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Abstract. In this paper we propose a Particle Filter-based propagation approach
for the segmentation of vascular structures in 3D volumes. Because of pathologies
and inhomogeneities, many deterministic methods fail to segment certain types
of vessel. Statistical methods represent the solution using a probability density
function (pdf). This pdf does not only indicate the best possible solution, but also
valuable information about the solution’s variance. Particle Filters are used to
learn the variations of direction and appearance of the vessel as the segmentation
goes. These variations are used in turn in the particle filters framework to control
the perturbations introduced in the Sampling Importance Resampling step (SIR).
For the segmentation itself, successive planes of the vessel are modeled as states
of a Particle Filter. Such states consist of the orientation, position and appearance
(in statistical terms) of the vessel. The shape of the vessel and subsequently the
particles pdf are recovered using globally active contours, implemented using
circular shortest paths by branch and bound [1] that guarantees the global optimal
solution. Promising results on the segmentation of coronary arteries demonstrate
the potential of the proposed approach.

1 Introduction

Segmentation of vascular structures is a problem that arises in numerous situations in
medical imaging, in particular for cardiac applications. Coronary arteries are thin ves-
sels responsible for feeding the heart muscle in blood, and their segmentation provides
a valuable tool for clinicians to diagnose diseases such as calcifications, and stenosis.
Because of the low contrast conditions, and the coronaries vicinity to the blood pool,
segmentation is a difficult task.

Since Computer Tomography (CT) and Magnetic Resonance (MR) imaging of the
heart are now widely available, the number of patients imaged has significantly in-
creased these past few years. Clinicians are now interested in periodically getting new
images from the same patients to measure the development and severity of vascular dis-
eases and their effects on the heart function. Such information is used to optimize the
time of surgical operation and the effectiveness of treatments.

Vessel segmentation techniques consist of model-free and model-based methods.
Skeleton-based techniques are the most primitive among the model-free [29] and aim
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at detecting the vessel skeletons, from which the whole vessel tree is reconstructed.
Vessel enhancement using a multiscale-structural term derived from the image intensity
Hessian matrix [27,/12] and differential geometry-driven methods [[19] refer to a differ-
ent class of model-free approaches that characterize tubular structures using the ratios
between the Hessian matrix eigenvalues. Voxels that best fit the characterization are
rendered brighter than the others, and the resulting image enhance tubular structures.

In [3], an anisotropic filtering technique, called Vesselness Enhancement Diffusion,
is introduced that can be used to filter noisy images preserving vessels boundaries. The
diffusivity function relies on the vesselness function introduced in [12] to filter along
the vessel principal direction and not across. In the resulting image, the background is
smoothed, whereas the vessel remains unchanged. The flux maximization criterion, a
step forwards, was introduced in [31]] and was exploited for vessel segmentation in [6]
in low contrast conditions using vessel measures introduced in [[12].

Region growing methods [33] progressively segment the vessels from a seed point,
based on intensity similarity between adjacent pixels. These methods work fine for
homogeneous regions, but not for pathological vessels, and may leak into other structures
of similarintensity. Morphological operators [ 1] can be applied to correctasegmentation,
smooth its edges or eventually fill holes in the structure of interest, but fail to account
for prior knowledge. Tracking approaches [[17,130] are based on the application of local
operators to track the vessel. Given a starting condition, such methods recover the vessel
centerline through processing information on the vessel cross section [16]. Various
forms of edge-driven techniques, similarity/matching terms between the vessel profile
in successive planes, as well as their combination, were considered to perform tracking.

On the other hand, model-based techniques use prior knowledge and features to
match a model with the input image and extract the vessels. The knowledge may con-
cern the whole structure, or consist in modeling locally the vessel. Vessels template
matching techniques (Deformable Template Matcher) [25] have been investigated. The
structure model consists of a series of connected nodes that is deformed to best match
the input image. Generalized Cylindrical models are modified in Extruded Generalized
Cylinders in [23] to recover vessels in angiograms. For curvy vessels, the local basis
used for classical generalized cylinders may be twisted, and a non-orthogonality issue
may occur. This problem is solved keeping the vessel cross section orthogonal to the
centerline, and the two normal vectors always on the same side of the tangent vector
spine, as the algorithm moves along the vessel.

