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Abstract. Estimating a meaningful average or mean shape from a set of
shapes represented by unlabeled point-sets is a challenging problem since,
usually this involves solving for point correspondence under a non-rigid
motion setting. In this paper, we propose a novel and robust algorithm
that is capable of simultaneously computing the mean shape from multi-
ple unlabeled point-sets (represented by finite mixtures) and registering
them nonrigidly to this emerging mean shape. This algorithm avoids the
correspondence problem by minimizing the Jensen-Shannon (JS) diver-
gence between the point sets represented as finite mixtures. We derive the
analytic gradient of the cost function namely, the JS-divergence, in order
to efficiently achieve the optimal solution. The cost function is fully sym-
metric with no bias toward any of the given shapes to be registered and
whose mean is being sought. Our algorithm can be especially useful for
creating atlases of various shapes present in images as well as for simul-
taneously (rigidly or non-rigidly) registering 3D range data sets without
having to establish any correspondence. We present experimental results
on non-rigidly registering 2D as well as 3D real data (point sets).

1 Introduction

In recent years, there has been considerable interest in the application of statis-
tical shape analysis to problems in medical image analysis, computer graphics
and computer vision. Regardless of whether shapes are parameterized by points,
lines, curves etc., the fundamental problem of estimating mean and covariance
of shapes remains. We are particularly interested in the unlabeled point-set pa-
rameterization since statistical shape analysis of point-sets is very mature [IJ.
Means, covariances and probability distributions on shape manifolds can now be
defined and estimated.

The primary technical challenge in using point-set representations of shapes is
the correspondence problem. Typically correspondences can be estimated once
the point-sets are properly aligned with appropriate spatial transformations. If
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the objects at hand are deformable, the adequate transformation would obvi-
ously be a non-rigid spatial mapping. Solving for nonrigid deformations between
point-sets with unknown correspondence is a hard problem. In fact, many cur-
rent methods only attempt to solve for affine transformation for the alignment.
Furthermore, we also encounter the issue of the bias problem in atlas creation.
Since we have more than two sample point-sets to be aligned for creating an
atlas, a question that arises is: How do we align all the point-sets in a symmetric
manner so that there is no bias toward any particular point-set?

To overcome these aforementioned problems, we present a novel approach to
simultaneously register multiple point-sets and construct the atlas. The idea is
to model each point set by a kernel probability distribution, then quantify the
distance between these probability distributions using an information-theoretic
measure. The distance is optimized over a space of coordinate transformations
yielding the desired registrations. It is obvious that once all the point sets are
deformed into the same shape, the distance measure between these distributions
should be minimized since all the distribution are identical to each other. We
impose regularization on each deformation field to prevent over-deforming of each
point-sets (e.g. all the point-sets may deform into a single data point). Jensen-
Shannon divergence, first introduced in [2], serves as a model divergence measure
between multiple probability distributions. It has some very desirable properties,
researchers have used it as a dissimilarity measure for image registration and
retrieval applications [3,4].

The rest of this paper is organized as follows. The remainder of section 1 gives
a brief review of the literature, focusing on difference between these methods and
ours. Section 2 contains a description of our formulation using JS-divergence for
our simultaneous nonrigid registration and atlas construction model. Experi-
mental results on 2D as well as 3D point-sets are presented in Section Bl

1.1 Previous Work

Extensive studies on the atlas construction for deformable shapes can be found
in literature covering both theoretical and practical issues relating to computer
vision and pattern recognition. According to the shape representation, they can
be classified into two distinct categories. One is the methods dealing with shapes
represented by feature point-sets, and everything else is in the other category
including those shapes represented as curves and surfaces of the shape boundary,
and these curves and surfaces may be either intrinsicly or extrinsicly parameter-
ized (e.g. using point locations and spline coefficients).

