Dense Photometric Stereo by Expectation
Maximization*

Tai-Pang Wu and Chi-Keung Tang

Vision and Graphics Group,
The Hong Kong University of Science and Technology,
Clear Water Bay, Hong Kong

Abstract. We formulate a robust method using Expectation Maximiza-
tion (EM) to address the problem of dense photometric stereo. Previous
approaches using Markov Random Fields (MRF) utilized a dense set of
noisy photometric images for estimating an initial normal to encode the
matching cost at each pixel, followed by normal refinement by consid-
ering the neighborhood of the pixel. In this paper, we argue that they
had not fully utilized the inherent data redundancy in the dense set and
that its full exploitation leads to considerable improvement. Using the
same noisy and dense input, this paper contributes in learning relevant
observations, recovering accurate normals and very good surface albedos,
and inferring optimal parameters in an unifying EM framework that con-
verges to an optimal solution and has no free user-supplied parameter
to set. Experiments show that our EM approach for dense photometric
stereo outperforms the previous approaches using the same input.

1 Introduction

Woodham [1] first introduced photometric stereo for Lambertian surfaces, in
which three images are used to solve the reflectance equation for recovering sur-
face gradients and albedos of a Lambertian surface. Since [1], extensive research
on more robust techniques for photometric stereo have been reported:

More than three images. Four images were used in [2] and [3] so that incon-
sistent observation due to shadows or highlight can be discarded by majority
vote. A larger number of images (about 20) were used in [4] where two algo-
rithms were investigated. More recently, [5] used structure from motion and
photometric stereo in an iterative framework.

Model-based approaches. In [6], an m-lobed reflective map was derived by
considering diffuse and non-Lambertian surfaces. This was extended in [7] in
which nonlinear regression was applied to a larger number of input images.
The Torrance-Sparrow model was used in [3]. In [8], a hybrid reflectance
model was used to recover surface gradients and the parameters of the
reflectance model.
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Reference objects. The use of a reference object was first introduced in [9].
In [10], surface orientations and reflectance properties are computed by using
a reference object.

Despite that significant advancement has been made in photometric stereo by
previous approaches, they still suffer from one or more of the following limita-
tions:

— light directions must be very accurate. The use of uncalibrated lights require
additional constraints [11].

— accurate normals and albedos cannot be recovered in the presence of high-
light and cast shadows, and severe violations to the Lambertian assumption.

— in certain model-based approaches, the problem formulation is very complex,
making them susceptible to numerical instability.

Recently, two Markov Random Field (MRF) inference algorithms [12, 13] were
developed independently to recover normals by dense photometric stereo using a
dense set of noisy photometric images conveniently captured by a simple setup.
These two methods were based on similar MRF formulation but different distri-
bution models, and made use of the neighborhood information to improve the
results. For high precision normal reconstruction, the graph-cut algorithm [13]
converges in a few iterations. The tensorial message passing was proposed in [12]
for efficient belief propagation. In both cases, estimated normal maps are very
good (certain subtle geometry can be reasonably reconstructed) despite the pres-
ence of highlight, shadows and complex geometry. Albeit this, several issues
remain unaddressed:

— Albedo is not recovered in [12,13].

— The data redundancy inherent in the dense set has not been fully utilized.
Specifically, linear plane fitting was used to estimate an initial normal at
each pixel based on the assumption that sufficient linear Lambertian obser-
vations are present. However, each observation, regardless of Lambertian or
otherwise, is equally weighted during the plane fitting process.

— The MRF is introduced in [12,13] to improve the results. However, the in-
troduction implies the surface smoothness assumption. Despite the use of a
discontinuity-preserving metric, [12,13] apply the MRF refinement globally
as in other MRF methods. Very fine details such as subtle texture bumps
and surface imperfections will inevitably be lost after the process.

— As with other MRF processes, a user-supplied parameter is required to con-
trol the influence of neighborhood. The optimal parameter is different for
different scenes and has to be determined empirically but not automatically.