Nevertheless, since vessels vary enormously from one patient to another, deformable
models are preferred to template models. Deformable models can either be parametric
or geometric. Parametric deformable models [26] can be viewed as elastic surfaces
(often called snakes), and cannot handle topological changes. Geometric deformable
models [4,128], on the contrary, can change their topology during the process and there-
fore are well suited to vessel segmentation. Like snakes, deformable models aim at
minimizing the energy computed along the model. Level sets [24] are a way to ap-
ply deformable model to non-linear problems, such as vessel segmentation [21]. One
can refer to the fast marching algorithm and its variant for vessel segmentation us-
ing the minimal path principle 23] to determine the path of minimal length between
two points, backtracking from one point toward the other crossing the isosurfaces



478 C. Florin, N. Paragios, and J. Williams

perpendicularly. To discourage leaking, a local shape term that constrains the diame-
ter of the vessel was proposed in [22]. One should also mention the method introduced
in [20], where the optimization of a co-dimension two active contour was presented to
segment brain vessels.

One can claim that existing approaches suffer from certain limitations. Local opera-
tors, region growing techniques, morphological filters as well as geometric contours
might be very sensitive to local minima and fail to take into account prior knowl-
edge on the form of the vessel. Parallel to that, cylindrical models, parametric active
contours and template matching techniques may not be well suited to account for the
non-linearity of the vessel structure, and require particular handling of branchings and
bifurcations. Tracking methods can often fail in the presence of missing and corrupted
data, or sudden changes. Level sets are very computational time-consuming and the
Fast Marching algorithm loses all the local implicit function properties.

To improve segmentation results, a new method must account for non-linearities
coming from branchings, pathologies, and acquisition artifacts, such as motion blur
or CT beam hardening. This excludes any type of parametric models, or linear mod-
els, which would require special handling for bifurcations and non-linearities. Further-
more, the low contrast condition that features the coronaries drove the authors toward a
method that would handle multiple hypotheses, and keep only the few most probable.
The segmentation result would not be a deterministic result, but rather the most prob-
able state of a vessel among several suppositions. Last, but not least, medical imaging
is a field with vast prior knowledge; therefore, the new method must account for prior
knowledge - if available -.

In this paper, we propose a particle-based approach to vessel segmentation where
we re-formulate the problem of recovering successive planes of the vessel in a proba-
bilistic fashion with numerous possible states. To this end, given an initial state for the
vessel position, several hypotheses are generated uniformly in the feature space, and
evaluated according to the observed data. From these hypothesis, a probability density
function (pdf) can be defined, and used as a prior for a more efficient distribution of the
hypothesis. Such an approach:

— combines edge-driven and region-based tracking metrics,

— recovers at each plane the optimal segmentation solution, that is the global mini-
mum of the designed cost function,

— accounts for the structural and appearance non-linearity of the vessel,

— addresses pathological cases, and can incorporate prior local knowledge on the ves-
sel structure.

The final paradigm consists of a fast multiple hypothesis propagation technique where
the vessel structure as well as its appearance are successfully recovered. Such a frame-
work allows to naturally address the non-linearity of the geometry and the appearance
of coronaries and is compared in a favorable fashion with the existing approaches. The
remainder of this paper is organized as follows. In section 2, we motivate vessel seg-
mentation, introduce the feature space, and describe the measure used to quantify the
quality of a given hypothesis. Random sampling and Particle Filters for tracking are in-
troduced in section 3 while section 4 presents the overall system actually used to track
vessels. Experimental results and discussion are part of the last section.
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2 Vessel Segmentation

Cardio-vascular diseases are the leading cause of deaths in the USA (39%) and therefore
there is a constant demand for improvement of diagnostic tools to detect and measure
anomalies in the coronary tree. Such tools aid early diagnosis of the problem and there-
fore prevention that can significantly decrease the mortality rate due to cardiac diseases.
One can consider the problem of vessel segmentation as a tracking problem of tubular
structures in 3D volumes. Thus, given a starting position, the objective is to consider
a feature vector that, upon its successful propagation, provides a complete segmenta-
tion of the coronaries. The statistical interpretation of such an objective refers to the
introduction of a probability density function (pdf) that uses previous states to predict
possible new positions of the vessel and image features to evaluate the new position. To
this end, we define

— a state/feature vector, that defines the local geometry of a coronary artery

— an iterative process to update the density function, to predict the next state

— a distance between prediction and actual observation, to measure the quality of a
given feature vector with respect to the image data.

