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Abstract. Context information other than faces, such as clothes, picture-
taken-time and some logical constraints, can provide rich cues for recog-
nizing people. This aim of this work is to automatically cluster pictures
according to person’s identity by exploiting as much context information
as possible in addition to faces. Toward that end, a clothes recognition al-
gorithm is first developed, which is effective for different types of clothes
(smooth or highly textured). Clothes recognition results are integrated
with face recognition to provide similarity measurements for clustering.
Picture-taken-time is used when combining faces and clothes, and the cases
of faces or clothes missing are handled in a principle way. A spectral clus-
tering algorithm which can enforce hard constraints (positive and nega-
tive) is presented to incorporate logic-based cues (e.g. two persons in one
picture must be different individuals) and user feedback. Experiments on
real consumer photos show the effectiveness of the algorithm.

1 Introduction

Being able to identify people is important for automatic organizing and retrieving
photo albums and for security applications, where face recognition has been
playing a major role. But reliable face recognition is still a challenging problem
after many research efforts [5], especially when imaging condition changes. On
the other hand, information besides faces (called ’context’ relative to face) can
provide rich cues for recognizing people.

Generally speaking, there are three types of context information. The first
type is appearance-based, such as a person’s hair style or the clothes he is wear-
ing; the second type is logic-based, for instance, different faces in one picture
belong to different persons or some people are more likely to be pictured to-
gether (e.g. husband and wife); the third type is the meta-data for pictures such
as the picture-taken-time. This context information is often used by human ob-
servers consciously or unconsciously. It is very tempting to investigate how to
build algorithms which can utilize this context information effectively to improve
human recognition accuracy.

The aim of this work is to automatically organize pictures according to per-
son’s identity by using faces and as much context information as possible. Assum-
ing we have a face recognition engine, we want to improve upon it via contexts.
We want to develop a clustering algorithm which can put persons in the pictures
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into groups (clusters). The ideal results will be that all the images of the same
individual are in one cluster and images from different individuals are in different
clusters. Towards this end, we need to answer the following three questions: 1)
what context information to use? 2) what is the clustering algorithm? 3) how to
put context information into the clustering algorithm?

Regarding to the first question, we use the appearance-based and logic-based
context explicitly, and the picture taken time implicitly. For the appearance-
based context, clothes provide an important cue for recognizing people in the
same event (or on the same day) when clothes are not changed. They are com-
plimentary to faces and remain very useful when face pose changes, poor face
quality, and facial expression variations occur. Therefore, it is intuitively ap-
pealing to use clothes information. However, in practice, due to different types
of clothes (solid colored or heavily textured) and changes in clothes imaging con-
dition (occlusions, pose changes, lighting changes, etc), it is not a trivial matter
to use clothes information effectively. We strive to develop an effective clothes
recognition method in this paper. For the logic-based context, we want to enforce
some hard constraints. A constraint is hard when it must be satisfied in order
for a clustering result to be correct. For example, the fact that different faces in
one picture belonging to different individuals is a hard constraint.

Many clustering algorithms have been developed, from traditional K-means
to the recently popular spectral clustering ( [10, 14,8, 15]). One major advantage
of spectral clustering methods over K-means ([8]) is that K-means easily fails
when clusters do not correspond to convex regions (similar for mixture of models
using EM, which often assumes that the density of each cluster is Gaussian). In
human clustering, imaging conditions can change from different aspects, hence
one cluster doesn’t necessarily form a convex region. Therefore a spectral clus-
tering algorithm is favored.