In this paper, we propose a unifying framework based on the Expectation
Maximization (EM) algorithm to address all the above seven issues. We shall
show that considerable improvement are made by our EM approach, using the
same noisy dense set as input. The organization of the paper is as follows. Sec-
tion 2 reviews dense photometric stereo and describes the above issues in detail
in order to motivate our work. Section 3 describes our unified EM framework.
Finally, results are presented in Section 4 and we conclude our paper in Section 5.
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2 Review of Dense Photometric Stereo

Given a dense set of images captured at a fixed viewpoint with their correspond-
ing light directions, the goal of dense photometric stereo is to find the optimal
normal N, and albedo ps at each pixel s. In [13], a simple capture device was
proposed for obtaining a dense but noisy set of photometric images. By utilizing
the redundancy inherent in the captured data, a dense matching cost was derived
and used as the local evidence at each observation node in the MRF network. The
capture process is simple [13] compared with other previous approaches whereas
the methods in [12, 13] produced some of most accurate normal reconstruction to
date despite the presence of severe shadows, highlight, transparencies, complex
geometry, and inaccurate estimation in light directions.

2.1 Data Acquisition

Shown in Fig. 1(a) is the simple capture system consisting of a digital video
camera (DV), a handheld spotlight and a mirror sphere which is used to give
the light direction. The location of the brightest spot on the mirror sphere indi-
cates the light direction which can be calculated easily [13]. Note however that
the set of estimated light directions is scattered and very noisy, as shown in
Fig. 1(c). Uniform resampling on a light direction sphere, based on icosahedron
subdivision, was performed in [13], which is also adopted in this work. The in-
accurate light directions and the contaminated photometric images both make
the reconstruction problem very challenging.

Fig. 1. (a) Data capture. (b) Typical captured image. (¢) A typical trajectory of the
estimated light directions shows that they are scattered and very noisy.

2.2 The MRF Formulation

Given a set of photometric images with the corresponding estimated light direc-
tions, the surface normals are estimated by maximizing the following posterior
probability [12,13]:

P(X|Y)O(H§Ds(xsays)H H @st(xs,xt) (1)
s )

s teN(s

where X = {z,}, Y = {ys}, =5 is the hidden variable (i.e. the normal to be
estimated) at pixel location s, ys is the observed normal at s, N'(s) is a set of
first order neighbors of s, and ¢, (zs,ys) is the local evidence at the observation
node and @ (xs, z¢) is the compatibility function. To maximize (1), tensorial
belief propagation was used in [12] while graph-cut was used in [13].
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2.3 Issues in Deriving Local Evidences

In [12, 13] the local evidence and initial normals are derived by least-square plane
fitting, assuming that sufficient Lambertian observations are present and that non-
Lambertian observations are noises. The reflectance at each pixel can then be de-
scribed by p(N; - L), where p is the surface albedo, Ny is the initial normal and L
is the light direction at the pixel s. Let T be the total number of sampled images.
To eliminate p, we divide T'— 1 sampled images by a chosen image called denomi-
nator image to obtain T' — 1 ratio tmages. Let I; be the denominator image. Each
pixel in a ratio image is therefore expressed by }—2 = NaLit By ysing no less than

N, Lg*
three ratio images, we produce a local estimation of the normal at each pixel:

AtI + Bty + CtZ =0 (2)

where A, = Itld,r - Idlt,za By = Itld,y - Idlt,ya Cy = Itld,z - Idlt,za L, =
(lLt,zs Lty 1,2) T is the light direction at time ¢t = 1---T, Ny = (z,y,2)7 is the
normal to be estimated. Note that an ideal denominator image is one that sat-
isfies the Lambertian model and is minimally affected by shadows and specular
highlight, which is difficult if not impossible to obtain. On the other hand, the
use of least-square plane fitting to estimate N has several problems:

— The albedo is canceled out to produce ratio images.

— Least-square plane fitting is incapable of rejecting non-Lambertian observa-
tions. Outliers significantly affect the result of the fitting.

— If the denominator contains a non-Lambertian observation, the whole set of
ratio images becomes garbage thus leading to unpredictable results.

Different alternatives of selecting the denominator image from the dense set
have been proposed. Fig. 2(a) shows the normal map produced by [13]. Problems
can be observed on the “ground” in the bottom part of the teapot image be-
cause only a single image is used which is chosen using simple criteria. Fig. 2(b)
shows another initial normal map produced by [12]. The result is very noisy
because in [12] different images were used as denominators for different pixels.
Severe orientation jittering is resulted in the estimated normal map due to the
non-Lambertian properties and the quantization errors of the intensities of the
denominator image.

So the first question we ask is: can we identify or learn the relevant Lambertian
observations automatically?

