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Abstract. A new information measure for probability distributions is
presented; based on it, a similarity measure between images is derived,
which is used for constructing a robust image registration algorithm
based on random sampling, similar to classical approaches like mutual
information. It is shown that the registration method obtained with the
new similarity measure shows a significantly better performance for small
sampling sets; this makes it specially suited for the estimation of non-
parametric deformation fields, where the estimation of the local trans-
formation is done on small windows. This is confirmed by extensive com-
parisons using synthetic deformations of real images.

1 Introduction

Image registration is a fundamental task in many fields like medical image
processing, analysis of satellital images, and robot vision, among others (see
[M2][3] and references contained there in). Moreover, the methods used to reg-
ister images, can be adapted to solve other important problems like motion
segmentation, stereoscopic registration and the tracking of objects in motion.
When registering two images, I; and I , one tries to find the transformation
T that applied to I; aligns it spatially to I». Many registration methods suppose
that the intensity of every point is conserved between frames, that is, the equality
L[T(z)] = Iz(z) is assumed for all the points x; this is known as the Optical
Flow Constraint, and there is a huge number of registration methods based
on this assumption, [4][5][6][7]. However, situations are found very easily where
this constraint is violated, for example when the illumination sources change
between frames, when the surfaces of the illuminated objects are not lambertian
or when registering medical images acquired by different modalities. In these
cases, image registration by the maximization of Mutual Information (M1I) has
been widely used because it does not assume a functional relationship between
the intensities of the images; instead, it is based on the fact that if aligned, the
maximal dependency (information) between the images intensities is found.
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Given two images, I; and I3, their mutual information is defined as:
MI(I,I,) = H(I1)+ H(I2) — H(I1, L) (1)

where H(-) is the entropy function defined over the probabilities of the images
intensities. For a discrete random variable, the entropy function is written as:

N
H(I):—Zpilogpi (2)
i=1

with p; = p(I = b;), where b; is the i-th valid intensity value, and for continuous
random variables the entropy is written as:

o0
B =~ [ o) nlp)as
— 00

The first applications of M to the image registration problem, were pub-
lished simultaneously by Viola et al. [8] and Collignon et al. [9], both in the
middle of the last decade. Since then, a great number of publications have ap-
peared extending the initial work to problems like nonparametric multimodal
image registration [I0][T1], registration of stereoscopic pairs [I2][13] or feature
tracking in images [14].

In general, methods based on the maximization of M I, start with an initial
transformation T°, leading to a M1 value MI, and using a proper optimiza-
tion method, a sequence of transformations is generated in such a way that the
associated M1 is increased until convergence. During the optimization process,
the increment in M1 can be calculated with the expression:

A(MI) = AH[L(T)] + AH(I) — AH[1(T), I] .

If the discrete version of the entropy is considered, this is a function of the
entries of the probability vector; using a Taylor series expansion, a linear ap-
proximation for the increment in entropy is given by:

N
A(H) = = [1 + logp;] Ap;

i=1

and because the coefficient [1 4 log p;] is big for small probability values, this
increment is highly determined by small features in the images to be registered
(which are generally associated with small probability values). This can trap the
registration algorithm in local optima, generated when aligning small features,
particularly if the small probabilities are not accurately computed. This makes
it difficult to apply M T in cases where only a limited sampling is available, for
example when measuring entropy at a local level in images, which is important in
interesting problems like nonparametric image registration, and in the segmen-
tation of motion between frames, where local measures must be done in order
to learn the local motion models and to have enough spatial definition at the
motion interfaces.
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Another problem related to the application of MI, occurs when working
with images with a large background compared to the region of interest, as
frequently happens in medical image problems. Under this circumstance the
sum of the marginal entropies can become larger than the joint entropy, leading
to an increase of M, instead of decreasing it in misregistration. Studholme
et al. [I5] proposed the use of a normalized version of the MI to overcome
this disadvantage. This measure is known as Normalized Mutual Information
(NMI):

H(L)+ H(Iy) 3)

H(I,I)

In this work, we propose the use of a new information measure for probability
distributions, which we call Kernel-Predictability (K P). KP, evaluated in the
marginal and joint distributions of two images, is integrated in a similarity mea-
sure between images, normalized as (3]), and applied to the registration problem.
Unlike entropy, the increment of this measure when updated by an optimization
method, is mostly determined by the larger entries of the probability vector,
which is reflected in a higher robustness in problems where only limited sam-
pling is available. Our proposal is discussed in the next section and in section
its performance in image registration problems is compared to that obtained
under maximization of M I and NMI. The experimental results show that an
important reduction in registration errors is obtained by the use of our method
compared to M I and NM1.