Now we are facing the question of how to put the context information into
the clustering algorithm. The base of a spectral clustering algorithm is the sim-
ilarity measure between nodes (for human recognition, each node represents a
person image). It is a natural thought to combine clothes recognition results
with face recognition results as the similarity measurements. But due to occlu-
sion or pose changes, either face or clothes information may be missing or when
different people wear the same clothes on the same day, the clothes information
can become unreliable. We propose a principled way to handle these cases. The
next issue is how to enforce the hard constraints? For K-means, hard constraints
can be enforced as in [13]. Though spectral clustering methods have the afore-
mentioned advantage over K-means, it is hard to enforce hard constraints. In
[15], a solution of imposing positive constraints (two nodes must belong to the
same cluster) is addressed, but there is no guarantee that the positive constraints
will be respected and the problem of enforcing negative constraints (two nodes
cannot belong to the same cluster) remains open. In this paper, by taking ad-
vantages of both K-means and spectral clustering methods, we devise a spectral
clustering method which can enforce hard constraints.
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In [18], clothes information is used for annotating faces. Our work differs from
that in (1) a new clothes recognition algorithm is developed, and the results from
face and clothes recognition are integrated in a principled way; (2) a constrained
spectral clustering algorithm, which can enforce hard constraints, is proposed,
so that other context cues (e.g. persons from one picture should be in different
clusters) and user feedback can be imposed.

The rest of the paper is organized as follows. The clothes recognition method
is presented in Section 2. Section 3 describes how to combine clothes recognition
results with face recognition into one similarity measurement. Section 4 depicts
the spectral clustering algorithm and how to put some logic-based context cues
(i.e. enforcing hard constraints) into the clustering algorithm. Experimental re-
sults are presented in Section 5. Finally, Section 6 gives concluding remarks.

2 Clothes Recognition

Clothes recognition is to judge how similar two pieces of clothes image are and
therefore to indicate how likely they are from the same individual. There are
three major steps for clothes recognition: clothes detection and segmentation,
clothes representation (or feature extraction), and similarity computation based
on extracted features.

2.1 Clothes Detection and Segmentation

Clothes detection and segmentation is to obtain the clothes part from an image.
For recognition purpose, precise contours of clothes are not necessary, but we
need to get the representive part and get rid of clutters.

An initial estimation of the clothes location can be obtained by first run-
ning face detection ! and taking some parts below the head. However, this is
often unsatisfactory due to occlusion by another person or by the person’s self
limbs (skin) or presence of other objects in the environment. To improve upon
the initial estimations, the following two steps are therefore performed. One
is to segment clothes among different people via maximizing the difference of
neighboring clothes pieces, which can be computed by the x? distance of color
histograms in CIElab space. Assuming that the 'true’ clothes are not far away
from the initial guess, candidate locations can be obtained by shifting and re-
sizing the initial estimation. The candidates which can maximize the difference
are chosen. Figure 1 shows an example.

The next step is to get rid of clutters not belonging to clothes. Clutters are
handled in two ways. For predictable clutters like human skin, a common cause
of occlusion, we build a skin detector using techniques similar to what described

! Here we obtain a quick initial guess of the clothes location from face detection. Face
detection [9,12,2] can currently achieve better accuracy than face recognition so
results derived from face detection can be complimentary to face recognition results.
For example, profile faces can be detected (so are the corresponding clothes), but
they present a challenge for state-of-the-art face recognition algorithms.
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(a) (b)
Fig.1. (a) initial estimation from face detection (shown by the dashed yellow lines,

small red circles show the eye positions); (b) refined segmentation by maximizing the
difference between people (shown by the solid green lines)

in next section. More details on skin detection will be given in Section 2.4. For
more random clutters not persistent across pictures, we diminish their influence
in the feature extraction step (Section 2.2).