2.1 The State/Feature Vector

One can define the state of the vessel at a given time as follows:

X = ('7;1’ T2, '7;3)’ ® = (917 927 93)7 Puessel
- ~ ~ - ~ - ~ -~ -
position orientation appearance
where the vessel state vector consists of the 3D location of the vessel x , the tangent
vector ®, and the parameters required for the pdf estimation of the appearance of the
vessel Pyessels @S @ mixture of two gaussians:

Puessel = ((PB7MB7UB)a(PC7/’[’C7UC)) (1)

It is reasonable to assume irregularity in the appearance of the vessel because of the
presence of calcifications, stents, stenosis and diseased vessel lumen [F1G. ()]. There-
fore simple parametric statistical models on the appearance space will fail to account
for the statistical properties of the vessel and more complex distributions are to be con-
sidered. We consider a Gaussian mixture model that consists of two components to rep-
resent the evolving distribution of the vessel, the contrast enhanced blood (Pg, p5,05)
and the high density components, such as calcifications or stent, (P, ¢, 0¢) subject
to the constraint [Pc + Pp = 1] leading to the following state vector:

UJ:(X,@,(PB,/J:B,O'B),(PC,/J,C,O'C)) (2)

Such a state vector is to be recored for subsequent planes leading to complete re-
construction of the vessel tree. However, neither the planes position and orientation, nor
the actual position of the vessel within this plane is known. In order to recover the most
prominent plane position, a constrained multiple hypotheses framework will be used



480 C. Florin, N. Paragios, and J. Williams

F 4
. O
© (@)

Fig. 1. (a) calcification, (b) stent (high intensity prosthesis), (c) branching with obtuse angles, (d)
stenosis (sudden reduction of vessel cross section diameter)

() (b)

according to a particle filter implementation. Such a framework will be explained at a
later section.

Let us assume for the moment that the plane position is known as well as its orien-
tation. Vessel segmentation consists of recovering the area of image within this plane
that corresponds to the vessel. Snakes [[18]] as well as their geometric alternatives have
been popular techniques to address such a demand. Despite numerous improvements,
such methods often converge to local minimum. Such a limitation was addressed in [1]
- known as circular shortest path algorithm by branch and bound - once appropriate
initial conditions have been given to the process, that in our case could be satisfied.

2.2 Circular Shortest Paths and 2D Vessel Segmentation

The Circular Shortest Paths by Branch and Bound (CSP) [1]] is a binary search-tree
technique to recover the globally optimal active contour, given a point inside the contour
and a potential map. First of all, let us note that the problem of finding the globally
optimal active contour is equivalent to computing the minimal weight path (given a
Riemannian metric) that connects a point at angle 6 = 0 to its equivalent at § = 27
across the log-polar transform of the original image, see [FIG. (2)]. Given a Riemannian
metric ¢ (usually equal to the image gradient), the weight W of a path P is defined as:

W(P) = / g (P(s)) ds. 3)

Given a start point pg at § = 0, the end point py, at § = 27 of the minimal noncircular
path is defined as

p = argminpm)—p W (P). ()
This end point po, is very quickly found using the well-known Dijkstra [7] algorithm,
with the Riemannian metric g ((EQ. (@)]) playing the role of potential map. To demon-
strate the use of a binary search-tree, a property needs to be stated at that point, whose
proof is straightforward (see [1]]):

for two subsets 57 C So, the minimal path P> of S has a lower weight than
the minimal path Py of S, otherwise stated as W (P3) < W(Py).
A corollary is:

for any point set .S, the weight of the minimal path P (circular or not) is a lower
bound of the minimal circular path weight. Therefore, if {57, S2} is a partition
of S, and W(P1) < W(P3), the minimal circular path of S has its starting
point pg (and obviously ending point pa, as well) in the subset 5.
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Fig. 2. Discreet grid of a log-polar image, with a circular path (dashed, subset S1) and a noncir-
cular path (plain, subset .S2)

Consequently, a binary search-tree is used in the CSP algorithm. First, any set of initial
points S = {pg} is divided into two subsets S1 = {po}1 and Sz = {po}2; second, the
minimal noncircular paths P; and P, are computed using [EQ. @)] for the two subsets.
This procedure is then repeated with the subset of minimal path until the subsets are re-
duced to a single point. At the bottom of the binary search-tree, the subsets are reduced
to singletons, and their minimal path are naturally circular. The Globally Optimal Cir-
cular Shortest Path is obtained that way. The low cost complexity (for width u and
height v, O(u'-v) average time, or less than a milisecond for 15x15 pixels cross sec-
tion profile, see [FIG. [@)]) makes this method very attractive for repetitive testings, such
as the particle filters presented in [SEC. (@)]. It also reduces the dimensionality of the
feature space, compared to model-based methods (elliptic models, tubular models,...) .

