
Feature Harvesting for Tracking-by-Detection

Mustafa Özuysal, Vincent Lepetit, François Fleuret, and Pascal Fua

Computer Vision Laboratory,
École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland

{mustafa.oezuysal, vincent.lepetit, francois.fleuret, pascal.fua}@epfl.ch
http://cvlab.epfl.ch

Abstract. We propose a fast approach to 3–D object detection and pose
estimation that owes its robustness to a training phase during which the
target object slowly moves with respect to the camera. No additional
information is provided to the system, save a very rough initialization
in the first frame of the training sequence. It can be used to detect the
target object in each video frame independently.

Our approach relies on a Randomized Tree-based approach to wide-
baseline feature matching. Unlike previous classification-based appro-
aches to 3–D pose estimation, we do not require an a priori 3–D model.
Instead, our algorithm learns both geometry and appearance. In the
process, it collects, or harvests, a list of features that can be reliably
recognized even when large motions and aspect changes cause complex
variations of feature appearances. This is made possible by the great flex-
ibility of Randomized Trees, which lets us add and remove feature points
to our list as needed with a minimum amount of extra computation.

1 Introduction

In many 3–D object-detection and pose estimation problems ranging from Aug-
mented Reality to Visual Servoing, run-time performance is of critical impor-
tance. However, there usually is time to train the system before actually using
it. It has recently been shown [1] that, given a 3–D model, statistical learning
techniques [2] can be used during this training phase to achieve robust real-
time performance by learning the appearance of features on the target object.
As a result, at run-time, it becomes possible to perform wide-baseline matching
quickly and robustly, which is then used to detect the object and compute its
3–D pose. Here we show that this approach extends naturally to the case where
no a priori 3–D model is available, thus removing one of the major limitations
of the original method and yielding the behavior depicted by Fig. 1.

The key ingredient of our approach is what we refer to as feature harvesting:
Assuming that we can first observe the target object moving slowly, we define an
ellipsoid that roughly projects at the object’s location in the first frame. We ex-
tract feature points inside this projection and use the image patches surrounding
them to train a first classifier, which is then used to match these initial features
in the following frames. As more and more new frames become available, we

A. Leonardis, H. Bischof, and A. Pinz (Eds.): ECCV 2006, Part III, LNCS 3953, pp. 592–605, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Feature Harvesting for Tracking-by-Detection 593

T
ra

in
in

g
R

un
−

T
im

e
T

ra
in

in
g

R
un

−
T

im
e

T
ra

in
in

g
R

un
−

T
im

e

Fig. 1. Our approach to 3–D object detection applied to a toy car, a face, and a glass.
In each one of the three cases, we show two rows of pictures. The first represents the
training sequence, while the second depicts detection results in individual frames that
are not part of the training sequence. We overlay the ellipsoid we use as our initial
model on the images of the first row. The only required manual intervention is to
position it in the very first image. To visualize the results, we attach a 3–D referential
to the center of gravity of the ellipsoid and use the estimated 3–D pose to project it
into the images. Note that, once trained, our system can handle large aspect, scale,
and lighting changes. It can deal with the transparent glass as well as with the hand
substantially occluding the car. And when a complete occlusion occurs, such as when
the book completely hides the face, it simply returns no answer and recovers when the
target object becomes visible again.

discard features that cannot be reliably found and add new ones to account for
aspect changes. We use new views of the features we retain to refine the classi-
fier and, each time we add or remove a feature, we update it accordingly. Once
all the training frames have been processed, we run a bundle-adjustment algo-
rithm on the tracked feature points to also refine the model’s geometry. In short,

594 M. Özuysal et al.

starting from the simple ellipsoid shown in the top row of Fig. 1, we robustly
learn both geometry and appearance. An alternative approach to initializing the
process would have been to use a fully automated on-line SLAM algorithm [3].
We chose the ellipsoid both for simplicity’s sake—successfully implementing a
SLAM method is far from trivial—and because it has proved to be sufficient, at
least for objects that can be enclosed by one.

The originality of our approach is to use exactly the same tracking and statis-
tical classification techniques, first, to train the system and automatically select
the most stable features and, second, to detect them at run-time and compute
the pose. In other words, the features we harvest are those that can be effectively
tracked by the specific wide-baseline matching algorithm we use. This contrasts
with standard classification-based approaches in which classifiers are built be-
forehand, using a training set manually labeled and that may or may not be
optimal for the task at hand. As a result, our system is very easy to train by
simply showing it the object slowly moving and, once trained, both very fast and
very robust to a wide range of motions and aspect changes, which may cause
complex variations of feature appearances.