2.2 Clothes Representation (or Feature Extraction)

After extracting clothes from an image, the next issue is to represent it quan-
titatively: clothes representation (or feature extraction). In the literature, there
are generally two types of features being extracted: local features and global fea-
tures. Local features have recently received a lot of research attention (such as
[6,1,7,11]) and have been successfully used in some recognition systems. How-
ever, most local features are selected based on some kind of local extrema (e.g.
with 'maximum entropy’ or 'maximum change’), which cannot work if the clothes
under consideration is a smooth colored region without textures or patterns (e.g.
a single-colored T-shirt). Then how about global features like color histogram
and/or orientation histogram? Color histogram suffers when lighting changes.
Clothes are often folded and therefore create false edges and self-shadows, which
create difficulties for orientation histograms. Thus some more effective features
are desired. To take advantage of global representations (which can be more ro-
bust to pose changes), the features extracted will be histograms of ’something’.
But unlike color histograms or orientation histograms, we want the ’something’
to be representive patches for clothes under consideration and to exclude ran-
dom clutters. In order to achieve that, we devise the following feature extraction
method - the representive patches are learned automatically from a set of clothes.

The method uses code-word (representive patches) frequency as feature vec-
tors. The code-words are learned as follows. Overlapped small image patches
(e.g. 7x7 pixel patches with two neighboring patches 3 pixels apart) are taken
from each normalized clothes piece (according to the size of faces - from face de-
tection module). All the patches from all the clothes pieces in the image set are
gathered. If a small patch is of 7x7 pixels, and the total number of small patches
is N, we have N 147-dimensional (3 color channels for each pixel) vectors.

In order to get rid of noise and make the computation efficient, principle
component analysis (PCA) is used to reduce the dimensionality of these vectors.
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Fig. 2. Examples of code-words obtained. The occurrence frequency of these code-
words in a clothes piece is used as the feature vector.

Each small patch is represented by projections under the first & (we use k = 15)
principle components. Vector quantization (e.g. K-means clustering) is then run
on these N k-dimensional vectors to obtain code-words. The Mahalanobis dis-
tance, given by d(z1,x2) = \/(:m — :vg)TE*I(xl — x5) for any two vectors z
and xo (where X' is the covariance matrix), is used for K-means clustering. The
number of code-words (i.e. the number of clusters for K-means) can vary accord-
ing to the complexity of the data. 30 code-words are used in our experiments.
Figure 2 shows code-words obtained (i.e. centers of k-means clustering) for the
image set including the image in Figure 1.

By vector quantization, each small patch is quantized into one of the code-
words, and one clothes piece can be represented by the vector describing the
frequency of these code-words. Suppose that the number of code-words is C', then
this code-word frequency vector is C-dimensional, Vipiscioth = [V1, - i, -+, v¢],

s nihiseloth thiscloth
with each component v; = —irrzmem , Where n;"*

of code-word i in the clothes piece and nthiscloth
patches in the clothes piece.

The above feature extraction method has the following advantages for clothes
recognition. 1) The clustering process selects consistent features as representive
patches (code-words) and is more immune to background clutters which are not
consistently present since small image patches from non-persistent background
are less likely to form a cluster. 2) It uses color and texture information at
the same time, and it can handle both smooth and highly textured regions.
3) Code-word frequency counts all the small patches and does not rely on any
particular features. Hence it can handle pose changes to a certain degree. 4)
Compared to color histograms, it is more robust to lighting changes. Image
patches corresponding to the same clothes part can have different appearance due
to lighting changes. For example, a green patch can have different brightness and
saturation. Through PCA dimension reduction and using Mahalanobis distance,
these patches are more likely to belong to the same cluster than to the same
color bin for color histogram.

is the number of occurrence
is the total number of small

2.3 Similarity Computation

The similarity between two pieces of clothes is computed in a way similar to [11].
Each component of the code-word frequency vector is multiplied by log(=-),

wq
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where w; is the percentage of small patches quantized into code-word ¢ among
all the N patches. By putting these weights, higher priorities are given to those
code-words (features) occurring less frequently. This is based on the idea that
less frequent features can be more distinctive therefore more important.

The similarity score of two pieces of clothes is given by the normalized scalar
product (cosine of angle) of their weighted code-word frequency vectors.