The CSP algorithm is an efficient technique to image segmentation for closest struc-
tures under the assumption that a point is given in the structure interior. Since segmen-
tation in our case is approached as a multiple hypotheses testing, one can assume that
each hypotheses generation could provide a start point to the CSP that is a necessity
for the construction of the log-polar image. The multiple hypotheses generation could
be done in a number of fashions. Sequential Monte Carlo is the prominent technique
that associates evolving densities to the different hypotheses, and maintains a number
of them. Particle filters is the most prominent technique to implemented such a strategy.

3 Particle Filters

3.1 Particle Filters: Generalities

Particle Filters [8,[15] are a sequential Monte-Carlo technique that is used to estimate
the Bayesian posterior probability density function (pdf) with a set of samples [[13}132].
In terms of a mathematical formulation, such a method approximates the posterior pdf
by M random measures {z}", m = 1..M} associated to M weights {w]™,m = 1..M},
such that

p(xe|21:4) Z w*6(xy — x}). (5)

where each weight w;" reflects the importance of the sample z}"* in the pdf, given the ob-
servations sequence z1.¢, as shown in [FIG. (3)]. Using Bayes rule, one can sequentially
estimate p(x¢|z1.¢) from p(z;_1|z1..—1), knowing p(x;|x;—1) and measuring p(z;|x):
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Fig. 3. The resampling process: a random selection chooses the samples with the highest weights
where a local perturbation is applied
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p(z¢|z¢) is discussed in [SEC. (£.1)], while a novel method to locally estimate p(x¢|zs_1)
is presented in [SEC. (B.3)]. The samples x}" are drawn using the principle of Impor-
tance Density [14]], of pdf g(x¢|z7, z¢), and it is shown that their weights w{* are
updated according to

ze|lei)p(xi |t
w chﬁ1p( ¢ tm)pSnt |z 1)
q(x |z, 2e)

(6)

Once a set of samples has been drawn, p(z}*|x}* {, z:) can be computed out of the ob-
servation z; for each sample, and the estimation of the posteriori pdf can be sequentially
updated. Such a process will remove most of the particles and only the ones that express
the data will present significant weights. Consequently the model will lose its ability to
track significant changes on the pdf; therefore a resampling procedure has to be ex-
ecuted on a regular basis. Such a process will preserve as many samples as possible
with respectful weights. One can find in the literature several resampling techniques.
We chose the most prominent one, Sampling Importance Resampling, for its simplicity
to implement, and because it allows more hypothesis with low probability to survive,
compared to more selective techniques such as Stratified Resampling [10].

3.2 Sampling Importance Resampling

The Sampling Importance Resampling (SIR) algorithm [13] consists of choosing the
prior density p(x¢|x¢—1) as importance density g(x;|x}?, z;). This leads to the follow-
ing condition, from [EQ. (&)]

wi o< wi yp(ze|wi”). )

The samples are updated by setting =" o p(x;|z}™ ), and perturbed according to a
random noise vector e, so that " o« p(z|z}" ;). The SIR algorithm is the most widely
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used resampling method because of its simplicity from the implementation point of
view. Nevertheless, the SIR uses mostly the prior knowledge p(x;|z:—1), and does not
take into account the most recent observations z;. Such a strategy could lead to an
overestimation of outliers. On the other hand, because SIR resampling is performed at
each step, fewer samples are required, and thus the computational cost may be reduced
with respect to other resampling algorithms. Finally, in practice, the estimation of €’s
law is difficult, and prior knowledge is usually required. A novel method is proposed
in the following section [SEC. (B.3)] to circumvent this issue, by locally estimating
plwefai™y).

3.3 Reinforced SIR: The State Transition Noise Pdf

After a particle x;" ; has been selected by the SIR algorithm, a random noise vector
€ is added (see previous section [SEC. (3.2)]). A straightforward solution consists in
using prior knowledge to estimate the law of € once for all. This method presents two
difficulties: first, prior knowledge may be limited and/or hard to obtain, second, vessels
are linear structures only very locally, therefore the law of ¢ may greatly vary from
one patient to another. In the technique presented in this paper, the distribution of ¢
is updated at every time step. At a given time step, each particle x7* ; selected by the
SIR generates IV offsprings by adding a random noise vector, uniformly distributed, and
moving it forward (in the direction of the vessel, given by the particle hypothesis). Once
their probability is estimated, these N offsprings particles provide a pdf (p(z:|z}",))
which is then used for the distribution of the random vector e.