2 Related Work

In recent years, feature-based approaches to object recognition and pose estima-
tion have become increasingly popular for the purpose of 3–D object tracking
and detection [4, 5, 6, 7], mostly because they are relatively insensitive to partial
occlusions and cluttered backgrounds.

These features are often designed to be affine invariant [8]. Once they have
been extracted, various local descriptors have been proposed to match them
across images. Among these, SIFT [9] has been shown to be one of the most
effective [10]. It relies on local orientation histograms and tolerates significant
local deformations. In [8], it is applied to rectified affine invariant regions to
achieve perspective invariance. In [11], a similar result is obtained by training
the system using multiple views of a target object, storing all the SIFT features
from these views, and matching against all of them. However, computing such
descriptors can be costly. Furthermore, matching is usually performed by nearest-
neighbor search, which tends to be computationally expensive, even when using
an efficient data structure [12].

Another weakness of these descriptors is that they are predefined and do
not adapt to the specific images under consideration. [5] addresses this issue by
building the set of the image neighborhoods of features tracked over a sequence.
Kernel PCA is then performed on this set to compute a descriptor for each
feature. This approach, however, remains computationally expensive.

By contrast, [1] proposes a classification-based approach that is both generic
and faster. Since the set of possible patches around an image feature under
changing perspective and lighting conditions can be seen as a class, it is pos-
sible to train a classifier—made of Randomized Trees (RT) [2]—to recognize
feature points by feeding it samples of their possible appearances. In the case of

Feature Harvesting for Tracking-by-Detection 595

3–D objects, these samples are synthesized using a textured model of the target
object. This is effective because it allows the system to learn potentially complex
appearance changes. However, it requires building the 3–D model. This can be
cumbersome if the object is either complex or made of a non-Lambertian ma-
terial that makes the creation of an accurate texture-map non-trivial. If one is
willing to invest the effort, it can of course be done but it is time consuming.
The approach we introduce here completely does away with this requirement.

3 Randomized Trees for Feature Recognition

The approach we use as a starting point [1] relies on matching image features
extracted from training images and those extracted from images acquired at run-
time under potentially large perspective and scale variations. It formulates wide-
baseline matching as a classification problem by treating the set of all possible
appearances of each individual object feature, typically a 3–D point on the object
surface, as a class. During training, given at least one image of the target object,
image features, are extracted and associated to object features. These features
are taken to be extrema of Laplacian extracted from the first few octaves of the
images. This simple multi-scale extraction and the classifier work in tandem to
recognize the features under large variation of both scale and appearance. Image
patches surrounding the image features are then warped to generate numerous
synthetic views of their possible appearance under perspective distortion, which
are then used to train a set of Randomized Trees (RTs) [2]. These RTs are used at
run-time to recognize the object features under perspective and scale variations
by deciding to which class, if any, their appearance belongs.

The training procedure outlined above assumes that a fixed number of image
features have been extracted beforehand and that their number does not change.
This is not true in our case because image features can be added or discarded
during training. Therefore, in the remainder of this section, we first recall the
original formulation [1] and then extend it to allow the addition and removal of
object features on the fly. RTs appear to be a very good trade-off between the
efficiency of the recognition, and these possibilities of manipulations.

3.1 Wide Baseline Matching Using Randomized Trees

Let us consider a set of 3–D object features {Mi} that lie on the target object and
let us assume that we have collected a number of image patches fi,j centered
on the projections of Mi into image j, for all available i and j. The {fi,j}
constitute the training set we use to train the classifier R̂ to predict to which
Mi, if any, a given image patch f corresponds, in other words, to approximate
as well as possible the actual mapping R(f) = i. At run-time, R̂ can then be
used to recognize the object features by considering the image patch f around
a detected image feature. Given the 3–D position of the Mi, this is what is
required to compute 3–D pose.