2.4 Skin Detection

As described in section 2.1, skin is a common type of clutter. However, general
skin detection is not a trivial matter due to lighting changes. Fortunately for a
set of images, skin from faces and from limbs usually looks similar. Therefore a
skin detector can be learned from faces.

Learning Skin Code-words from Faces. The representive skin patches (code-
words for skin detection) are learned from faces. First, small skin patches are
obtained from faces (majorly cheek part). Each small skin patch is represented
by the mean of each color channel. K-means clustering are then performed on
these 3-dimensional vectors. The centers from k-means clustering form the code-
words for skin detection.

Detect Skin in Clothes. In order to decide whether a small patch is skin or not,
we first get its mean of three color channels, and then compute its Mahalanobis
distance to each code-word. If the smallest distance is less than a pre-defined
threshold and the patch satisfies certain smoothness criterion, the patch is taken
as skin. The smoothness of a patch is measured by the variance of luminance.
Only those non-skin patches will be used for further computation.

3 Integrating Clothes Context with Face Recognition

The clothes recognition scheme presented in the previous section tells how similar
a pair of clothes pieces are. To achieve higher human recognition accuracy, clothes
cues are to be integrated with face cues. These combination results provide
similarity measurements for clustering (section 4).

For any pair of person images, let x5 be the score from face recognition
(e.g. [5]), . be the score from clothes recognition. Let random variable Y indicate
whether the pair is from the same person or not: ¥ = 1 means from the same
person and Y = 0 means otherwise. We want to estimate the probability of
the pair belonging to the same individual given certain face and clothes scores
P(Y = 1|zs,2.). In linear logistic regression,

1

PY =1 c) =
( |1’f,fE ) 14+ exp(—wfxf — Wele — ’UJO)

(1)

where @ = [wy, we, wy] are parameters to be learned. The best w, which maxi-
mizes the log-likelihood of a set of training examples, can be obtained iteratively
through Newton-Raphson’s method.
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In testing, for any pair of face recognition and clothes recognition scores, we
plug them into equation (1), and get P(Y = 1|zy,z.), i.e., the probability of
being from the same person. Other cue combination algorithms, such as using
Fisher linear discriminant analysis and mixture of experts ([4]), were also experi-
mented. They gave close results for our application though the mixture of experts
method is potentially more powerful. Linear logistic regression is adopted here
because it is simple and works well. It also provides a good way for handling the
cases of face or clothes information missing.

3.1 Recognition When Face or Clothes Are Missing

While one advantage of using clothes context is to help improve human recog-
nition accuracy, another is that it makes human recognition possible when face
recognition results are unavailable (e.g. faces are occluded or profile to back view
of faces). Clothes information can also be missing due to occlusion or become
unreliable for images taken on different days (events) or when different people
in the same picture wearing the same clothes. Hence we need to handle the case
of face or clothes information missing. The similarity measurements under all
the situations (with face recognition only, clothes recognition only, and face and
clothes combined) need to be compatible so that they can be compared directly
and fairly.

Using the same notations as in the previous section, when face or clothes
scores are missing, P(Y = 1|z.) or P(Y = 1|zy) needs to be computed. The
compatibility requirement is satisfied if P(Y = 1|z¢) and P(Y = 1|z.) are the
marginal probabilities of P(Y = 1|z, z.). By Bayesian rule and equation (1),

1
;14 exp(—wWsTf — Weke — W)

PY =1|z.) = / P(xy|zc) day

If we assume that zy = C - z. + Cy for some constant C' and Cy, i.e.,
P(zy|ze) = 6(zy — Cxe — Cp), then

1
1+ exp(—wy - C -z —wy - Cop — wee — wp)
1
_ (2)

1+ exp(—wlze —wy()

PY =1|z.) =

Therefore, P(Y = 1|z.) is also in the form of a logistic function, so does P(Y =
1|zf). The parameters of these logistic functions such as w, and w{ can be
estimated in a similar fashion to those of equation (1).

