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Abstract. We present a novel method for dimensionality reduction and recog-
nition based on Linear Discriminant Analysis (LDA), which specifically deals
with the Small Sample Size (SSS) problem in Computer Vision applications. Un-
like the traditional methods, which impose specific assumptions to address the
SSS problem, our approach introduces a variant of bootstrap bumping technique,
which is a general framework in statistics for model search and inference. An in-
termediate linear representation is first hypothesized from each bootstrap sample.
Then LDA is performed in the reduced subspace. Lastly, the final model is se-
lected among all hypotheses for the best classification. Experiments on synthetic
and real datasets demonstrate the advantages of our Bootstrap Bumping LDA
(BB-LDA) approach over the traditional LDA based methods.

1 Introduction

As a statistical method for dimensionality reduction and classification [1], Linear Dis-
criminant Analysis (LDA) has been widely employed in Computer Vision research
(e.g., face and gait recognition [2}3/4,l5]). Since LDA assumes multiple Gaussians
with equal covariance, its success largely depends on accurate estimates of the model
parameters (class means and common covariance). However in most Computer Vision
applications, the sample size NV is relatively small in comparison to the input dimension
D. The traditional Maximum Likelihood (ML) estimates show poor convergence to the
true parameters due to the curse of the dimensionality. Furthermore, when N < D, the
ML estimate of the common covariance Y is even singular (the LDA solution is under-
constrained due to the non-existence of X ~1). These two issues together constitute the
so-called Small Sample Size (SSS) problem in LDA.

The traditional LDA methods [6}12,13L[7,18]] focus only on the second issue of a sin-
gular 5, but ignore the accurate estimate of the true model parameters. Evenif N > D,
as long as IV is not much larger than D, the SSS problem persists. From this point of
view, the dual impact of the SSS problem is crucial to the success of LDA in Computer
Vision applications.

In this work, we propose to deal with the SSS problem from a more general aspect
with the goal of accurately estimating the model parameters. Instead of imposing ex-
plicit assumptions to simply invert the singular 5, we introduce a variant of a general
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statistical framework, bootstrap bumping, which creates a hypothesis from each boot-
strap sample (a subset of examples) and selects the best model according to a target
criteria. The original bumping technique was developed in [9] for finding better lo-
cal minima, resistant fitting, and optimization under constraints. We develop the idea
to deal with the SSS problem by hypothesizing an intermediate linear representation
from each bootstrap sample and choosing the final model (representation) with the best
recognition performance. This extension not only has the same asymptotical property as
the original bumping procedure, but now improves the estimation accuracy and implic-
itly handles the singularity problem of S in the SSS problem. We present experiments
on synthetic and real datasets to clearly show the advantages of our approach over the
traditional LDA methods.

In the remainder of this paper, we first discuss the background and related work of
LDA and bootstrap bumping in Sect. 2l Then we describe our proposed approach in
Sect. Bl which specifically deals with the SSS problem in LDA. Lastly, experimental
results are presented in Sect. 4] followed by conclusions in Sect.

2 Background and Related Work

There are two different perspectives looking at LDA. Fisher’s LDA is defined by max-
imizing the ratio of the between-class and within-class scatter matrices (S and .S,,) in
a linear feature space [10,/11]. In Bayesian decision theory, LDA is defined for the case
of multiple Gaussians with equal covariance. The two approaches were shown to be
equivalent in [12] with S,, being the ML estimate Yand S, being derived from the ML
estimates of the class means. The mathematical description of both approaches can be
found in detail in [13]], which we omit here due to space constraints.

2.1 LDA and the SSS Problem

Although well-grounded in theory, LDA faces the challenge of the SSS problem in real
applications. Traditional methods only aim to solve the singularity problem of b)) by
imposing specific assumptions to simply invert 2.

The simple approach PINV-LDA [6] substitutes the inverse operation with pseudoin-
verse. The two-stage method PCA+LDA [2] projects the data in the nearly complete
PCA subspace to make the b)) projection just full rank. However, with a small num-
ber of examples, Y is unstable especially in those components with small eigenvalues
which are mostly emphasized in the inverse operation. Both methods of PINV-LDA and
PCA+LDA are sensitive to noise and small perturbations.