In principle any kind of classifier could have been used. RTs, however, are
particularly well adapted because they naturally handle multi-class problems,

596 M. Özuysal et al.

while being both robust and fast. Multiple trees are grown so that each one
yields a different partition of the space of image patches. The tree leaves contain
an estimate of the posterior distribution over the classes, which is learned from
training data. A patch f is classified by dropping it down each tree and perform-
ing an elementary test at each node, which sends it to one side or the other, and
considering the sum of the probabilities stored in the leaves it reaches. We write

R̂(f) = argmax
i

∑
T∈T

P̂L(T,f)(R(f) = i) , (1)

where i is a label, the P̂L(T,f)(R(f) = i) are the posterior probabilities stored in
the leaf L(T, f) of tree T reached by f , and T is the set of Randomized Trees.
Such probabilities are evaluated during training as the ratio of the number nL

i

of patches of class i in the training set that reach L and the total number ni of
patches of class i that is used in the training. This yields

P̂L(R(f) = i) � nL
i /ni

SL
, (2)

where SL =
∑

j

nL
j

nj
is a normalization term that enforces

∑
i P̂L(R(f) = i) = 1.

We normalize by the number of patches because the real prior on the class
is expected to be uniform, while this is not true in our training population.
Although any kind of test could be performed at the nodes, simple binary tests
based on the difference of intensities of two pixels have proved sufficient. Given
two pixels m1 and m2 in f and their gray levels I(f,m1) and I(f,m2) after
some Gaussian smoothing, these tests are of the form

If I(f,m1) ≤ I(f,m2) go to left child,
otherwise go to right child.

(3)

This test is very simple and requires only pixel intensity comparisons. In practice,
classifying a patch involves only a few hundreds of intensity comparisons and
additions per patch, and is therefore very fast.

3.2 Randomized Trees and On-Line Training

The approach described above assumes that the complete training set is available
from the beginning, which is not true in our case as object features may be added
or removed while the classifier is being trained. Here we show how to overcome
this limitation by modifying the tree-building algorithm in two significant ways.

First, in [1], the node tests are chosen so as to minimize leaf entropy, which is
estimated according to the training set. Without the complete training set, this
cannot be meaningfully done. Instead, we build the tree by randomly selecting
the tests, that is to say the m1 and m2 locations of Eq. 3. The training data
is only used to evaluate the P̂L posterior probabilities in the leaves of these
randomly generated trees. Surprisingly, this much simplified procedure, which
is going to allow us to iteratively estimate the P̂L values, results in virtually

Feature Harvesting for Tracking-by-Detection 597

no loss of classification performance [13]. Interestingly, a similar result has also
been reported in the context of 2–D object recognition [14].

Second, we introduce a mechanism for updating the tree when new views of
an existing object feature are introduced or when an object feature is either
added or removed, which the RT approach lets us do very elegantly as follows.

– Incorporating New Views of Object Features. Recall that, during the
initial training phase, patches are dropped down the tree and the number
of patches reaching leaf L is plugged into Eq. 2 to derive P̂L for each class
at leaf L. Given a new view, we want to use it to refine these probability
estimates. To this end, we invert the previous step and compute the number
of patches reaching leaf L as

nL
i = P̂L(R(f) = i) × ni × SL.

This only requires storing the normalization terms SL at each leaf L and
keeping the ni counters for each class. We then use newly detected patches
to increment nL

i and ni. When all the new patches have been processed, we
again use Eq. 2 to obtain the refined values of P̂L. Note that we do not store
the image patches themselves, which could cost a lot of memory for long
training sequences.

– Adding and Removing Object Features. The flexible procedure out-
lined above can also be used to add, remove or replace the classes corre-
sponding to specific object features during training. Removing class i and
the corresponding object feature merely requires setting

nL
i = ni = 0.

We can then replace the ith feature by a new one by simply changing the Mi

3–D coordinates introduced at the beginning of Section 3.1 to be those of the
new object feature and using patches centered around the new projections
of Mi to estimate P̂L.

These update mechanisms are the basic tools we use to recursively estimate
the RTs while harvesting features, as discussed in the next section.

4 From Harvesting to Detection

In this section, we show that standard frame-to-frame tracking and independent
3–D detection in each individual frame can be formalized similarly and, therefore,
combined seamlessly as opportunity dictates. This combination is what we refer
to as tracking-by-detection. The originality of our approach is to use exactly the
same image feature recognition technique at all stages of the process, first, to
train the system and automatically select the most stable features and, second,
to detect them at run-time.

We first give an overview of our method. We then explain how the tracking
is performed without updating the classifier, and conclude with the complete
“feature harvesting” framework.