The final paradigm for resampling follows the procedure:

1. first, particles are selected randomly according to their probability, as in any SIR
procedure

2. second, the selected particles generates /N new offsprings uniformly distributed

3. these offsprings probabilities are estimated, and a pdf is then drawn for each SIR
selected particle

4. finally, this pdf is used to generate a random noise vector e that perturbs the SIR
selected particles

In other words, once the SIR selected a particle z}™ ; to be resampled, p(x¢|xz}* ¢, 2¢) is
estimated in a way similar to [EQ. (3)]:

N
pladaly, z) ~ Y wib(z, — xj), (8)
=1

where the J;@ are generated from x}*; + ¢;, with the ¢; uniformly distributed. The
weights w! are estimated from the observation z;.

This method presents two main advantages. First, as the noise vector € is random,
the advantages of SIR over exhaustive search are preserved. Second, the distribution of
€ is updated at every time step, and for every particle, avoiding the disadvantages of
having a noise distribution that would be determined once for all from prior knowledge.
Vessels can be straight and suddenly become tortuous, or can have a very homogeneous
shape/appearance before encountering a very inhomogeneous region. This Reinforced
SIR captures the conditions change and adapts the noise vector distribution.
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4 Particle Filters and Vessel Tracking

We now consider the application of such non linear model to vessel segmentation and
tracking. Without loss of generality one can assume that the root of a coronary is known,
either provided by the user or through some automatic procedure. Simple segmentation
of that area can provide an initial guess on the statistical properties of the vessel

pvessel:((PBa,ufBuo—B)a (PCU/JC;O—C)) (9)

using an expectation/maximization process. Then, one can consider the problem of ves-
sel segmentation equivalent to the recovery of successive cross-sections, along with
the position of the vessel at any given cross-section. Such an approach is equivalent
to finding a deterministic number of sequential states w, = (X, O, Pyessel )» Which
belong to the feature space (see [SEC. (Z.I)]) where we use the notion of Particle
Filters.

The multiple hypotheses nature of the method requires a metric definition to validate
their correctness. Given, the current state and the perturbation law we produce a number
of new states following this law. Such states refer to a new plane, as well as a center
point for the elliptic structure and therefore the CSP algorithm can be used to provide
the most prominent area for the vessel given these initial conditions. We use this area
and two metrics that aim to account for the shape and appearance of the vessel toward
validation of the considered hypotheses.

4.1 Prediction and Observation: Distance

To this end, we are using mostly the image terms, and in particular the intensities that
do correspond to the vessel in the current cross-section. The observed distribution of
this set is approximated using a Gaussian mixture model according to the expectancy-
maximization principle. Each hypothesis is composed by the features given in [EQ.
@], therefore, the probability measure is essentially the likelihood of the observation z,
given the appearance A model. The following measures (abusively called probabilities)
are normalized so that their sum over all particles is equal to one.

— Probability measure for shape
Once the vessel’s edge is detected using Circular Shortest Path [SEC. 2.2)], a
measure of contrast, called the ribbon measure, R is computed:

R = —x 5 Mint S Mext
R = HintThest "otherwise
PinttHezt

while the correctness of the prediction is given by:

_IR]|

p(z|S) = e "o

where 1, is the mean intensity value for the voxels in the vessel, and pie.¢ is the
intensities mean value for the voxels in a band outside the vessel, such that the band
and the vessel’s lumen have the same area.
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Fig. 4. Three vessels cross sections detected using the ribbon measure

Since the coronary arteries are brighter than the background, the best match

maximizes R (see [FI1G. @)]).
— Probability measure for appearance

For the vessel lumen pixels distribution pyesse; [EQ. ()], the probability is mea-
sured as the distance between the hypothesized distribution and the distribution
actually observed.
The distance we use is the symmetrized Kullback-Leibler distance D between the
model p(x) = Pyesser and the observation ¢(z), obtained from the CSP segmenta-
tion:

= x)lo p(x) x)lo e() T
D= [o@iog7) + a@hoa( s,

_ID]

p(z|]A) = e Po.

The combination of edge-driven and region-based metrics measures the fitness of
the observation to the prior knowledge included in the state vector.