Fig. 2. Local evidence (initial normals) produced by (a) [13] and (b) [12]
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2.4 Issues in Defining Compatibility Functions

In [12, 13] the noises due to non-Lambertian observations and inaccurate estima-
tion in light directions that cannot be handled by plane fitting are addressed by
the MRF refinement process which assumes that the underlying surface is locally
smooth. Although discontinuity-preserving functions are used, the smoothing ef-
fect is applied globally because we have no prior knowledge which regions should
be smoothed. If the variation in global and local surface orientation do not match,
over-smoothing will occur. Therefore, fine details such as surface imperfections
and texture bumps are inevitably lost. Thus, in [12,13] and other MRF algo-
rithms, a free parameter should be supplied by the user to control the degree of
smoothness. The parameters are empirically obtained and varies with different
scenes.

So, the second question we ask is: how can we obtain the set of optimal pa-
rameters automatically?

3 Normal and Albedo Estimation by Expectation
Maximization

In this paper, a unified EM algorithm is proposed which identifies relevant Lam-
bertian observations automatically by fully exploiting the data redundancy in-
herent in the dense and noisy data. Our results show significant improvement
without any MRF smoothing refinement and thus the setting of MRF parame-
ters is no longer an issue. In fact, by using our EM algorithm, all parameters can
be optimized alternately within the same framework, making the robust method
free of any user-supplied parameters.

In this section, we formulate our EM algorithm to estimate the surface albedos
and normals from a set of dense and noisy measurement captured as described in
the previous section. In [12, 13], the simple least-square plane fitting is used for
initial normal estimation. No special handling is performed for unreliable data
or outliers generated by non-Lambertian phenomena such as specular highlight
and shadows. In real cases, however, these observations occupy a significant
proportion in the captured data due to the restrictive Lambertian model and
the diversity of surface geometry and material.

Suppose that the measurement error for each observation is known. We could
perform weighted least-square plane fitting to weaken the contribution of defec-
tive data. However, given the simple data capture system, it is very difficult to
estimate such measurement errors. In this paper we propose a data-driven ap-
proach to estimate the weight of each observation by utilizing useful information
inherent in the dense set although it consists of scattered and noisy data.

3.1 Overview

While the albedo is problematic and canceled out in [12,13], in this paper we
use the albedo as one of the contributing factors in estimating the weight of
each observed intensity. The idea is as follows. Consider a pixel location 3.
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Suppose the albedo p; is known, given the observed intensity I;; at time ¢ and
the corresponding light direction L;;, we model the probability of the intensity
I;; generated by the Lambertian model without shadow and specular highlight
to be inversely proportional to:

[Lix — piN; - Lig| (3)

where N; is the normal at pixel ¢. Thus, if the albedo is known, more information
concerning the observations can be extracted.

However, albedo derivation alone is a difficult problem. In this paper, we
demonstrate how the albedo and surface normal can be estimated simultaneously
using an EM framework to obtain accurate results.

While we argue that plane fitting without a proper contribution weight for
each observation is not a good solution, some useful lesson can still be learnt
from [12,13]. Suppose that each image is a candidate of the denominator image.
If we have T different observations for a pixel location, in total, we can produce
T different planes by using all images successively as the denominator. For the
denominators consisting of non-Lambertian observations, the orientations of the
fitted planes are arbitrary because the denominator intensity interacts with all
other intensity samples when ratio images are derived during plane fitting and
thus the whole data set is contaminated. For the other denominators whose
observations are explained by the Lambertian model, however, the orientations
of the produced planes should cluster themselves together. Despite that such
estimated planes are not error-free because of the presence of outliers, the cluster
limits the solution space for the optimal surface orientation at the pixel.

3.2 The Objective Function

The main reason of using the EM approach is that the above-mentioned cues
are not given but are inherent within the data itself. Alternating optimization
approaches such as EM allow for the simultaneous estimation of the cues and
the solution. In this section, we define our objective function which forms the
basis of our EM algorithm.

Without confusion, in the rest of this section, the index of pixel location i will
be dropped to simplify the notation, since the algorithm is applied individually
at each pixel location.

We define O = {o;} to be the set of observations, where ¢t = 1..T and T is
the total number of captured images, o, = {I;,n;}, I (a 3-vector in RGB space)
is the observed intensity at time ¢, and n; is the normal obtained after plane
fitting with image ¢ as the denominator image.!