The work presented in [5] is a representative method using an intrinsic curve
parameterization to analyze deformable shapes. Shapes are represented as ele-
ments of infinite-dimensional spaces and their pairwise difference are quantified
using the lengths of geodesics connecting them on these spaces, the intrinsic
mean (Karcher mean) can be computed as a point on the manifold (of shapes)
which minimize the sum of square geodesic distance between this unknown point
to each individual shape, which lies on the manifold. However the curves are lim-
ited by closed curves, and it has not been extended to the 3D surface shapes.
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For methods using intrinsic curve or surface representations [5L[0], further sta-
tistical analysis on these representations is much more difficult than analysis on
the point representation, but the reward maybe higher due to the use of intrinsic
higher order representation.

Among these methods using point-sets parameterization, the idea of using
nonrigid spatial mapping functions, specifically thin-plate splines [7,[8,0], to an-
alyze deformable shape has been widely adopted. Bookstein’s work in [7], suc-
cessfully initiated the research efforts on the usage of thin-plate splines to model
the deformation of shapes. This method is landmark-based, it avoids the cor-
respondence problem since the placement of corresponding points is driven by
the visual perception of experts, however it suffers from the the typical problem
besetting landmark methods, e.g. inconsistency. Several significant articles on
robust and non-rigid point set matching have been published by Rangaranjan
and collaborators [§] using thin-plate splines. The main strength of their work
is the ability to jointly determine the correspondences and non-rigid transfor-
mation between each point sets to the emerging mean shape using deterministic
annealing and soft-assign. However, in their work, the stability of the registra-
tion result is not guaranteed in the case of data with outliers, and hence a good
stopping criterion is required. Unlike their approach, we do not need to first solve
a correspondence problem in order to subsequently solve a non-rigid registration
problem.

The active shape model proposed in [10] utilized points to represent de-
formable shapes. Their work pioneered the efforts in building point distribu-
tion models to understand deformable shapes [10]. Objects are represented as
carefully-defined landmark points and variation of shapes are modeled using a
principal component analysis. These landmark points are acquired through a
more or less manual landmarking process where an expert goes through all the
samples to mark corresponding points on each sample. It is a rather tedious
process and accuracy is limited. In recent work [II], the authors attempt to
overcome this limitation by attempting to automatically solve for the correspon-
dences in a nonrigid setting. The resulting algorithm is very similar to the earlier
work in [6] and is restricted to curves.

There are several papers in the point-sets alignment literature which bear
close relation to our research reported here. For instance, Tsin and Kanade [12]
proposed a kernel correlation based point set registration approach where the
cost function is proportional to the correlation of two kernel density estimates.
It is similar to our work since we too model each of the point sets by a kernel
density function and then quantify the (dis)similarity between them using an
information-theoretic measure, followed by an optimization of a (dis)similarity
function over a space of coordinate transformations yielding the desired trans-
formation. The difference lies in the fact that JS-divergence used in our work
is a lot more general than the information-theoretic measure used in [12], and
can be easily extended to multiple point-sets. More recently, in [13], Glaunes
et al. convert the point matching problem into an image matching problem by
treating points as delta functions. Then they ”lift” these delta functions and
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diffeomorphically match them. The main problem for this technique is that they
need a 3D spatial integral which must be numerically computed, while we do
not need this due to the empirical computation of the JS-divergence. We will
show it in the experimental results that our method, when applied to match
point-sets, achieves very good performance in terms of both robustness and
accuracy.

2 Methodology

In this section, we present the details of the proposed simultaneous atlas con-
struction and non-rigid registration method. The basic idea is to model each
point set by a probability distribution, then quantify the distance between these
probability distributions using an information-theoretic measure. The distance
measure is optimized over a space of coordinate transformations yielding the
desired transformations. We will begin by presenting the finite mixtures used to
model the probability distributions of the given point-sets.