NMI(I;, I,) =

2 Kernel-Predictability

In order to introduce our information measure for a given distribution F', consider
the following guessing game: someone generates a value x1 from F' and we guess
x1 by generating (independently) a value x2 from F. We denote by K(z1,z2)
the obtained reward. More generally, considering various games, we can define
the average reward E(K (X1, X2)). We suppose that the reward function favors
guesses close to the true value, i.e., K(-,-) is a decreasing function of the distance
between x; and x. Under this assumption it is clear that the less uncertainty
is contained in F', the higher will be the average reward.
The above motivates the following measure for a given distribution F’:

KP(F) = E[K(X17X2)] = /Rd . K(ml,xg)dF(acl)dF(acg) . (4)

The last integral is a regular statistical functional of degree two (two is the
number of arguments in K') [I6][17], and the real function K is called the kernel.
This functional measures the predictability of the random variables distributed
according to F, weighted by K, and we denominate it Kernel — Predictability.

For the discrete case, this becomes:

M M
KP(p) =Y _> Kipip; =p" Kp (5)

i=1 j=1
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where M is the number of the different values taken by the random variable X
and K is the matrix which stores in the entry K;;, the reward given for guessing
the value x; when the generated value was x;. This reward must be maximal,
say K, when i = j, and if it does not depend on i (if we don’t have preference
to guess any particular value of X), K;; = Ky, Vi and Ky > K if i # j. In
general, K;; must be selected as a decreasing function of the distance between
the values x; and x;.

Observe that if only a unit reward is given for an exact guess, i.e. K is
the identity matrix, K P reduces to the {2 norm of the probability vector, and
KP(p) =1—-G(p), where G(-) is the well known Gini index of Machine Learn-
ing [I8]. Opposite to the Gini index and other information measures like the
discrete entropy which are invariant under a permutation of the values of the
measurement scale, KP can incorporate the quantitative nature of the measure-
ment scale by means of a proper reward function that expresses how close the
guess is to the true value.

K P(-) is maximal for random variables which take a fixed value with prob-
ability one, by the next inequality:

KP(p) = ZZKijpipj < KMZZPin =Ky
P g P

note that K, is the value of K P for variables with p; = 1 for any particular
value ¢ and p; = 0 for all j # 1.

Taking again K = I, the minimal K P is obtained for uniformly distributed
variables, as can easily be proved. It should be noted that K P is a predictability
measure, so it behaves in an inverse way compared to the entropy, which is an
uncertainty measure.

Returning to the case K = I, we can measure the increment in kernel-
predictability, which may be associated to the optimization process:

M
A(KP) =2 pidp; .

i=1

From this equation one can see that the increment in K P is mainly determined
by the larger entries of the probability vector, and for that reason, by the more
important features in the images to be registered. This is an important difference
with respect to entropy.

2.1 Estimation of the Kernel-Predictability

In practice, it is not always possible to know exactly the distribution function
required to evaluate (@) and (B, so an estimation of K P must be done based
on a sampling set composed by n independent and identically distributed ran-
dom variables, X = {X;, X5,..., X, } ,with X; ~ F, Vi. Two estimators to
approximate () are:
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f@— Z S K(X, X)) (6)

2 i=1 j=i+1
n/2 n

KP = 22 Y K(Xi, X)) (7)

( 1=1 j=n/2+41

In the first estimator, all possible pairs of variables in X appear in the sum; in
the second, the set X is divided in two subsets and the kernel is evaluated at each
couple formed by taking one variable from the first set and other variable from
the second one. Both estimators are unbiased, and if the kernel K is symmetric
then K P has the minimal variance among all the unbiased estimators, as shown
in [16][17]. K P’ has more variance than K P but is cheaper to evaluate. Both
variances tend to the same value when the sampling set is increased in size; for
these reasons, we use the estimator KP' in the present work.