As one improvement, Enhanced Fisher’s Linear Discriminant (EFLD) [3] varies
the number of PCA components to regulate the projection of Y. This assumes that the
small components are not informative for classification, which may impose a perfor-
mance limitation. Another approach Direct LDA (D-LDA) [7] assumes the null space
of S, contains no useful information for recognition. However, as shown in our prior
work [14]], D-LDA is equivalent to directly taking the linear space of class means as the
LDA solution. It has severe limitations by ignoring the common covariance estimate b))
(or Sy,). Lastly, ) can be modified to avoid the singularity problem, such as 4ol
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in Regularized LDA (R-LDA) [Sﬂ With ¢ usually being a small scalar, R-LDA heav-
ily relies on the small components and even null components for recognition, which is
neither stable nor supported by the existing examples. For ¢ = in f, R-LDA is equiva-
lent to D-LDA by ignoring 5. Furthermore, R-LDA is computationally inefficient for a
large input dimension D since the full-rank matrix Y + ol isof size D x D and is to
be inverted in LDA.

Traditional LDA methods only focus on the singularity problem of > Systematic
attempts to reduce the variance of the ML estimates (for both class means and common
covariance) in the general SSS problem have not yet been reported. We address this
issue in our proposed framework of Bootstrap Bumping LDA.

Additionally there are approaches to address the model limitations of LDA, such
as methods to extract non-linear features in Quadratic Discriminant Analysis (QDA)
[[L3]] for multiple Gaussians with non-equal covariance, kernel-based Generalized LDA
(GLDA) [I15]], and Locally Linear Discriminant Analysis (LLDA) [[16]. Since more ex-
amples are usually required to constrain more complex solutions, these methods are
even more sensitive to the SSS problem. As a hybrid model of LDA and QDA, Oriented
Discriminant Analysis (ODA) [17] assumes the same as QDA of multiple Gaussians
with non-equal covariance, but extracts linear features by maximizing the Kullback-
Liebler divergence between classes. However its explicit explanation remains unclear
in Bayesian decision theory since quadratic features are inherently required under the
model assumption. As another modification, Optimal Linear Representation [18] al-
lows classifiers (e.g., k-Nearest Neighbor) other than thresholding (assumed by LDA)
by searching the solution space (a set of linear subspaces, or Grassmann manifold)
with regard to a searching strategy. But this heuristic approach lacks theoretical sup-
port from Bayesian decision theory. It is computationally expensive, as Markov Chain
Monte Carlo (MCMC) simulation is often employed, and it is even doubtful whether
such a search is bounded or stable in a high dimensional space with few examples.

2.2 Bootstrap Methods

The general bumping procedure was proposed in [9] as a method for model search and
inference. It is based on bootstrap resampling theory [19], which was originally used for
assessing the statistical accuracy of an estimator. A “bootstrap sample” is a “subset of
examples” randomly drawn with replacement from the original set of training examples.
It was shown that the empirical distribution of bootstrap samples can be used to approx-
imate the sampling distribution of random variables (e.g., variance of an estimator) to be
estimated from the observed data. Additionally, recent research demonstrated that the
bootstrap technique can be employed to improve the accuracy of an estimator, such as
bagging [20], boosting [21,122] (with an enhanced version called AdaBoosting [23,124]
which employs adaptive sampling and weighted voting), and bumping [9]. By averag-
ing the estimates from multiple bootstrap samples, bagging produces a new estimator,
which often has a smaller variance. In comparison, the boosting method improves the
classification performance by combining multiple weak learners, individually trained

" The original idea was to smoothly blend LDA with Quadratic Discriminant Analysis (QDA)
by adding the common covariance (scaled by o) to the individual covariance of each class.
Although not explicitly described in [8], R-LDA is often referred to X' 4 o in the literature.
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from a subset of examples. However, if we desire a single LDA classifier or a set of
LDA linear features for dimensionality reduction, the bagged (averaged) linear classi-
fier from subsets may not perform well, and the boosted classifier results in complex
decision boundaries, which is non-linear and is not applicable for dimensionality reduc-
tion. In this sense, both bagged and boosted LDA [25,126]] are no longer true “LDA”.

However, in our proposed approach, the bumping procedure [9] follows the para-
digm of hypothesis and test. Bootstrap samples are used to provide candidate models.
The procedure then selects the model which best explains the observed data according
to a target criteria. The method reduces the variance of the original estimates, while
preserving the same structure and interpretation. This ideally suites our need to address
the SSS problem in LDA.

3 Bootstrap Bumping LDA (BB-LDA)

The original bumping procedure [9] directly hypothesizes a model from each bootstrap
sample and selects the best model for a target criteria. However, this approach is not
directly applicable to the SSS problem in LDA. Because each bootstrap sample contains
even fewer examples, the SSS problem is more problematic for the LDA model directly
trained/estimated from bootstrap samples. Furthermore, the singularity problem of b))
in LDA is not yet addressed in the original bumping procedure.