Note that equation (2) is derived assuming that face scores are a linear
function of clothes scores so that only clothes information determines the sim-
ilarity between a pair of person images. This could be a reasonable assump-
tion when face information missing. We tested the compatibility of computed
P(Y =1|zs,2.), P(Y = 1|zy) and P(Y = 1|z.) in experiments.
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3.2 Handling the Case of People Wearing the Same Clothes

People wearing the same (or similar) clothes poses difficulties for incorporating
clothes information. Two persons in one picture usually are not the same indi-
vidual. Thus if in one picture, two persons wear the same (or similar) clothes, we
need to discard the clothes information. The clothes information also becomes
possibly misleading when the pair-wise similarity between other clothes pieces
and either of those two is high. The clothes information is therefore treated as
missing for these cases, and similarities are computed as in section 3.1.

4 Human Clustering with Hard Constraints

The previous sections depict a clothes recognition algorithm as well as how to
integrate clothes context with faces into one similarity measure. These pair-wise
similarity measurements provide grounds for clustering. This section focuses on
the clustering algorithm and how to put logic-based contexts (such as some hard
constraints) into clustering.

4.1 Spectral Clustering

Spectral clustering methods cluster points by eigenvalues and eigenvectors of a
matrix derived from the pair-wise similarities between points. Spectral clustering
is often looked as a graph partitioning problem: each point is a node in the graph
and similarity between points gives weight of the edge. In human clustering, each
point is a person’s image, and similarity measurements are from face and/or
clothes recognition.

One effective spectral clustering method used in computer vision is normal-
ized cuts [10], with generalization in [15]. The normalized cuts criterion is to
maximize links (similarities) within each cluster and to minimize links between
clusters. Suppose that we have a set of points S = {s1,...,sn}, and we want
to cluster them into K clusters. Let W be the N x N weight matrix with each
term W;; being the similarity between points s; and s;, and let D denote the
diagonal matrix with the i-th diagonal element being the sum of W’s it" row
(i.e. the degree for the i*" node). The clustering results can be represented by a
N x K partition matrix X, with X;, = 1 if and only if point s; belongs to the k"
cluster and 0 otherwise. Let X; denote the I** column vector of X, 1 < < K.
X, is the membership indicator vector for the I*" cluster. Using this notations,
the normalized cut criterion is to find the best partition matrix X* which can
_ 1 vk XTwx,
= K 2i4=1 XTDxX;

Relaxing the binary partition matrix constraint on X and using Rayleigh-Ritz
theorem, it can be shown that the optimal solution in the continuous domain are
derived through the K largest eigenvectors of D~Y/2W D~1/2 Let v; be the i*"
largest eigenvector of D=Y2WD~1/2 and VK = [v1,vs,...,vk]. Then the con-

tinuous optimum of €(X) can be achieved by X[, ,;, the row normalized version

of VE (‘each row of X,,,; has unit length). In fact, the optimal solution is not

maximize e(X)
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unique - the optima are a set of matrices up to an orthonormal transformation:
{X} 0 0TO = Ik}, where Ik is the K x K identity matrix.

In [15], a repulsion matrix is introduced to model the dissimilarities between
points. The clustering goal becomes to maximize within-cluster similarities and
between-cluster dissimilarities, but to minimize their compliments. Let A be the
matrix quantifying similarities (affinity matrix), R be the matrix representing
dissimilarities (repulsion matrix), and D4 and Dpg be the diagonal matrices
corresponding to the row sum of A and R respectively. Define W = A— R+ Dpg
and D = Dy + Dg, then the goal is to find the partition matrix X which can
K XIwx,
=1 xI'DX,
largest eigenvectors of D~1/2W D~
a repulsion matrix.

