the robust truncated model.
The time complexity scales almost linearly with the factor nC/nL. Right: Average
memory requirements which scales quadratically with nC/nL.

matching involves finding a mapping f : V1 → V2 which minimizes the following
energy function: ∑

vi,vj∈V1

‖l1ij − l2f(i)f(j)‖, (16)

where lkij is the distance between vertices i and j of the kth graph. Many impor-
tant computer vision problems, such as matching part-based models for object
recognition can be thought of as special cases of this problem.

We define an mrf for determining the mapping f(.) such that each site i
represents a vertex v1

i in V1. Each label xi represents a vertex v2
i in V2. For our

example, we assume that all points v1
i ∈ V1 are equally likely to map to a point

in V2, and hence the likelihood terms φi(xi) are set to 0.5 (however this is not
generally the case). The sites of the mrf form a complete graph as distances
between all pairs of vertices should be preserved by the mapping. We define the
pairwise potentials as

φij(xi,xj) =
{

d if |l1ij − l2xixj
| ≤ ε

0 otherwise,
(17)

where ε is a constant which depends on the (expected) level of noise. In our
experiments, we use d = 1. This favours the preservation of distance between
corresponding pairs of vertices. Figure 3 shows an example of this formulation
when |V1| = 3 and |V2| = 4.

Our problem thus reduces to obtaining the map estimate given the above mrf.
For this purpose, we use the efficient gbp algorithm described in Algorithm 2.
By restricting the region size to two, we obtain a time and memory efficient bp.
Although less accurate, efficient bp is faster than efficient gbp. We compare the
results with ordinary gbp and bp algorithms. For complete graphs, we found
that gbp works well when the regions form a star pattern, i.e. the regions are
of the form {1, i, j} for all pairs i > 1 and j > 1. The common site ‘1’ is
chosen randomly. Note that this observation is consistent with that reported
in [10].

We generated 1000 pairs of random graphs G1 and G2, with |V1| = 0.25|V2|
on an average. The number of vertices |V2| were varied between 30 and 60.
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Fig. 3. Subgraph Matching. (a) Graph G1 with three vertices which is a rigidly trans-
formed subgraph of graph G2 shown in (b). (c) The corresponding mrf formulation for
subgraph matching. The mrf consists of three sites corresponding to the vertices X,Y
and Z of G1. Each site has four possible labels corresponding to vertices 1,2,3 and 4 of
G2. The interactions between the sites is shown using solid lines.

Table 2. Average time and space requirements of various methods for subgraph match-
ing. Columns 4 and 5 show the requirements for smaller graphs with |V2| = 20.

Method Time Memory Time (Small) Memory (Small) Accuracy (%)
bp 2 sec 4 MB 0.009 sec 0.08 MB 78.61
gbp - > 350 MB 6 sec 0.5 MB 95.79

Efficient bp 0.2 sec 0.4 MB 0.006 sec 0.008 MB 78.61
Efficient gbp 1.5 sec 3.5 MB 0.6 sec 0.07 MB 95.79

[11] 4.3 sec 0.1 MB 2.2 sec 0.02 MB 20.00

The vertices |V1| were randomly selected subset of |V2| with 7% noise added
to them. The average number of correct matches for the vertices in V1 found
using gbp were 95.79% (9421 out of 9835) compared to 78.61% (7732 out of
9835) found using bp. Thus, gbp provides much more accurate results than bp

which should encourage its use in practice. We also significantly outperformed
the state-of-the-art method by Chui and Rangarajan [11] (tested using their
publically available code) on our challenging dataset. Table 2 summarizes the
average time and space requirements for the various methods used. Note that
due to large memory requirements of gbp, we ran another set of experiments
on smaller graphs, i.e. |V2| = 20. The time and memory requirements for these
smaller graphs are shown in the fourth and fifth column.

5.2 Object Recognition

We tested our approach for object recognition using a parts-based model called
pictorial structures (ps) introduced by Fischler and Elschlager [8] and extended
in [5]. ps are compositions of 2D patterns, i.e. parts, under a probablistic model
for their shape, appearance and spatial layout (see [5] for details).