2.1 Finite Mixture Models

Considering the point set as a collection of Dirac Delta functions, it is natural
to think of a finite mixture model as representation of a point set. As the most
frequently used mixture model, a Gaussian mixture [I4] is defined as a convex
combination of Gaussian component densities.

We use the following notation: The data point-sets are denoted by {X?,p €
{1,...,N}}. Each point-set X? consists of points {z! € Rp,i € {1,...,n,} }.
To model each point-set as a Gaussian mixture, we define a set of cluster cen-
ters, one for each point-set, to serve as the Gaussian mixture centers. Since the
feature point-sets are usually highly structured, we can expect them to clus-
ter well. Furthermore we can greatly improve the algorithm efficiency by using
limited number of clusters. Note that we can choose the cluster centers to be
the point-set itself if the size of point-sets are quite small. The cluster center
point-sets are denoted by {V?,p € {1,...,N}}. Each point-set V? consists of
points {v? € Rp,i € {1,..., KP} }. Note that there are K? points in each V?,
and the number of clusters for each point-set may be different (in our imple-
mentation, the number of clusters were usually chosen to be proportional to the
size of the point-sets). The cluster centers are estimated by using a clustering
process over the original sample points 2%, and we only need to do this once
before the process of joint atlas estimation and point-sets registration. The atlas
points-set is denoted by Z. We begin by specifying the density function of each
point set.

np KP
p(XP|VP, o) = ] D abp(al|vh) (1
i1=1la=1
In Equation (), the occupancy probability which is different for each data point-
set is denoted by aP. p(XP|VP, aP) is a mixture model containing the component
densities p(a? o), where



Simultaneous Nonrigid Registration of Multiple Point Sets 555

1 1 T 1
) |vlh) = cexp( — (2 —oh)” X (2 —of 2
p(a?) o) (%)gzgep( o (@? =) 5 (2 —ot)) (2)

Later, we set the occupancy probability to be uniform and make the covariance
matrices X, to be proportional to the identity matrix in order to simplify atlas
estimation procedure.

Having specified the Gaussian mixtures of each point-set, we would like to
compute a meaningful average/mean (shape) point-set Z, given all the sample
sets and their associated distributions. Intuitively, if these point-sets are aligned
correctly under appropriate nonrigid deformations, the resulting mixtures should
be statistically similar to each other. Consequently, this raises the key question:
how to measure the similarity/closeness between these distributions represented
by Gaussian mixtures? We will answer this in the following paragraphs.

2.2 Jensen-Shannon Divergence for Learning the Atlas

Jensen-Shannon (JS) divergence, first introduced in [2], serves as a measure of
cohesion between multiple probability distributions. It has been used by some
researchers as a dissimilarity measure for image registration and retrieval appli-
cations [3/4] with very good results. It has some very desirable properties, to
name a few, 1) The square root of JS-divergence (in the case when its parameter
is fixed to }) is a metric [I5]; 2) JS-divergence relates to other information-
theoretic functionals, such as the relative entropy or the Kullback divergence,
and hence it shares their mathematical properties as well as their intuitive ap-
peal; 3) The compared distributions using the JS-divergence can be weighted,
which allows one to take into account the different sizes of the point set sam-
ples from which the probability distributions are computed; 4) The JS-divergence
measure also allows us to have different numbers of cluster centers in each point-
set. There is NO requirement that the cluster centers be in correspondence as is
required by Chui et al [16]. Given n probability distributions Pj, i € {1,...,n},
the JS-divergence of Pj is defined by

JSx(P1,P3, ... Pn) = HO) mPi) = Y mH(P;) (3)

where m = {m, 2, ..., m|m > 0,> . m = 1} are the weights of the probabil-
ity distributions P; and H(F;) is the Shannon entropy. The two terms on the
right hand side of Equation (@) are the entropy of P := Y m;P; (the 7 convex
combination of the P;s ) and the same convex combination of the respective
entropies.