To encode the clustering of {n;}, a 3 X 3 covariance matrix K that stores the
second-order moment collection is used since it represents the orientation distri-
bution. The optimal normal is the direction that gives the largest variance in K.

! Note that we only use the highest 50% intensities as numerators to perform plane
fitting because dark pixels tend to be affected by shadows and the presence of a large
number of outliers will affect the accuracy of the estimated normal. The aforemen-
tioned number of samples provides sufficient redundancy for robust estimation.
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Our goal is to find the optimal albedo p (a 3-vector in RGB space) and the
covariance matrix K given the pixel observations. In other words, we want to
estimate the following:

e = argmgxP(O,S|@) (4)

where P(O,S|O) is the complete-data likelihood we want to maximize, @ =
{K, p, a, 0} is a set of parameters to be estimated and S = {s;} is a set of hidden
states indicating which observation is generated by the Lambertian model. s; = 1
if 0; is generated by Lambertian model, s; = 0 otherwise. a and o are respectively
the proportion of Lambertian observations and the standard deviation of Eqn. 3,
which are the parameters that help us to find the solution and will be described.

Our EM algorithm estimates Eqn. 4 by finding the expected value of the
complete-data log-likelihood log P(O, S|©) w.r.t. S given the observation O and
the current estimated parameters:

Q(0,0') = > log P(0,S|0)P(8|0,0")dS (5)

Secp

where @ are current parameters and ¢ is a space containing all S of size T

3.3 Expectation Estimation

In this section, we address how to estimate the marginal distribution p(s¢|o¢, ©’)
so that we can maximize the expectation @ defined by Eqn. 5 by proceeding to
the next iteration given the current parameters.

If s; is known, the observation o; that is generated by the Lambertian model
minimizes Eqn. 3 and nf K~ 'n;. Suppose that the noise distribution of Eqn. 3
and the jittering distribution of n; are Gaussian distributions, and that the
existence of non-Lambertian observations follow a uniform distribution. The
observation probability of o; is:

_ T=pny L2 L TR—1n Y e 1.
p(0t|8t, 9/) X {elxp( 202 )exp( oy K nt)? li St : 1 (6)
ok I 8¢ = 0.

Base on the uniform distribution assumption, the choice of C' should be max{I;—
pn-L; }. However, in real case, the assumption can be violated seriously. To lower
the chance of wrong classification, we choose C = C,,, = mean{l; — pn; - L;}
because smaller C' trends to classify more observations to s; = 0. This lowers
the probability of the non-Lambertian samples in obtaining wrong labels while
we still have sufficient redundancy for estimation robustness. To calculate C, we
choose p to be the color has median gray-level intensity. Indeed, C' needs not to
be precise. In all of our experiments, varying C, C,, < C < 2C,, produces very
similar results and thus this constant is not critical.

Let « be the proportion of the observation generated by the Lambertian
model. Then we have a mixture probability of the observations:

plsi=1) =« (7)
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So, given ©’ only, we have

1 _ 1l -«
)eXP(—in;‘FK 'ny) + el (8)

I — pn, - Ly||?
p(od0) x o exp(- 1120 Tl

Let w; be the probability of o; being generated by the Lambertian model. Then:

= 1|6’
wy = pls; = 1|0y, 0') = plos, st = 110")

p(0:|0)
— . 2 —
o exp(- Lmpm ) e (— nfK'n) o)
a eXp(_Hlt—gI;té'LtllQ)eXp(_%n,tI'K—lnt)+ 1611

Hence, in the E-step of our EM algorithm, we compute wy for all t =1---T.

3.4 Maximization

In this section, we maximize the likelihood (Eqn. 4) given the marginal distri-
bution w; computed in the E-Step.
Since we only have two states {0, 1} for each s, the @ function (Eqn. 5) is:

Q(0,0') = "logp(or, st = 1|@)w + » _logp(or, s; = 0[0)(1 — wy)
t t

1 |11; — pny - Ly ]?
=31 —
 loglar 7 ex 207
1 1
—|—E log(——— exp(—=n! K 'n,))w
t g(|K|%(27T)% p( oMt t)) t
11—«
log(———)(1 — 1
# S los(* )1 w0 (10)

To maximize (10), we set the first derivative of @ w.r.t. «, o, p and K respec-
tively equals to zero and obtain the following:

a:%Zwt

t
_ 2l = oy - L P

o
> wr
1
=7 Ii(ng - Ly)w
P Zt(nt'Lt)zwtzt: t(ng - Lg)wy
1
K= R Zntntth (11)
t t

which constitutes the parameter updating rule for © and thus the M-Step of
our EM algorithm. The E-Step and M-Step are executed alternately until the
process converges. The convergence of EM was well established [14].
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Upon convergence, we apply eigen-decomposition on K to obtain the optimal
normal direction. The eigenvector corresponding to the largest eigenvalue gives
the normal direction.