Instead we propose a new bumping procedure called Bootstrap Bumping LDA (BB-
LDA). The approach first hypothesizes an intermediate linear representation from each
bootstrap sample. Then all of the training examples are projected into the representa-
tion space and analyzed by the classic LDA. The new procedure not only has the same
asymptotic property of convergence as original bumping, but now avoids the singular-
ity problem of Y and improves the estimation accuracy of model parameters in the SSS
problem. Our approach is significant in that it addresses the dual aspects of the
SSS problem in a general statistical framework without imposing specific assumptions
(as the traditional methods). It also preserves LDA interpretation by avoiding averag-
ing (bagging) or voting (boosting). We begin with a description of the general bumping
procedure in Sect.[3.T]and present our extension in Sect.[3.21

3.1 Bootstrap Bumping

Let z = (21,22, -+ ,2n) be the set of all labeled training examples. Assume a data
model depends on a set of parameters #, which is to be estimated by minimizing a
target criteria R as

6 = argming R(z,0). €))

The criteria R can be of any general form, such as median squared error for linear
regression, or the Maximum Likelihood (ML) estimates of the model parameters, which
have closed-form solutions. Ultimately, minimizing R obtains the target estimation 6
from the input data z

Suppose there is another working criteria Ry, which may be more convenient for
minimization (e.g., replacing least median square with least mean square). At a partic-

ular sampling rate/ratio o, each bootstrap sample z*!,z*2, - - - , z*P is randomly drawn
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from z with replacement (each sample has aN training examples). The estimate of 6
via Ry from each bootstrap sample is

6*0 = argmin, Ro(z*b, 0). 2)

The original bumping procedure [9] chooses 055 a5 the value among the 6*> which has
the smallest value in the target criteria R(z, 0) for the entire dataset z:

988 — é*g, where b= argmin, R(z, é*b) ®)

The working criteria 2y may be the same as the target criteria R, in which case the
bumping procedure simply estimates suboptimal parameters 6* from each bootstrap
sample (a subset of training examples) and selects the best 6* over all hypothesized
candidates. This has been shown in [9] to be useful for finding a better local minima.
For different working and target criteria [9]], the bumping procedure can also be used
for robust fitting (with Ry as the outlier-free version of R) and constrained optimization
(R as the unconstrained version of R).

Furthermore, the working criteria Ry needs to be “compatible” with the target cri-
teria R in order for the bumping estimate 658 to asymptotically converge to the true
model parameters 6. For the same criteria Ry and R, it has been proven in [9] that
the bumping procedure preserves the property of asymptotic convergence. For different
criteria Ry and R, compatibility should be carefully examined by considering the as-
ymptotic behavior of the procedure. Otherwise, the bumping procedure only provides
an approximation of R with a simple form Ry largely for the ease of computation.

3.2 Proposed Approach — Bootstrap Bumping LDA

The original bumping procedure was not designed to handle the SSS problem. With
regards to LDA, we choose the target criteria R as the ML solution, which measures
the misclassification rate on z for linear decision boundaries §. The minimization of
R has a closed-form solution by first obtaining the ML estimates of LDA from z and
then calculating the corresponding decision boundaries 6 (the linear projections and
thresholds). If we employ the same working criteria Ry = R, the original bumping
procedure hypothesizes linear decision boundaries 6*" from each bootstrap sample z*°.
However, since each bootstrap sample z** has fewer examples than z, when there are
not enough examples, the estimate 6*" is even more unstable than the original 6. The
impact of the SSS problem is magnified, not suppressed.

To deal with this issue, instead of directly estimating 6, we propose to first hypoth-

esize an intermediate representation space L** from each bootstrap sample z*’ as

L*® = argmin; R, (2", L). 4)

Here the new working criteria R,., measures the capacity of a given representation L
(e.g., linear, quadratic, etc.) for the bootstrap sample z*®, which we call the representa-
tion criteria. We want to choose the representation with minimum capacity (the simplest
representation), which still faithfully reconstructs the bootstrap sample and is compati-
ble with the model assumption. With regards to LDA, a linear subspace defined by z**
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is minimum in terms of capacity among all compatible representations. Therefore we
can directly replace Eqn. 4 with

L = LinearSpace(z*b). (5)

For other models, the representation should be chosen accordingly. For example, for
QDA a quadratic representation should be hypothesized from each bootstrap sample.

Then we follow the similar bumping procedure. we evaluate the discrimination per-
formance of the hypothesized representation L*® over the entire dataset z and choose
the representation with the minimum misclassification rate as in

[BB-LDA _ b where b= argmin, Rass(z, L) ©)

The new target criteria R4;; measures the misclassification rate of z with regard to the
representation space L*®, which we call the discrimination criteria. The target criteria
Rg;is can be easily evaluated using the best estimated model parameters 0% based on
the representation L*?