Assume that each point set XP is related to Z via a function fP, uP is the set
of the transformation parameters associated with each function fP. To compute
the mean shape from these point-sets and register them to the emerging mean
shape, we need to recover these transformation parameters to construct the mean
shape. This problem can modeled as an optimization problem with the objec-
tive function being the JS-divergence between the distributions of the deformed
point-sets, represented as P; = p(fi(X?)), the atlas construction problem can
now be formulated as,
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N
min JS5(P1,Pa, .., Py) + A ||Lf|?
pt i—
= (4)
=min H(Y GiP) =3 AHP)+AY LS
=1

In (@), the weight parameter X is a positive constant the operator L determines
the kind of regularization imposed. For example, L could correspond to a thin-
plate spline, a Gaussian radial basis function, etc. Each choice of L is in turn
related to a kernel and a metric of the deformation from and to Z.

Following the approach in [8], we choose the thin-plate spline (TPS) to repre-
sent the non-rigid deformation. Given n control points X1, . . ., X, in R?, a general
nonrigid mapping f : R? — R? represented by thin-plate spline can be written
analytically as: f(x) = WU(x) + Ax + t Here Ax + t is the linear part of f.
The nonlinear part is determined by a d X n matrix, W. And U(x) is an n x 1
vector consisting of n basis functions U;(x) = U(x,x;) = U(||x — x;||) where
U(r) is the kernel function of thin-plate spline. For example, if the dimension is
2 (d = 2) and the regularization functional is defined on the second derivatives
of f, we have U(r) = 1/(87)r%In(r).

Therefore, the cost function for non-rigid registration can be formulated as an
energy functional in a regularization framework, where the regularization term
in equation [l is governed by the bending energy of the thin-plate spline warping
and can be explicitly given by trace(WKW?) where K = (K;;), K;; = U(pi, p;)
describes the internal structure of the control point sets. In our experiments, the
clusters is used as control points. Other schemes to choose control points may
also be considered. Note the linear part can be obtained by an initial affine
registration, then an optimization can be performed to find the parameter W.

Having introduced the cost function and the transformation model, now the
task is to design an efficient way to estimate empirical JS-divergence from the
Gaussian mixtures and derive the analytic gradient of the estimated divergence
in order to achieve the optimal solution efficiently.

2.3 Estimating the Empirical JS

For simplicity, we choose 3; = \,Vi = {1,2,..., N}. Let Qﬁ = Zle aﬁp(fj(mf)
|/2(v7)) be a mixture model containing component densities p(f7(z?)|f?(v?)),
PPN = e (= (P D) E0 (P ) - 0D)) )
(2m) 2 X§
Where {¥,,a € {1,...,K}} is the set of cluster covariance matrices. For the
sake of simplicity and ease of implementation, we assume that the occupancy
probabilities are uniform (of = ]1() and the covariance matrices X, are isotropic,
diagonal, and identical [(¥, = 02Ip)]. Having specified the density function of
the data, we can then rewrite Equation () as follows,

JS[}(Pl,PQ, ...,PN) = ;{[H(Z ]]\-]Pz) - ZH(Pl)]

(6)
+HO }VPi) —> H®P) 4+ [HO ;Pi) - ZH(PN)]}
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For each term in the equation, we can estimate the entropy using the weak law
of large numbers, which is given by,

HS Lpo - He) =t 3o & ol N+ oy, Zlog@ :

bi=1
o (7)
NQ.*

Zlog o .] o

Tt +Q2 + ..+ QY

Combining these terms we have,

o1
1 NQ”
']S(PI)P2)"'7PN):{ Zlog !

ny ° 1
SN Qi QY ®
2 N
NQ5 1 X NQW
Zlog 22 szz 22 Tty D log =N TNQN =N }
=1 QU +Qy ...+ QY Mi=1i Qp' 4@yt 4.+ QY