The connections between the parts of the ps form a complete graph. The
pairwise potentials are defined as

φij(xi, xj) =
{

d if valid configuration,
0 otherwise. (18)
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Method Time Memory
bp 59 sec 0.7 MB
gbp 240 sec 38 MB

Efficient bp 2 sec 0.09 MB
Efficient gbp 16 sec 0.5 MB

Fig. 4. Results of obtaining the map estimate of the parts of cows using the fast,
memory-efficient gbp. The first row shows the input images. The detected parts are
shown in the second row. The table on the right shows the average time and space
requirements of various methods for object recognition.

Fig. 5. Left: roc curves for cow recognition. Right: Zoomed versions of a part of the
roc curve. Results indicate that better recognition performance is obtained using gbp

compared to bp.

A configuration is valid if xmin
ij ≤ ||xi − xj || ≤ xmax

ij . In all our experiments,
we used d = 1. The parameters of the model are learnt in an unsupervised
manner from videos as described in [5]. During recognition, the putative poses
of the parts are found using a tree cascade of classifiers (see [5] for details).
This allows us to efficiently prune the undesirable poses which result in a low
potential φi(xi). Again, for the above mrf, the regions form a star pattern with
the torso part being the common site [10]. The map estimate of the pose for
each part is obtained by performing inference using the fast, memory-efficient
gbp algorithm.

Fig. 4 shows the results of our approach on some images containing cows.
The cascade efficiently obtains approximately one hundred putative poses per
part in 2 minutes. The map estimate of each of the parts obtained using gbp

is shown in the second row. The table on the right summarizes the time and
space requirements of the various methods for object recognition. Fig. 5 shows
the roc curves obtained using 450 positive and 2400 negative examples. Note
that, as in the case of subgraph matching, gbp performs better than bp.

6 Summary and Conclusions

We have presented methods to overcome the problems of large computational
complexity and space requirements in using gbp for the important case where
the pairwise potentials form a robust truncated model. Specifically,
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• We reduce the time complexity of gbp to O(nRnMnnM−1
L nC) for the case of

robust truncated models.
• We reduce the memory requirements of gbp over bipartite mrfs by half.
• We further reduce the memory requirements of gbp for a general mrf

by a factor of (nL/nC)nM−1 for a special case of the robust truncated
model.

Further, we have demonstrated how the important problems of subgraph match-
ing and object recognition can be formulated using the robust truncated model
and solved efficiently using our approach. Our results significantly outperform
the state-of-the-art method. We plan to investigate whether some restrictions can
be relaxed (e.g. τij = 0). Other applications such as segmentation and optical
flow also need to be explored.
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Appendix. The terms qik(xj) and qij(xk) described in equation (14) are ob-
tained using the same label xi.

Proof. The only terms which differ in qik(xj) and qij(xk) are mnij→ij and
mnik→ik in the right-hand side of equation (14). Since all messages are initialized
to 1 the proposition holds true for the first iteration. For subsequent iterations,
consider the following equations:
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mnij→ij ← α max
xn

φn(xn)
∏

p,q∈R1
φpq(xp, xq)

∏
l∈S\R1

mln→nmlni→nimlnj→nj

mni→imni→j
,

(19)

mnik→ik ← α max
xn

φn(xn)
∏

p,q∈R2
φpq(xp, xq)

∏
l∈S\R2

mln→nmlni→nimlnj→nk

mni→imnk→k
,

(20)
where R1 = {n, i, j} and R2 = {n, i, k}. The pairwise potentials φij(xi, xj) and
φik(xi, xk) are constants for all xi ∈ Ci(xj) and xi ∈ Ci(xk) (over which the
terms qik(xj) and qij(xk) are computed). The term mlni→ni is common to both
equations (19) and (20) and all other terms are constants for a particular pair
of labels xj and xk. Thus, the above two messages are equivalent and it follows
that qik(xj) and qij(xk) will be computed using the same label xi.
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