2.2 Image Registration with Kernel-Predictability

Using K P, one can define a similarity measure between images [;(T") and Io, in
the following way:

KP[F(I,(T), I2)]

SKP(I(T), I) = KP[F(I,(T))] + KP[F(I5)]

(®)

This similarity measure makes a comparison between the predictability of the
joint distribution and that of the marginal distributions for the images I (T")
and I. The registration is done by searching for the transformation 7™ with
maximal SKP, T* = argmaxp[SKP(I1(T), I2)], due to the fact that the joint
distribution of the aligned images gets an ordered and more predictable structure
than the one obtained with misregistered images. As done with NM I, our sim-
ilarity measure is normalized to make it more robust in problems with different
content of background and information of interest.

In [I9], a measure called Kernel Density Correlation (K DC') is proposed for
image registration; that measure shares some similarity with the approximation
([@) to the functional [ l); however important differences should be noted: firstly,
for the approximation of KP (defined in the functional M), more estimators
can be used besides (@), e.g. equation (@), so K P is more general than K DC;
moreover in [I9] K DC is used for image registration taking the cartesian product
of the points in the two images, penalizing the differences in intensities for points
that are near in the overlapping coordinates, which implies that this method
cannot be applied for multimodal image registration problems; in our case we
are using the K P measure to search for peaked joint distributions of intensities
in the corresponding regions, which is quite different, and indeed permits its use
for multimodal registration.

The similarity defined in (8) can be estimated using the alternatives given
above to approximate the K P. In particular, we sample uniformly the coordi-
nates of the images, generating the set X = {X;, Xo,..., X, }; then, evaluate
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the intensities of the image I over this set, and the intensities of the image Iy
over the set T'(X). Using the estimator (@), the approximation to (§) can be
written in the following way:

— . En/Q Z] R KQ(IJ_I])
SKP(II <T)7 12) N Zn/2 Z; n/2+41 KI(I —1 )+En/2 Z] n/2+1 KI(I )
- (©)
KP)
KPL+KP;
where ILZ] = (Il[T(XZ)],IQ(XZ)), I% = IQ(XZ)’ I,% = Il[T(XZ)], KQ is the kernel
used to measure the predictability of the joint distribution of I1(7T") and Iz and
K; for the marginal distributions of I1(7") and I». For example, if gaussian
kernels are used, then:

. . Iz _Ij 2
KQ(Ig—Ig):exp{—” ! 2J” } (10)
205

4 , i J7)2
Ki(I'— ) =exp _a 5 ) . (11)
207

The maximization can be done using gradient ascent, starting with an initial
transformation T° and actualizing it with the relation:

d —
t+1 t 13
TH =T 4\ o, SKP(1L(T'), I)

with:
d — 1 d — KP) d —
SKP(I.(T), I) = KP, KP,
dr KPP+ KPydTl (KP’ + KPpy)2dT
and in particular, when using the kernels ([0 and (II), the last derivatives are:
d ﬁ/ _ ZH/QZ = (Ii Ij) d (I Ij)
ar 4 o2 j=n/2+1 &XP 203 T ar\iT
— n/2 Ii—12 i . i .
SRPy == Liis e {1 (1 - 1) (- 1)
3 Results

This section shows the results obtained by solving the image registration prob-
lem, with the application of the similarity measure defined in (@)). These results
are compared with those obtained by the maximization of M1 and NMI. For
both versions of mutual information, the entropy was estimated using Parzen
windows to approximate the probability densities, following [§]. These approxi-
mations are:

H(I2) = Zn/Q Do K113 Ij)}
H[I,(T)] = Zn/Q Z Zj:n/2+1 Kl(IT - I%)}
HIL(T) 1] = =2 i {2500 oy KTy — 1)
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The use of Parzen windows is more suitable, when working with limited sam-
pling, than other approaches used to estimate the entropy (e.g. normalized his-
tograms); an additional advantage is that, the approximate similarity measures
become differentiable, facilitating the optimization process. Gaussian kernels,
(I0) and (II]), were used to approximate the entropies in M T and NM1I (using
integration constants to normalize the densities as is required by the Parzen
windows) and the corresponding kernel-predictability measure. To make the 3
methods comparable, all the corresponding variances were set to equal values.
As is done with the estimation of the K P values, two different, equally sized
sampling sets of coordinates are used to estimate the entropy, again following
the proposal in [§]. It should be noted that when using Parzen windows the con-
tinuous version of the entropy is used; this version can be negative depending
on the domain of the variables, and the NMI can be maximal for a negative
sum of the marginal entropies and a small negative joint entropy, to avoid this
problem the images were scaled to [0,100]. All the methods were optimized using
gradient ascent.

3.1 Global Multimodal Image Registration

In the first set of experiments, the 3 methods were tested, using 2 two-dimensional
MR images, obtained by the simulator at the Montreal Neurological Institute
[20], shown in figure [[l The first image corresponds to a modality T1, with
9% of noise level, and 40% of spatial inhomogeneities in intensity; the second
corresponds to a modality T2. A set of 50 random rigid transformations was
created, and applied to the T2 MR image. The T1 MR image was used as I,
so the transformation was always started with the identity. The values for the
rotation angles 6 were chosen uniformly distributed,  ~ U{—30°,30°}, and the
translation vectors ¢, taking ¢t ~ U{—25,25} (in pixels). Each sampling set was
created taking at random coordinates uniformly distributed in the overlapping
region of the images; when this kind of sampling is done, then the part of I
which is in the overlap depends on the actual transformation 7', and in order
to use gradient ascent, the derivative of Is with respect to the transformation
must be calculated; but I does not depend directly on T, so the gradient of
the 3 similarity measures with respect to T' was approximated using central fi-
nite differences. Though a rigid transformation was applied to the images, the

Fig. 1. Images (217 x 181 pixels) used for the global transformations experiments
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Fig. 2. Success percentage (left) and mean registration error (right) for MI (squares),
NMI (circles) and SKP(triangles)

registrations were done searching for the best affine transformation in order to
avoid the nonlinearity of the rigid transformations with respect to the rotation
angle. In the experiments, the size of the sampling sets was progressively varied,
and for each sampling size, the set of 50 registration problems was run.

Figure[2] shows the percentage of successful registrations and the mean regis-
tration error obtained for the 3 algorithms. The registration error was measured
adding the length of the difference between the applied and the estimated vectors
for all the pixels, and then taking the mean value; if the mean value was smaller
than 1 pixel, then the registration was considered as successful, and only the
successful registrations were considered in the computation of the mean error
in the set of 50 transformations. As one can see, one obtains comparable errors
using K P, but a significantly higher success rate, specially for small sampling
sets, which means that one can obtain performances similar to M1 and NMTI
at a significantly smaller computational cost.

3.2 Local Multimodal Image Registration

The above results suggest that K P should exhibit significantly better perfor-
mance than M and NM1I when the size of the sampling set is limited by the
problem itself; this is the case when the methods are applied for the estimation
of nonparametric (local) deformation fields.

To test the performance of the three methods under local multimodal image
registration in two-dimensional images, 10 different transformation fields were
generated, synthesized by means of two rectangular grids of 5 x 5 nodes (one
grid for each component of the translation vectors) and centering over each node
a cubic B-spline function. The nodal values were assigned randomly with values
uniformly distributed over a certain interval, in such a way that for each pixel
(x,y) a translation vector [u(z,y),v(z,y)] was defined in the following way:

u(z,y) =3, >, UiiBlki(z — 2i)|Blk2(y — y5)]
v(z,y) =32, 22, VijBlki(z — 2)]Blk2(y — y;)]

with Ujj;, Vij ~ U{=7,7}, for all centering nodes (x;,y;), kq is the proportion of
nodes versus the image dimension in the direction d; and:

(12)
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2P+ 1 <
3
B(z) = DT 1<y <2
0, |z| > 2.