Rdis(z,ﬁ*b) = R(z, é*b), where 7
0 = argmin, R(z,60; L*?). (8)

As a constrained version of the original bumping criteria R in the representation space
L**, the modified criteria R is equivalent to first projecting z into L (e. g., correlating
with a linear basis in LDA), estimating the model parameters (e.g., ML), and lastly re-
constructing the parameters back to the original D-dimensional space (e.g., multiplying
the feature vectors with the basis ).

Lastly, we obtain the LDA solution of BB-LDA as the corresponding model esti-
mates for the selected representation space

QBB LDA é *b 9)

In essence, the approach seeks out the key prototype examples that best represent the
space of z for the purpose of discrimination. The BB-LDA algorithm is summarized in
Alg. [[l For any new example 2z, it can then be classified by projecting it onto the
reconstructed feature space and thresholding.

Our proposed approach addresses the SSS problem in a general statistical frame-
work. At a particular sampling ratio «, only a portion of examples are used to hypothe-
size a representation, which can ensure b)) being full rank in the projection space L* for
the entire dataset z. Since duplicate examples do not affect the representation, bootstrap
samples are drawn at a fixed size /N from z without replacement in BB-LDA for the
ease of analysis and implementation. The prior probability of each class is also main-
tained in sampling to ensure a fair representation. Furthermore because LDA is invariant
to the basis selection, a non-orthonormal basis T is used for simplicity, which is equiv-
alent to linearly correlating the entire dataset with examples in each bootstrap sample.
The smaller the sampling ratio «, the more compact the representation, and the more
examples left to generalize the model for discrimination. However, too few examples
negatively affect the representation power, which may in turn limit the upper bound for
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Algorithm 1. BB-LDA Algorithm

1: Randomly draw B bootstrap samples z**,z*2, - - -, z*P from z at the sampling ratio cv.

2: forb=1to B do

3: Let Ay = [27%, 23%, - - -, 2;%] be one basis of the linear subspace L.

4:  Project z in Ay as y, = AI'z. Run LDA with ML estimates on g to obtain the model

parameters, including the feature vector(s) wy and the threshold(s) ts.
Calculate the misclassification rate on y, based on the estimated model parameters.

end for

7: Choose the representation A, which has the minimum misclassification rate. Obtain the BB-
LDA solution §B8—£PA by reconstructing the feature vectors A,w and keeping the same
threshold ¢y.

AR

discrimination. The application-dependent sampling ratio o can be determined through
cross-validation to properly balance the representation and discrimination.

With regards to the the number of bootstrap samples B, the percentage of training
examples p covered by all bootstrap samples is p = 1 — (1 — a)”. At a given sampling
ratio a, B can be calculated for a specific coverage (e.g., p = 99.9%) with

B =log(1 —p)/log(l — a). (10)

While the traditional subspace LDA approaches (e.g., PINV-LDA, PCA+LDA) have the
time complexity of O(N2D) in the SSS problem, BB-LDA has the time complexity of
O(BaN?D). From Eqn. the worse case time complexity of BB-LDA occurs at
O(=log(1 — p)N2D) when o — 0, which is on the same order as the traditional
subspace LDA [6,12,13]]. Additionally, it is possible to reduce the computational cost of
BB-LDA with a smaller coverage p, which may be useful for extremely large datasets.

Since different working (R,.p) and target (R 4;5) criteria are used for representation
and discrimination, according to the bumping theory [9], R,., needs to be “compati-
ble” with Rg;s in order for our new procedure to asymptotically converge to the true
parameters. This can be proved by considering the compatibility between a linear rep-
resentation and LDA. At a fixed sampling ratio o, when the number of representative
examples aN > D (as in BB-LDA), the representation space is even larger than the
original input space (assuming linear independence among examples in each bootstrap
sample). Estimating an LDA model in each hypothesized representation in Eqn. [§] is
equivalent to directly applying ML in the original input space. Thus the bumping pro-
cedure is equivalent to LDA with ML estimates when N > D/«. Because of the as-
ymptotic convergence property of the ML estimates, this proves the compatibility of
our working criteria R, and farget criteria Ig;s.

Lastly, the bootstrap sampling process is not limited to be uniform. Parameterized
bootstrapping [27] can be utilized to accommodate the underlying structure of the data.
Other extensions, such as employing clustering or domain knowledge for bootstrap re-
sampling, are possible.