598 M. Özuysal et al.

4.1 Overview

As shown in the top row of Fig. 1, to initialize the training process, we position
the ellipsoid that we use as an initial 3–D model so that it projects on the target
object in the first frame. We then extract a number of image features from this
first image and back-project them to the ellipsoid, thus creating an initial set
of the {Mi} object features of Section 3.1. By affine warping lightly the image
patches surrounding the image features, we create the fi,j image patches that
let us instantiate a first set of randomized trees.

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

A

B

A A

BB

Step 1 Step 2 Step 3

~
t

~
t

A

B

A

B

Step 4 Step 5

^
t

^
t

γ γ

γ γ

Fig. 2. The five steps of feature harvesting introduced at the beginning of Section 4.1

During training, new features detected on the object are integrated into the
classifier. Because the number of such features can become prohibitively large
when dealing with long training sequences, it is desirable to keep the ones that
are successfully detected and recognized by the classifier most often, and remove
the other ones. More precisely, given the set of trees trained using the first frame
or more generally all frames up to frame t − 1, we handle frame t using the
five-step feature-harvesting procedure described below and illustrated by Fig. 2:

1. We extract image features from frame t and use the classifier to match them,
which, in general, will only be successful for a subset of these features.

2. We derive a first estimate γ̃t of the camera pose from these correspondences
using a robust estimator that lets us reject erroneous correspondences.

3. We use γ̃t to project unmatched image features from frame t−1 into frame t
and match them by looking for the image features closest to their projections.

4. Using these additional correspondences, we derive a refined estimate γ̂t.
5. We use small affine warping of the patches around image features matched

in frame t to update the classifier as discussed in Section 3.2. Features that
have not been recognized often are removed to be replaced by new ones.

At run-time, we use the exact same procedure, with one single change: We stop
updating the classifier, which simply amounts to skipping the fifth step.

4.2 3–D Tracking by Detection

Let us first assume that the classifier R has already been trained. Both tracking
and detection can then be formalized as the estimation of the camera pose Γt

from image features extracted from all previous images that we denote Is≤t. In
other words, we seek to estimate the conditional density p(Γt | Is≤t).

Feature Harvesting for Tracking-by-Detection 599

A camera motion model —appearing as the term p(Γt | Γt−1) in the following
derivations— should be chosen. It often assumes either constant velocity or con-
stant acceleration. This is fine to regularize the recovered motion but can also
lead to complete failure. This tends to occur after an abrupt motion or if Γt−1
is incorrectly estimated, for example due to a complete occlusion. Γt can then
have any value no matter what the estimate of Γt−1 is. In such a case, we should
consider the density of Γt as uniform and write p(Γt | Γt−1) ∝ λ, which amounts
to treating each frame completely independently. In our implementation, we use
a mixture of these two approaches and take the distribution to be

p(Γt | Γt−1) ∝ m(Γt−1, Γt) = exp
(
− (Γt − Γtq−1)

� Σ−1 (Γt − Γt−1)
)

+ λ . (4)

This lets us both enforce temporal consistency constraints and to recover from
tracking failures by relying on single-frame detection results. In our implemen-
tation, the respective values of Σ and λ were chosen manually.

Unfortunately, introducing the term λ process precludes the use of standard
particle filtering techniques. Our camera pose space has six dimensions, and the
required number of particles, which grows exponentially with the number of
dimensions, would be too large to make particle filters tractable. Therefore we
have to restrict ourself to the estimation of the mode γ̂t of this density:

γ̂t = argmax
γ

P (Γt = γ | Is≤t) ,

in which the expression of P (Γt = γ | Is≤t) can be found using the standard
Bayesian tracking relation:

P (Γt = γ | Is≤t) ∝ P (It | Γt = γ)P (Γt = γ|Γt−1 = γ̂t−1)P (Γt−1 = γ̂t−1|Is<t) .
(5)

As described in the overview, we apply a RANSAC based approach on the set
ñt of correspondences obtained using the classifier to derive a first estimate γ̃t for
the camera pose. A new set n̂t is then made of the inliers of ñt, and completed
by projecting the unmatched object features with γ̃t and matched each of them
with the closest image feature. A numerical optimization is then performed to
find γ̂t by minimizing the log-likelihood of m(γ̂t−1, γ)P (It | Γt = γ):

γ̂t = argmin
γ

∑
n∈�nt

‖P(γ)M(n) − m(n)‖2 + ρ
(
(γ − γ̂t−1)

� Σ−1 (γ − γ̂t−1)
)

(6)

where P(γ) is the projection matrix for the camera pose γ, ρ is the Tukey
robust estimator that approximates the logarithm of (4), and M(n) and m(n)
are respectively the object feature and the image feature for correspondence n.