Since a continuous solution can be found by solving eigensystems, the above
methods are fast and can achieve global optimum in the continuous domain.
However, for clustering, a continuous solution needs to be discretized. In [15],
discretization is done iteratively to find the binary partition matrix Xj;, . ;e
which can minimize || Xaiscrete — X5n:O||%, where |M|| is the Frobenius norm

of matrix M: |M|| = /tr(MMT), O is any orthonormal matrix, and X7, ,,0
is a continuous optimum.

maximize % > . The continuous optima can be found through the K

1/2 in a similar fashion to the case of without

4.2 Incorporating More Context Cues: Enforcing Hard Constraints

Some logic-based contexts can be expressed as hard constraints, e.g., one use-
ful negative hard constraint is that different persons in one picture should be
different individuals. It is desirable to be able to enforce these constraints in hu-
man clustering. However, incorporating priors (such as hard constraints) poses
a challenge for spectral clustering algorithms. In [16,15], a method to impose
positive constraints (two points mush belong to the same cluster) was proposed,
but the constraints may be violated in the discretization step. To the best of
our knowledge, there is no previous work which can enforce negative hard con-
straints (two points cannot be in the same cluster) in spectral clustering meth-
ods. This section explores how to enforce hard constraints, negative as well as
positive.

Using the same notations as in section 4.1, if s; and s; are in the same
picture, we want to make sure s; and s; are in different clusters. To achieve
that, the corresponding term in the affinity matrix A;; is set to be zero. A
repulsion matrix R is also used to enhance the constraints: R;; is set to be 1 if
s; and s; cannot be in the same cluster. However, this is not enough: there is no
guarantee that the hard constraints are satisfied. We resort to the discretization
step.

A constrained K-means algorithm is presented in [13] to integrate hard con-
straints into K-means clustering. We want to take advantage of that: we propose
to use constrained K-means in the discretization step to enforce hard constraints.
Our work was inspired by [8], where K-means was used in the discretization step.
But in [8], a repulsion matrix was not used, the use of K-means with a repulsion



Context-Aided Human Recognition — Clustering 391

matrix was not justified, regular K-means instead of constrained K-means was
used, and therefore no constraints were imposed.

In the following, we will first justify the use of K-means (with or without a
repulsion matrix), and therefore the use of constrained K-means. We take each
row of X .. as a point, and perform K-means clustering 2. If the i** row of
X7 . belongs to the k*" cluster, then assign the original point s; to the k'
cluster. We argue that this K-means clustering can achieve as good results as

. o . . * . . . . . _ 2
the best partition matrix X, ..., minimizing || Xaiscrete — X 5 0l1%-

Proposition 1. For any orthonormal matrix O, row vectors of X! ,.O and

conti

X .+ have the same K-means clustering results under the following condition:
if ¢; is the I*" initial center for X7 ,;, then ¢O is the I' initial center for
X:ontzO

Proposition 2. Suppose X, ..... and O* are the discrete partition matrix and
rotation matrix minimizing || Xgiscrete — XJ5,,0]?- If rows of K x K identity
matrix I are taken as cluster centers, then one iteration of K-means clustering
on row vectors of X’ ..O* achieves the same clustering results as what repre-
sented by partition matrix X7, .,..,.. Further, if | X5, . —XZ* ..O*|? is small,
then the cluster centers will not go far away from rows of I, and therefore the
K-means clustering on rows of X7 ..O* will converge to the same clustering

results as X, . ere-

conti

x o017 is small, and rows of
(O*)~1 are taken as initial cluster centers, then K-means clustering on X7 ..
achieves the same results as X7, .,.. Small || X5 . —X* O*||? means that
the points actually form good clusters, otherwise no clustering algorithm can
work well. A good approximation of (O*)~! can be found by finding orthogonal
vectors among rows of X} ...

K-means clustering on rows of X7 .. with proper initializations (or through
multiple initializations) can achieve as good results * as minimizing || X giscrete —
X7 .::OlI%. On the other hand, hard constraints can be enforced by constrained
K-means. So to incorporate hard constraints, K-means is a better discretization
method.