2.4 Optimizing the Cost Function

Computation of the gradient of the energy function is necessary in the mini-
mization process when employing a gradient-based scheme. If this can be done
in analytical form, it leads to an efficient optimization method. We now present
the analytic form of the gradient of the JS-divergence (our cost function):

a0JS 90JS 0JS

VJS = , 9
[8”1 o auN] (9)

Each component of the gradient maybe found by differentiating Eqn (§]) with
respect to the transformation parameters. In order to compute this gradient,

J
let’s first calculate the derivative of Q;i with respect to p!,

fJ(T’)

b X —exp (= b Fil?) Fyp - ) itl=j#p
90 (27) 2 03K )
pz _ 1 ZK_ exp ( — 1 |F |2 (F L of (1)a)) fl=p#j 10
ol (2m) 3 oz 0! ( 2oz ) e out o (10)
1 K 1 2 CpofPEy _ofi@)D,
(2W)€03K Zn,:l €xXp ( 202|F1p| )(FJP [ 8”za a}LLL ] ifl=p=3

where Fj, := f7 (z7) — fP(v?). Based on this, it is straight forward to derive the
gradient of the JS-divergence with respect to the transformation parameters p!,
which is given by

aJS QY CEQU 4. QY 0QT
_{nlNZ(log zN N) a;i (11)

2
R CrQf 4+ qi\ oqp
+ nzNg(log 2N N) 8”1'[
l l l A 1 l
1 QY + Q5 + .+ QY 10Q) o 1N 2Q;"
;(log 1 o N)[a”ll Tt 85]—7”;(1%@)8;[
N N N N
1 Q7Y + Q3 4.+ QY \0Q"
Z(log 1 2 N N ) a;l }
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Since the analytic gradients with respect to these transformation parameters has
be explicitly derived in equation (I2)), we can use them in gradient-based numer-
ical optimization techniques like the Quasi-Newton method and the nonlinear
Conjugate-Gradient method to yield a fast solution.

Note that our algorithm can be applied to registration problems other than
the atlas construction, e.g. we can apply it to align any two point-sets in 2D or
3D, in this case, there is a model point-set and a scene point-set (N=2). The only
modification to the above procedure is to keep the scene point-set fixed and we
try to recover the motion from the model point-set to the scene point-set such
that the JS-divergence between these two distributions is minimized. We will
present experimental results on point-set alignment between two given point-
sets as well as atlas construction from multiple point-sets in the next section.

3 Experiment Results

We now present experimental results on the application of our algorithm to both
synthetic and real data sets. First, to demonstrate the robustness and accuracy
of our algorithm, we show the alignment results by applying the JS-divergence
to the point-set matching problem. Then, we will present the atlas construction
results in the second part of this section.

3.1 Alignment Results

First, to test the validity of our approach, we perform a set of exact rigid reg-
istration experiments on both synthetic and real data sets without noise and
outliers. Some examples are shown in Figure [l The top row shows the regis-
tration result for a 2D real range data set of a road (which was also used in
Tsin and Kanade’s experiments [I2]). The figure depicts the real data and the
registered (using rigid motion). Top left frame contains two unregistered point
sets superposed on each other. Top right frame contains the same point sets after
registration using our algorithm. A 3D helix example is presented in the second
row (with the same arrangement as the top row). We also tested our method
against the KC method [12] and the ICP methods, as expected, our method and

Triifiza) s bug After registration Inifial setup Attor registration

. St e
30- "o =
N i
" )
A ” o P o
20 ot 20 »

Fig. 1. Results of rigid registration in noiseless case. ’o’ and '+’ indicate the model
and scene points respectively.
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KC method exhibit a much wider convergence basin/range than the ICP and
both achieve very high accuracy in the noiseless case.