The advantage of the classifier is that there is no need for the previous pose.
However, this procedure can result in some jittering on the estimated pose over
a sequence. To enforce temporal consistency and reduce the effect, when γ̂t−1
is valid, we also consider transient object features which projections can be
matched across It−1 and It using standard cross-correlation. Their 3–D positions

600 M. Özuysal et al.

can be estimated from the rough model and γ̂t−1 by back-projection. According
to our experience, over two consecutive frames, this position is accurate enough
to improve the recovered displacement. These additional correspondences are
integrated in Eq. (6) for pose estimation exactly in the same way as the corre-
spondences established with the classifier. Note that these correspondences are
not required by our method, but they are useful to reduce the jittering effect.

4.3 Feature Harvesting

During training we use the same process but now the classifier is not initially
available and we want to create it incrementally by “feature harvesting.” This
implies keeping or discarding object features such as those shown in Fig. 3. Let
us first denote by r∗t the best classifier obtained with the images Is≤t and the
feature correspondences computed using the poses γs≤t:

r∗t = argmax
r

P (R = r | Γs≤t = γs≤t, Is≤t) .

Here we show that r∗t can be used to compute γ̂t+1 under reasonable assumptions.
We have:

P (Γs≤t = γs≤t, Is≤t)

=
∑

r

P (Γs≤t =γs≤t, Is≤t, R =r) =
∑

r

P (Γt = γt, It, Γs<t = γs<t, Is<t, R = r)

=
∑

r

P (Γt = γt, It | Γs<t = γs<t, Is<t, R = r)P (R = r | Γs<t = γs<t, Is<t) ×

P (Γs<t = γs<t, Is<t)

All the classifiers have a negligible probability P (R = r | Ps<t = γs<t, Is<t)
except for those concentrated around r = r∗t−1. Otherwise, that would mean that
other classifiers than r∗t−1 constructed with γs<t, Is<t would be as good as r∗t−1,

(a)

(b)

(c)

Fig. 3. The harvest. (a) Three sample patches for three distinct features on the glass.
Note that the foreground is relatively constant while the background changes drasti-
cally. (b) Three sample patches for three distinct face features, obtained under changing
light and orientation. (c) Patches corresponding to object features found to be unreli-
able and discarded during training.

Feature Harvesting for Tracking-by-Detection 601

which is not realistic since r∗t−1 has been built from these poses and images. Let
us continue the derivation:

� P (Γt = γt, It | Γs<t = γs<t, Is<t, R = r∗t−1)P (Γs<t = γs<t, Is<t)
= P (It | Γt = γt, Γs<t = γs<t, Is<t, R = r∗t−1) ×

P (Γt = γt | Γs<t = γs<t, Is<t, R = r∗t−1)P (Γs<t = γs<t, Is<t)
� P (It | Γt = γt, R = r∗t−1)P (Γt = γt | Γs<t = γs<t)P (Γs<t = γs<t, Is<t)

because the incoming image does not depend on the poses except on the current
one, and the current pose does not depend on the previous images neither on
the classifier, which is reasonable. By applying the Bayes’ theorem on the terms
P (Γs≤t = γs≤t, Is≤t) and P (Γs<t = γs<t, Is<t), we get:

P (Γs≤t = γs≤t | Is≤t) �
P (Is<t)
P (Is≤t)

P (It | Pt =γt, R =r∗t−1)P (Γt = γt | Γt−1s<t = γs<t)P (Γs<t = γs<t | Is<t)

And under standard probabilistic tracking hypotheses, we finally obtain:

P (Γt = γt | Is≤t) ∝
P (It | Pt = γt, R = r∗t−1)P (Γt = γt | Γt−1 = γt)P (Γt−1 = γt−1 | Is<t)

which is the same expression as Eq. 5 used for tracking, except that the classifier
r∗t−1 appears in the observation model. That means that the same method as in
Section 4.2 can be used to estimate γ̂t. Once this pose is found, r∗t−1 is updated
using correspondences between object features and image features to give r∗t as
explained in Section 3.2.