4.2 Branching Detection

When a branching occurs, the particles split up in the two daughter branches, and then
track them separately (see [FIG. (3)]). As branchings are never perfectly balanced,
one of the branches attracts most of the particles after few resampling steps. To avoid
the collapse of one of the modes, two techniques are available: either to increase the
number of particles in the weakest branch, or to treat the two branches separately. The
second approach is preferred in this paper. To this end, a simple K-means clustering
on the joint space (position+orientation) of the particles is considered. When the two
clusters are well separated, the number of particles is doubled and equally dispatched
in the two branches. The segmentation goes on, according to [EQ. (€)], with a bi-modal
distribution.

The K-means algorithm [9]] partitions N points, x,, into K disjoint clusters, of cen-
ters £, minimizing the sum-of-squares

j=0 n

N

|z, _Uj|2~
=0

The K-mean procedure alternates two steps: first each point is associated to the nearest
center 1, then each center is moved in the barycenter of the cluster.
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Fig. 5. (a) branching points between LCX and LAD for three patients with the particles’ mean
state overlaid, (b) the particles , clustered using K-means, follow up the two branches

Table 1. Results table showing the percentage of branches correctly segmented, over a dataset of
34 patients, using Particle Filters (PF) and Front Propagation (FP)

vessel name RCA Acute Marginal LAD First Septal LCX Obtuse Marginal
% of branches, using PF 100% 85.3% 100%  94%  100% 94%
% of branches, using FP 64% 18% 53% 32% 39% 22%

4.3 Implementation and Validation

Regarding the initial configuration, the use of approximatively 1, 000 particles gave suf-
ficient results for our experiments. We perform a systematic resampling according to
the Sampling Importance Resampling every time the effective sampling size Ny =
>, 1/w? (where w; is the weight of the ith particle) falls below half the number of
particles. As mentioned in Section[3.1] the preference for SIR, compared to Stratified
Resampling [10], is motivated by the robustness of the segmentation. The reinforced SIR
strategy exposed in [SEC. (B.3))] gives better results, for a constant number of particles.

Validation is a difficult part for any coronary segmentation method. The algorithm
has been evaluated on 34 patients, and has successfully recovered all the main arteries
(RCA, LAD, LCX) for each patient as shown in the following table, while a small
portion of visual results are also presented in [FIG. (@))].

The percentage in the above table corresponds to the number of branches segmented
by Particle Filters and identified by a human expert. For comparison purposes, the same
test is performed using Front Propagation based on the image Hessian matrix [27].
These results were achieved with a one-click initialization; a method based on a PCA
on the intensity volume gives the approximative initial direction. All patients presented
some kind of artery pathologies in one, at least, of their coronary vessels. This means
the Particle Filter successfully segmented both healthy and unhealthy coronaries. The
method seems to outperform regarding the detection of the main branchings, while in
some cases smaller branchings at the lowest parts of the vessel tree, have been missed.
Nevertheless, one can argue that their clinical use is of lower importance. However,
current studies focus on the issue of branchings for narrow vessels in very low contrast
conditions. The comparative study demonstrate the Particle Filters capability to outper-
form deterministic hessian based methods in cases with corrupt data (pathologies).
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(a)

Fig. 6. Segmentation of the Left anterior descending coronary artery and Right coronary artery
in CTA (in red) for four patients (1) & (2); (a) coronary tree, (b,c,d) Different 3D views super-
imposed to the cardiac volume are presented.

5 Discussion

In this paper, we have shown that Particle Filters can be used for vascular segmentation.
In the context of vascular segmentation, Particle Filters sequentially estimate the pdf
of segmentations in a particular feature space. The case of coronary arteries was con-
sidered to validate such an approach where the ability to handle discontinuities on the
structural (branching) as well as appearance space (calcifications, pathological cases,
etc.) was demonstrated. The main advantage of such methods is the non-linearity as-
sumption on the evolution of samples. Experiments were conducted on several healthy
and diseased patients CTA data sets, segmenting the Left Main Coronary Artery and the
Right Coronary Artery [FIG. (@)].

Introducing further prior knowledge in the segmentation process is the most promi-
nent future direction. One can see such a contribution in two parallel paths. First, build-
ing better models that account for the appearance of the vessel seems to be a necessity
toward capturing the coronaries at the lowest parts of the vessel tree. The current model
is based on the global statistics of the appearance of the vessel and one can claim is a
meaningful measure for vessel cross sections with a certain area.
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