In addition, using our method, we produce not only surface normals but also
surface albedo p and the weights w; indicating the degree an observation o; is
consistent with the Lambertian model. Such inferred information is very useful
in parameter estimation for fitting analytic reflectance models to real and noisy
observations.

4 Experimental Results

In this section, we first demonstrate the considerable improvement by comparing
our method with [13] using the same input data. The synthetic case we use
is Three Spheres and the real examples are Teapot, Rope and Toy Car. After
the comparison, we apply our method to reconstruct albedos and normals on
selected complex objects to examine the robustness and efficacy of our method.
The running time of all the examples are tabulated in Table 1.

Three Spheres. Fig. 3(a)—(b) show two input synthetic images of Three
Spheres. The depicted object is generated by the Phong illumination model.
Fig 3(e) and (f) shows respectively the normal map produced by [13] and by our
EM method. Note that they are rendered using the Lambertian model (N-L) for
clarity of display. The ground truth is shown in Fig. 3(c). Our estimated albedo
is shown in Fig. 3(d). Qualitatively, the appearance of (c), (e) and (f) are very
similar. On the other hand, the image difference show the clear improvement
of our method in terms of accuracy. Fig. 3(g) is the image difference between
(c) and (e), while Fig. 3(h) is the image difference between (c) and (f). Notice
the presence of three halos in Fig. 3(g) which are brighter than those observed
in Fig. 3(h), which is nearly totally black. We measure the mean angular error
of the recovered normals to evaluate both methods quantitatively. Using Three
Spheres, the mean error of the result produced by [13] is 4.041 degree while the
error of our EM result is only 1.5065 degree.

Teapot. Our method shows very significant improvement in the presence of
a large amount of noises in the representative case of Teapot, which is one of
the most difficult examples in [13] where the geometry and texture are very
complex.

Table 1. Summary of running times. The experiments were run on a shared CPU
server with 4 Opteron(TM) 844 CPU at 1.8GHz with 16GB Memory.

Data set Three Spheres Teapot Toy Car Rope Face Hair
Number of images 305 282 287 265 195 189
Image Size 256x256 188x202 181x184 171x144 216x225 224x298

Running Time 3m04s 4m24s  4m37s 4m09s 4m4ds 3m25s
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(a) (b) () (d) () (f) (2) (h)

Fig. 3. Three Spheres: (a)—(b) Two typical noisy input images. (¢) The ground truth
normal map. (d) The albedo p produced by our EM method. (e) The normal map
produced by [13]. (f) The normal map produced by our EM method. (g) The image
difference between (c) and (e). (h) the image difference between (c) and (f). Note that
(c), (e) and (f) are rendered using the pure Lambertian model (N-L) with L = (0,0,1)7".

(e)

Fig.4. Detail of the Teapot: (a)—(b) The specular reflection depicts the concentric
ripple-shaped structures on the lid. (¢) The specular reflection depicts a smooth but
shallow dent near the hole of the lid. (d) A small bump at the center of a deep-colored
flower pattern. (e) A black cardboard with a lot of surface imperfections, which is the
plane where the teapot is placed for image capturing.

To better illustrate how our result has been improved, let us study in detail
the geometry of the Teapot using Fig. 4. The selected close-up views of the teapot
reveal fine surface details and subtle geometry.

The complete set of the result shown in Fig. 5. Fig. 5(a) and (b) show two
sample input images which are contaminated by highlight and shadows. To show
the overall smoothness, Fig. 5(c) depicts the color coded normal map produced
by our EM method where (R, G, B) = (2£L, “HL 2) and N = (z,y,2)7. Fig. 5(d)
is the albedo p image produced by our EM method. Fig. 5(e) shows the local
evidence of [13] which consists of the initial normals produced by the plane
fitting method reviewed in Section 2 or described in [13]. Fig. 5(g) is the final
result produced by [13] where all surface details are smoothed out. For clarity
of display, Fig. 5(f) and (h) show the same normal map produced by our EM
method, which are rendered using the Lambertian model (N - L) illuminated at
two different light directions.