Next, to see how our method behaves in the presence of noise and outliers, we
designed the following procedure to generate a corrupted template point set from
a model set. For a model set with n points, we control the degree of corruption
by (1) discarding a subset of size (1 — p)n from the model point set, (2) applying
a rigid transformation (R,t) to the template, (3) perturbing the points of the
template with noise (of strength €), and (4) adding (7 — p)n spurious, uniformly
distributed points to the template. Thus, after corruption, a template point set
will have a total of Tn points, of which only pn correspond to points in the model
set. Since ICP is known to be prone to outliers, we only compare our method with
the more robust KC method in terms of the sensitivity of noise and outliers. The
comparison is done via a set of 2D experiments. At each of several noise levels
and outlier strengths, we generate five models and six corrupted templates from
each model for a total of 30 pairs at each noise and outlier strength setting. For
each pair, we use our algorithm and the KC method to estimate the known rigid

FMS errors in translation AMS errors in ratatian
—+ U5 divergence |°‘-"2 ——J5 divergence | !

B o K methed o K method i

5 FA .08 i

006

0.04

4 v T

g 0.4 0.6 0.8 1 o 0.2 0.4 0e 0.g 1
Strength of outlier Strength of cutlier

Fig. 2. Robustness to outliers in the presence of large noise. Errors in estimated rigid
transform vs. proportion of outliers ((7— p)/(p)) for both our method and KC method.

Initial Setup Original point set Initial Setup
0.2 0.2 0.2
0.1 0.1 0.1
0 0 0
04 0.6 0.8 1 04 06 08 1
After registration Deformed peint set
0.2 0.2 0.2
0.1 0.1 0.1
0 0 0
-0.1
04 06 08 1 0.2 0.4 06 0.8 1 04 06 08 1

Fig. 3. Nonrigid registration of the corpus callosum data. Left column: two manually
segmented corpus callosum slices before and after registration; Middle column: warping
of the 2D grid using the recovered motion; Top right: same slices with one corrupted
by noise and outliers, before and after registration.
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transformation which was partially responsible for the corruption. Results show
when the noise level is low, both KC and the presented method have strong
resistance to outliers. However, we observe that when the noise level is high, our
method exhibits stronger resistance to outliers than the KC method, as shown in
Figure 2l We also applied our algorithm to nonrigidly register medical datasets
(2D point-sets). Figure[3 depicts some results of our registration method applied
to a set of 2D corpus callosum slices with feature points manually extracted by
human experts. Registration result is shown in the left column with the warping
of 2D grid under the recovered motion which is shown in the middle column.
Our non-rigid alignment performs well in the presence of noise and outliers
(Figure B right column). For the purpose of comparison, we also tested the TPS-
RPM program provided in [§] on this data set, and found that TPS-RPM can
correctly register the pair without outliers (Figure Bltop left) but failed to match
the corrupted pair (Figure [3 top right).

3.2 Atlas Construction Results

In this section, we begin with a simple but demonstrative example of our al-
gorithm for 2D atlas estimation. After this example, we describe a 3D imple-
mentations on real hippocampal data sets. The structure we are interested in
this experiment is the corpus callosum as it appears in MR brain images. Con-
structing an atlas for the corpus callosum and subsequently analyzing the indi-
vidual shape variation from ”"normal” anatomy has been regarded as potentially

Point Setl Point Setz2 Point Set3
]
0.2 0.2 g, | o 0.2
w‘! St hr:g_@a‘ | P Jﬁeew\?,g%‘ﬁq
0.1 0.1 iav"’“ = '?A' i o1 e
0 ] e 1 ]
1
0.1 0.1 " 0.1
04 06 0.8 1 1.2 04 06 0.8 1 1.2 04 06 08 1 1.2
Point Set4 Point Sets Point Seté
0.2 3 O 0.2 1 0.2
-‘,":v*~<;a> i _.;thgaq- - ﬁg’;‘ 2| WQ??&T‘“’*?
0.1 ) 5"‘* Q; 0.1 e 2 1 0.1 rgé‘ﬁ\ k
N et =R o I P e
of s %o o L g 1 oF HaE
ety
-0.1 -0.1 g -0.1
04 06 08 1 1.2 04 06 08 1 1.2 04 06 08 1 1.2
Mean Shape Point-Set
P Mean Shape
0.2 ot e y . ;
Lanas L
Sama ey
0.1 P é‘?ﬁk i 0-; (? ~) 1
i N ; ; 2 :
o B 04 06 08 1