Using constrained K-means in discretization step is to take row vectors of
X i as points and run constrained K-means on them. In each iteration of the
constrained K-means algorithm [13], when a point is assigned to a cluster, two
criteria are used: (1) distance to the center of the cluster; and (2) whether the
hard constraint is satisfied. A point is assigned to the closest cluster not violating
hard constraints. Therefore, the constrained K-means guarantees that the hard

constraints are satisfied.

From propositions 1 and 2, if || X}, . e — X2

2 One might wonder what the difference is between performing K-means clustering
on the original points and here at the discretization step. K-means clustering can
work here because previous steps in spectral clustering have possibly transformed
non-convex clusters into convex clusters (See more examples in [8]).

3 In [17], similar observation is presented through simulation, for the case of regular
K-means and without a repulsion matrix.
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5 Experiments

Experiments are performed on real consumer photos. Collections from three
families are used (Table 1). Face detection ([2]) is first run on these photos, and
persons’ identities are manually labeled to provide ground truth for evaluation
(only those individuals with 8 or more pictures are labeled). The data include a
variety of scenes such as vacations in theme parks, a group of friends mountain
climbing, having parties, fun activities at home, and children’s sports event.

5.1 Proposed Clothes Features vs. Color Histogram

The proposed clothes features (sections 2.2 and 2.3) are compared with color his-
tograms (using x? distance in CIElab space). To make the comparison fair, the
same clothes detection and segmentation method (section 2.1) is used.
Figure 3(a) shows the results by receiver operating characteristics (ROC) curves
on five days’ images (from families 1 and 2), with around 100 pictures. Any pair
of clothes pieces from the same person the same day are considered as a positive
example, and any pair of clothes pieces from different people are considered as
a negative example. These results show that the proposed method outperforms
color histograms. More detailed studies reveal that the advantages of the new
feature representation are more dominant when lighting condition changes.

5.2 Integrating Clothes and Hard Constraints with Face
Recognition

Clothes recognition results are to be combined with face recognition to provide
pair-wise similarity measurements for clustering. Raw face scores are obtained
from a face recognition module ([3,5]). Logistic regression is used to combine
face and clothes recognition results (section 3). The parameters of those logistic
functions are learned using data from another family with around 200 faces and
clothes pieces.

Figure 4 shows an illustrative example using images from a children’s party.
Figure 4(b) is from face recognition only. Figure 4(c) gives results using addi-
tional contexts (clothes recognition and enforcing the constraint that different
persons in one image must belong to different clusters). Five clusters are used,

Table 1. Summary of image data. Time span of each collection is shown in the second
column. The third column gives the total number of days when the pictures were taken.

number| number of {number number of number of faces
time span of pictures |of faces| persons
days |with person|labeled | (clusters) for each person
family 1| Apr-Aug 2002| 13 182 342 8 126,68,45,35,26,16,15,11
family 2|May-Nov 2003| 14 149 224 16 42,16,16,16,16,14,13,12,11,
11,11,11,10,10,9,9,8
family 3|May-Dec 2002| 22 165 203 3 85,69,49
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Fig. 3. (a): ROC curves: the proposed clothes features (EER: 20.1%) vs. color his-
tograms (EER:28.3%). (b), (c), and (d): clustering results on family collections 1,
2, and 3 (Table 1), respectively. Blue dashed (with '+’): face recognition only; red
dashdot (with "*’): clothes combined with faces, but without constraints; green solid
curves (with ’0’): clothes and faces combined, and with constraints enforced. The most
upper-right points of blue dashed (with ’+’) and red dashdot (with "*’) curves corre-
spond to the number of clusters being one, and from right to left with the increase of
number of clusters. The minimum number of clusters for all the samples to satisfy hard
negative constraints is displayed on the title ‘'minCluster(CK)’. The first point (from
top right) of each green solid curve (’0’) gives the results for that minimum number of
clusters. The dashed curve in each graph connects results under that minimum number
of clusters. ’Samepair’ and ’Diffpair’ on the title mean the total number of positive and
negative pairs, respectively. (e): results of adding positive constraints. The vertical
bars on the curves give standard deviation (from 30 runs for each fixed proportion).