Each generated field, was applied to the images shown in figs. Bl and [ with
2 different tone transfer functions fi; and fo that distort the intensities of the
transformed images. The three registration methods were run locally on a set
of nonoverlapping windows centered at pixels uniformly distributed over the
images, in order to find the best translation vector that explains the true field
[u(z,y),v(x,y)] for each point (x,y); the center points were separated 10 pixels
of each other in every direction (the images are 128 x 128 pixels of size). All
the measures were estimated locally, i.e. using only the pixels placed within each
window of size w x w. The 2 sampling sets were built by assigning alternatively
pixels in the window to each sampling set (each of the sampling sets had ‘”22
pixels). The window size was progressively reduced and the registrations repeated
for each field. The performance of the three methods was measured using the
mean angular error, as proposed by [21]; for that we extend the estimated, d. =
(te,ve), and true vectors dy = (ug,ve) to d, = (ue, Ve, 1) di = (ug, v, 1) now
representing the displacement in space and time for every pixel; the angular
error is calculated by: err = arccos( I dd;;l"ﬁé;” ). Figures Bl and [ summarize the
results obtained by the three methods.

Our registration method can be applied effectively in nonparametric registra-
tion problems, as is confirmed in the table[I] which summarizes the results of the
application of the 3 measures for the computation of a dense transformation field.

Mean Angular Error vaWindow's Size Mean Angular Error ws Window's Size

w
=}

15

%

28 32

1
]
EES)
B
[

Mean angulsr eror (degrees)
J e Y

cREoomaN
ul

" T T T y T T T
13213 et 9x3 27 13x13 11x11 928 kEss

Wincow's size Window's size

Fig. 3. Mean angular error for MI (squares), NMI (circles) and SKP(triangles). The
subfigure (a) summarizes the results obtained using the tone transfer function fi(i) =
100( )", and the subfigure (b) f2(i) = 100[1 — (,¢,)"*], i € [0,100]. The second
row shows the original and the transformed images in each case.
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Fig. 4. Mean angular error for MI (squares), NMI (circles) and SKP(triangles). The
subfigure (a) summarizes the results obtained using the tone transfer function fi(i) =
100( ,¢,) "%, and the subfigure (b) f2(i) = 100[1 — (,5,)"*°], i € [0,100]. The second
row shows the original and the transformed images in each case.

Table 1. Mean angular error for nonparametric registration

Image SKP NMI MI
Figs. 13.31° 17.96 ° 20.52°
Figs. [3(b)] 14.89° 19.06 ° 20.97 °
Figs. [4(a)] 28.40° 33.09 ° 36.14
Figs. [4(b)] 29.19 ° 34.29° 36.27°

For each of the 3 similarities, the registration was done maximizing the sum of the
similarity evaluated in small squared windows centered on each pixel and adding
an elastic regularization term. The width of the windows was set to 5 pixels. As
was done in the last experiment, 10 synthetic random fields were generated using
cubic B-spline functions, but now taking grids with 15 x 15 nodes for each dimen-
sion; each field was applied to the images shown in figs. Bl and [l with 2 different
tone transfer functions, f; and fs. The 3 methods were run for each field and the
mean angular error was evaluated.

As can be seen, an important reduction in the registration errors is obtained
using our proposal, making it very promising to be applied in local registration
problems.

4 Conclusions and Future Work

The similarity measure based in kernel-predictability presented in this paper
allows for registrations with errors equivalent to those obtained with MI and
N M1 but using significantly less sampling. For this reason, our proposal is more
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effective for local (nonparametric) registration, based on small windows as is
confirmed by the experimental results. The robustness of K'P in registration
problems with small sampling is due to the fact that the corresponding simi-
larity measure is controlled by the most important features in the images. This
robustness makes our measure very promising to be applied in problems where
local registration must be done. Our future work will be focused in applying this
similarity measure to problems like motion segmentation and image tracking
under variable lighting conditions.
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