0.4 0.6 0.8 1

Fig. 4. Experiment results on 6 2D corpus collasum point sets. The first two rows
shows the deformation of each point-set to the atlas, superimposed with initial point
set (show in ’0’) and deformed point-set (shown in ’+’). Left image in the third row:
The estimated atlas is shown superimposed over all the point-sets. Right: An atlas
contour is traced and shown superimposed over all the original contours.



Simultaneous Nonrigid Registration of Multiple Point Sets 561

Point-Set 1 Point-Set 2 Point-Set 3

240220 200180160140

Fig. 5. Atlas construction from three 3D hipcampal point sets. The first row shows the
deformation of each point-set to the atlas (represented as cluster centers), superimposed
with initial point set (show in ’0’) and deformed point-set (shown in '+’). Left image
in the second row: Scatter plot of the original three hippocampal point-sets. Right:
Scatter plot of all the warped point-sets.

valuable for the study of brain diseases such as agenesis of the corpus callo-
sum(ACC), and fetal alcohol syndrome(FAS).

We manually extracted points on the outer contour of the corpus callosum
from six normal subjects, (as shown Figure d, indicated by ”0”). The recovered
deformation between each point-set and the mean shape are superimposed on the
first two rows in Figuredl The resulting atlas (mean point-set) is shown in third
row of Figure [ and is superimposed over all the point-sets. As we described
earlier, all these results are computed simultaneously and automatically. This
example clearly demonstrate that our joint matching and atlas construction
algorithm can simultaneously align multiple shapes (modeled by sample point-
sets) and compute a meaningful atlas/mean shape.

Next, we present results on 3D hippocampal point-sets. Three 3D point-sets
were extracted from epilepsy patients with left anterior temporal lobe foci iden-
tified with EEG. An interactive segmentation tool was used to segment the
hippocampus in the 3D anatomical brain MRI of the 3 subjects. The point-sets
differ in shape, with the number of points 450,421, 376 in each point-set respec-
tively. In the first row of Figure B the recovered nonrigid deformation between
each hippocampal point-set to the atlas is shown along with a superimposition
on all of the original data sets. In second row of the Figure[Bl we also show the
scatter plot of original point-sets along with all the point-sets after the non-rigid
warping. An examination of the two scatter plots clearly shows the efficacy of
our recovered non-rigid warping. Note that validation of what an atlas shape
ought to be in the real data case is not feasible.
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4 Conclusions

In this paper, we presented a novel and robust algorithm that utilize an in-
formation theoretic measure, namely Jensen-Shannon divergence, to simultane-
ously compute the mean shape from multiple unlabeled point-sets (represented
by finite mixtures) and register them nonrigidly to this emerging mean shape.
Atlas construction normally requires the task of non-rigid registration prior to
forming the atlas. However, the unique feature of our work is that the atlas
emerges as a byproduct of the non-rigid registration. Other advantages of using
the JS-divergence over existing methods in literature for atlas construction and
non-rigid registration is that, the JS-divergence is symmetric, is a metric and
allows for use of unequal cardinality of the given point sets to be registered. The
cost function optimization is achieved very efficiently by computing analytic gra-
dients of the same and utilizing them in a quasi-Newton scheme. We compared
our algorithm performance with competing methods on real and synthetic data
sets and showed significantly improved performance in the context of robustness
to noise and outliers in the data. Experiments were depicted with both 2D and
3D point sets from medical and non-medical domains. Our future work will focus
on generalizing the non-rigid deformations to diffeomorphic mappings.
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