which is the minimum number of clusters in order to satisfy the hard constraint.
Figure 4 illustrates the benefits of using contexts. For instance, in the top row
of Figure 4(b), there are faces from persons "M’ and 'R’, and two faces from one
image are in the same cluster ("R 14’ and "M I4’). This is corrected by using
contexts as shown in Figure 4(c).

For images collected on multiple days, the affinity matrix is constructed
as follows. For any pair of person images, if they are from pictures taken on the
same day, both face and clothes information are used; otherwise, only face infor-
mation is used. Clothes information is treated as missing if clothes are occluded
or different people wear similar clothes. To enforce the negative hard constraint
that two persons in one picture must be different individuals, repulsion matrix
and constraint K-means are applied.

We use Rand index ([13]) to characterize clustering performance. Suppose
we have N pieces of person images, any clustering results can be viewed as a
collection of N x (N — 1)/2 pairwise decisions. A false alarm happens when a
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Fig. 4. An illustrative example. (a): two sample images ('I1’ and ’14’) with face detec-
tion (in small red circles) and clothes detection (in green lines). (b): clustering results
from faces only. Each row denotes one cluster. The first letter on top of each face gives
the ground truth identity of the face, and the last two letters show which image it
comes from. (c): results from faces plus contexts (clothes recognition and the hard
constraint that two faces in one image belonging to different clusters).

pair actually from different individuals, but the algorithm claims they are the
same individual. A true positive (detection) is when a pair actually from the
same individual and the algorithm also claims so.

Clustering performance varies with the number of clusters. We experiment
with different number of clusters: from one cluster to two times of the ground
truth number of clusters (see Table 1). In applications, the desired number of
clusters may be input by the user. Figure 3(b), (c), and (d) show the results
on family collections 1, 2, and 3, respectively. From these curves, we can see
that (1) clustering performance generally improves with the use of clothes; (2)
the compatibility of logistic functions in section 3 is verified to a certain degree
since similarities from face and clothes and similarities from face only are used
in one affinity matrix, which outperforms the affinity matrix from face only;
(3) hard constraints can help improve the results. Note that the performance
improvements due to hard constraints are more dominant in Figure 3(b) and
(d) than in (¢). One possible reason is that the set of labeled faces from family
2 belong to 16 individuals. So for any random pair, the probability of belong-
ing to different individuals is high, and hard negative constraints provide less
information.

Positive constraints (meaning that a pair of person images must belong to
the same individual) can also be applied. In practice, positive constraints are
available through user feedback. Here we randomly choose a certain number of
positive pairs to simulate the situation. Figure 3(e) shows experimental results
on images from family 2. The ground truth number of clusters, 16, is used. Fig-
ure 3(e) indicates that positive constraints can improve clustering performance,
especially for the detection rates.
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6 Conclusions and Future Work

In this paper, we have developed a clothes recognition method which can work
well for different types of clothes (smooth or highly textured), and under imag-
ing condition changes. A principled way is provided to integrate clothes recog-
nition results with face recognition results, and the cases when face or clothes
information is missing are handled naturally. A constrained spectral clustering
algorithm, which can utilize face, clothes and other context information (e.g. per-
sons from one picture should be in different clusters), has been presented. Hard
constraints are enforced in the spectral clustering algorithm so that logic-based
context cues and user feedbacks can be used effectively. Picture-taken-time is
used when face and clothes recognition results are combined. Experiments on
real consumer photos show significant performance improvements. Future work
includes exploring how to select the number of clusters automatically, although
in human clustering applications, it can possibly be input by users.
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