To validate this training procedure, we performed the experiment depicted by
Fig. 4, which clearly shows that the recovered camera trajectory does not drift.

(a) (b)

after bundle−adjustment
Car object features

(c)

Fig. 4. (a) Sample frames from a training sequence where the toy car is fixed to a
tripod and rotated four times. The frames marked with a star show the reference
position which is reached in all four loops. (b) Recovered relative camera motion with
respect to the toy car after the first loop. The trajectory is shown in the referential
of the ellipsoid. The dots represent the trajectory before bundle-adjustment, the plain
curve after. (c) Camera motion for all four loops. As can be seen, there is no drift.
Note that all four loops go through the star.

602 M. Özuysal et al.

5 Results

In this section we demonstrate the effectiveness and generality of our approach
using three very different objects, a toy car, a face, and a partially-textured
transparent glass. In all three cases, we follow the same procedure: We show the
system the training sequence depicted by the top rows of Fig. 1, which is used to
harvest features as discussed in Section 4.3. When all the training frames have
been processed, we freeze the set of RTs we have built and proceed with the
tracking-by-detection approach of Section 4.2. Our non-optimized implementa-
tion runs at 5Hz during tracking, and 1Hz during training. About 20% of the
time is devoted to extracting and recognizing the features, and the remaining
80% by the pose estimation procedure. This could be considerably sped-up by
using more efficient strategies [15].

Fig. 5. Detecting the car in a sequence that involves abrupt motions, large scale and
lighting changes, and very substantial occlusions. To visualize the results, we attach a
3–D referential to the center of gravity of the initial ellipsoid and use the estimated
3–D pose to project it into the images. We also overlay the projections of the harvested
object feature points. The toy car is successfully detected in all frames except those
where it is almost entirely occluded. And, because the object is re-detected in every
frame, the system easily recovers after such a failure.

Feature Harvesting for Tracking-by-Detection 603

(a)

(b)

(c)

(d)

Fig. 6. Face results. Note that by contrast with previous face detection approaches,
the face pose can be retrieved under (a) large rotations, (b) scale and lighting changes,
and (c) different facial expressions. (d) After the occlusion by the book, the algorithm
automatically recovers.

Fig. 7. Detecting a transparent object with partial texture. The squares in the first
three images outline the patches around the features detected at three different scales
in a test frame. The straight line segments connect the feature with the corresponding
one in a frame of the training sequence. Since during training the system learned
which parts of the patches are meaningful as shown in Fig. 3, the image features can
be recognized even if the patch overlaps the background or the transparent parts. As
shown in the fourth frame, the glass is successfully detected.

Figs 5, 6, and 7 show a number of frames extracted from test sequences of
several hundreds frames—the toy sequence is made of about 1500 frames—in
which our target objects translate and rotate. Because the object is re-detected
in every frame, the algorithm is robust to abrupt motion and complete occlusion.

604 M. Özuysal et al.

For example, after the third frame of Fig. 5, the car falls on the ground and has
to be picked up. As soon as it becomes visible again, the system reacquires it.
The same happens in the example of Fig. 6 after the subject hides his face behind
the book. These examples highlight some of the strengths of our algorithm:

– Robustness to cluttered background. Once trained, the classifier is
feature-specific enough so that it does not get confused by cluttered back-
ground as shown in Fig. 5.

– Insensitivity to scale changes. Thanks to the multi-scale approach to
feature detection described at the beginning of Section 3, the algorithm can
handle a very broad range of scales, including scales that were not part of
the training sequence. As shown in several of the examples of Figs 5 and
6, the system keeps on successfully detecting even though the target object
moves both much closer and much further.

– Robustness to complex illumination effects. In the case of the face,
we deliberately changed the lighting when acquiring the training sequence
of Fig. 1 to build lighting invariance into the classifier. As can be seen in the
bottom rows of Fig. 6, this was successful and gives the system robustness
to very marked lighting changes. While it was not necessary for the toy car
because it has a simple shape, it experimentally appeared that a training
sequence with such variations greatly improve the results.

– Handling transparencies. Finally, we can also handle the partially-
textured transparent glass of Fig. 6 by using a suitable training sequence
with a complex background. It lets the classifier learn that the parts of the
patches surrounding feature points that overlap the transparent parts or the
background are not relevant for classification purposes. Our algorithm can
automatically reject feature points on transparent parts. At run-time fea-
tures can thus be successfully recognized even if the background has changed.