It is evident that, although Fig. 5(g) demonstrates a visually smoother appear-
ance, all the fine details described in Fig. 4 are lost due to the MRF refinement
process. However, Fig. 5(e) show that if MRF process is not applied in [13], due
to the complexity of the texture and the geometry, the surface normals produced
are unsatisfactory and severe artifacts can be observed. On the other hand, our
method preserves all important fine details of the Teapot illustrated and revealed
in the close-up views of Fig. 4.
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Fig. 5. Teapot: (a)—(b) Two captured images. (¢) The color coded normal map pro-
duced by our EM method. (d) The albedo p estimated by our EM method. (e) The
local evidence of [13]. (g) The final normal map in [13]. (f) and (h) are the same normal
map produced by our EM method. Note that the normal maps in (e)— (h) are rendered
using the pure Lambertian model (N - L) where the light directions in (e), (g) and (h)
are respectively L W)T and in (f) is L = (0,0, 1)T. Please see the electronic
version for hlgher resolu tlon dlsplay

()

Fig. 6. Toy Car (first row) / Rope (second row) : (a) One of the input images. (b) The
color coded normal map produced by our EM method. (c) The albedo p estimated by
our EM method. (e) The normal map produced by our EM method rendered by the
pure Lambertian model (N - L) where the light direction L = (=, 7=, %)T
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=
[

(f)

Fig. 7. Face: (a)—(b) Two captured images. (c) The color coded normal map produced
by our EM method. (d) The albedo p estimated by our EM method. (e)—(g) The normal
map produced by our EM method rendered using the Lambertian model (N - L) where
the light direction in (e), (f) and (g) are L = (%, %, %)T, L= (—%,—%, %)T
and L = (0,0, 1) respectively. (h) The reconstructed surface.

Fig. 8. Hair: Please see the caption in Fig. 7
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Toy Car and Rope. We applied our method to two existing data sets and
the results are shown in Fig. 6. Our method works very well in estimating the
surface albedos and surface normals. Hardly any shading is left in the albedo
image of Toy Car. For Rope, only some small spots of shadow artifact are left
in the albedo image because these regions were always under shadow due to
the complex mesostructure. Besides, the surface normal maps obtained are more
accurate than the maps obtained in [13].

Face and Hair. Human face and hair reconstruction are receiving more atten-
tion in the area of computer vision and computer graphics. Both human features
consist of complex geometry and fine details and are non-Lambertian.

Fig. 7 shows our result on Face. The normal map (Fig. 7(e)—(g)) shows that
our method retains the subtle geometry such as the pimple and other facial
imperfections. Fig. 7(d) shows the estimated albedo image. Fig. 7(h) depicts the
reconstructed surface by [15] using our normal map as input.

Fig. 8 shows our result on Hair. The normal map (Fig. 8(e)—(g)) shows that our
method preserves the curvilinearity and the meso-structural details of the hair.
Observe that some structure information are left in the albedo image (Fig. 8(d)).
There are two reasons. First, although the sampled light directions are very
dense, some pixels are always occluded and thus under shadows due to the
complexity of the hair geometry. Besides, the Lambertian model is not suffi-
cient to describe human hairs and so Lambertian samples are rare even dense
measurement is available. These two problems make the estimation process ex-
tremely challenging; yet our method still produces very good result in normal
estimation.

5 Conclusion

In this paper we propose a robust method for dense photometric stereo recon-
struction using the Expectation Maximization (EM). By exploiting useful infor-
mation inherent in the dense and noisy set of photometric images, this paper
contributes in identifying relevant observations, recovering very good normals
and albedos, and estimating optimal parameters in an automatic EM frame-
work that has no free user-supplied parameter to set. The convergence of the
EM method has been well established. Very good results have been obtained,
showing that our EM approach is robust in the presence of severe shadows, high-
light, complex and subtle geometry, and inaccurate light directions. Our future
work focuses on the use of adaptive MRF refinement to further improve the
accuracy and applicability of our EM technique for photometric stereo.
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