6 Conclusion

Feature-based approaches to 3–D object detection that take advantage of a priori
knowledge of the object’s shape have consistently shown to be among the most
effective. Their drawback is that building an accurate model that includes both
3–D and texture information, while usually possible, tends to be cumbersome.
The approach proposed here exhibits the same reliability but completely does
away with a priori 3–D model building. Instead, during an automated training
phase, the system learns both geometry and appearance of object feature points
that have been harvested because they can be reliably recognized.

In a more global context, learning based on the consistency between two un-
known stochastic variables, in our case between the appearance and the pose and
between two poses close in time, is known to tremendously reduce the required
amount of expert knowledge. This paradigm has proved its power in speech
processing with the Baum-Welch algorithm [16], and as our results demonstrate,
is also suitable for object recognition and tracking.

Feature Harvesting for Tracking-by-Detection 605

We believe this to be an important step towards developing applications that
can handle a hundreds or thousands of objects. Indeed, this will only be possible
if only minimal amounts of manual intervention are required, which may preclude
the building of 3–D models for all target objects.

References

1. Lepetit, V., Lagger, P., Fua, P.: Randomized Trees for Real-Time Keypoint Recog-
nition. In: Conference on Computer Vision and Pattern Recognition, San Diego,
CA (2005)

2. Amit, Y., Geman, D.: Shape Quantization and Recognition with Randomized
Trees. Neural Computation 9 (1997) 1545–1588

3. Davison, A.: Real-Time Simultaneous Localisation and Mapping with a Single
Camera. In: International Conference on Computer Vision. (2003) 1403–1410

4. S. Se and D. G. Lowe and J. Little: Mobile robot localization and mapping with un-
certainty using scale-invariant visual landmarks. International Journal of Robotics
Research 22 (2002) 735–758

5. Meltzer, J., Yang, M.H., Gupta, R., Soatto, S.: Multiple View Feature Descriptors
from Image Sequences via Kernel Principal Component Analysis. In: European
Conference on Computer Vision. (2004) 215–227

6. Skrypnyk, I., Lowe, D.G.: Scene modelling, recognition and tracking with invariant
image features. In: International Symposium on Mixed and Augmented Reality,
Arlington, VA (2004) 110–119

7. Lepetit, V., Fua, P.: Monocular model-based 3d tracking of rigid objects: A survey.
Foundations and Trends in Computer Graphics and Vision 1 (2005) 1–89

8. Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J., Schaffal-
itzky, F., Kadir, T., Gool, L.V.: A comparison of affine region detectors. Accepted
to International Journal of Computer Vision (2005)

9. Lowe, D.: Distinctive Image Features from Scale-Invariant Keypoints. International
Journal of Computer Vision 20 (2004) 91–110

10. Mikolajczyk, K., Schmid, C.: A Performance Evaluation of Local Descriptors. In:
Conference on Computer Vision and Pattern Recognition. (2003) 257–263

11. Pritchard, D., Heidrich, W.: Cloth motion capture. In: Eurographics. Volume 22.
(2003) 263–271

12. Beis, J., Lowe, D.: Shape Indexing using Approximate Nearest-Neighbour Search
in High-Dimensional Spaces. In: Conference on Computer Vision and Pattern
Recognition, Puerto Rico (1997) 1000–1006

13. Lepetit, V., Fua, P.: Keypoint recognition using randomized trees. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence (2006) Accepted for publica-
tion.

14. Marée, R., Geurts, P., Piater, J., Wehenkel, L.: Random subwindows for robust
image classification. In: Conference on Computer Vision and Pattern Recognition.
(2005)

15. Chum, O., Matas, J.: Matching with PROSAC - Progressive Sample Consensus. In:
Conference on Computer Vision and Pattern Recognition, San Diego, CA (2005)
220–226

16. Rabiner, L., Juang, B.H.: Fundamentals of Speech Recognition. Prentice Hall,
Englewood Cliffs, NJ, USA (1993)

	Introduction
	Related Work
	Randomized Trees for Feature Recognition
	Wide Baseline Matching Using Randomized Trees
	Randomized Trees and On-Line Training

	From Harvesting to Detection
	Overview
	3–D Tracking by Detection
	Feature Harvesting

	Results
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