4 Experiments

We evaluated the performance of BB-LDA with both synthetic and real datasets in
comparison to traditional LDA methods in dealing with the SSS problem.
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Fig. 1. Results of synthetic experiments. With the best & € [0.25,0.5,0.75], BB-LDA outper-
formed traditional LDA methods when their assumptions were intentionally violated in (a), (c),
and (e), and yielded comparable performance when the assumptions were satisfied in (b) and (d).
As shown in (f), BB-LDA converges to the ML estimate with a large enough sample size.
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4.1 Results on Synthetic Data

In our synthetic experiments, two Gaussians with equal covariance were simulated
with equal priors in a D = 100 dimensional space for a range of sample sizes N =
[10 : 10 : 400]. The difficulty of the classification was controlled using a fixed Fisher
ratio of 4, which corresponds to a 97.7% Bayesian classification rate. Each configura-
tion (class means and common covariance) was simulated 25 times to report the average
recognition rate of the model with regards to the ground-truth data. We chose the per-
centage coverage p = 99.9% to determine the number of bootstrap samples, which
achieves good utilization of training examples and reasonable computational efficiency.

We first looked at the case of N < 100 (singular 5), which was previously focused
on by the traditional methods (PINV-LDA, PCA+LDA, EFLD, R-LDA, and D-LDA).
As shown in Fig. [[h, the EFLD recognition rates were hardly better than 50% for 3
selected percentage fits (85%, 90%, and 95%) of the simulated data, when the true fea-
ture vector lies outside the major PCA components (90% fit of the true data variance).
This is because EFLD assumes no information in the small components and discards
them to constrain the LDA solution. Similarly, D-LDA showed low performance in
Fig. Ik when a large portion of the true feature vector resides in the null space of .S},
(class means). For the remaining methods, PINV-LDA, PCA+LDA, and R-LDA also
performed poorly for a large N as they are sensitive to noise and small perturbations
due to the over-emphasis of small components in their solutions (Fig. [Ik).

As a comparison, at an appropriate sampling ratio «c, BB-LDA outperformed the
traditional methods in all the above cases (see Fig.[Th,c,e). Furthermore, when the model
assumptions of EFLD and D-LDA were satisfied as shown in Fig.[Ib and[Id, BB-LDA
still yielded comparable performance to the two methods. The valid case of PINV-LDA,
PCA+LDA, and R-LDA is not available due to their unstable nature.

Then we studied the performance of BB-LDA in handling the SSS estimation prob-
lem for the case (a), (c), and (d) with 100 < N < 400, which has enough examples
to avoid a singular 3. The sampling ratio was selected for the best average recognition
rate in the previous range of N < 100 with « at 0.5, 0.25, and 0.5. As shown in Fig.
[IIf, BB-LDA outperformed classic LDA in the lower end of the range of NV, due to rel-
atively few examples for the ML estimates to converge. In the higher end with enough
examples, BB-LDA showed the trend of convergence to ML. The results demonstrate
BB-LDA as a general method to deal with the SSS problem in various cases.

4.2 Results on Real Data

In our real experiments, we explored 3 datasets frequently used in Computer Vision
research for face and gait recognition: Yale face database [2], ORL face dataset [2§],
and the CMU gait database [29]. For each dataset, images were first aligned to control
position and scaling. Then they were down-sampled and tightly cropped to the region of
interest as shown in Fig.[2l For the gait database, two different types of MHI (overlay of
silhouette images with timestamps represented in pixel intensity) [30] templates were
created, which correspond the stride opening and closing phase of a walking cycle (Fig.
Rk and2ld). All traditional methods used in Sect. Il were evaluated except R-LDA due
to its inherit high computational complexity for a large input dimension (e.g., D = 1600
for images in the Yale face database). Cross-validation was employed to determine the
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Fig. 2. Sample images of 3 datasets. (a) Yale face database (15 subjects, glasses vs. no glasses).
(b) ORL face dataset (40 subjects). (¢) CMU Gait database (25 subjects, fast vs. slow walk) in
Type-1 MHI representation. (d) Corresponding Type-2 MHI Gait representation.
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optimal model parameters of BB-LDA (the sampling ratio o € [0.1 : 0.1 : 0.9] and the
best representation/classifier) and EFLD (the number of PCA components) with each
time 10% of examples drawn for testing. The same bootstrap coverage p = 99.9% was
chosen as in Sect. 4.1

The Yale face dataset includes 15 subjects and 11 images of each person across
various conditions (e.g., lighting, expressions, etc.). In addition to face recognition, we
examined the task of distinguishing people with glasses from people without glasses
(36 with and 129 without), a much larger set than the case of 36 images studied in [2].
We then examined face recognition using the ORL face dataset with 40 subjects and 10
images per person. Lastly, we looked at the CMU gait database of 25 subjects with 16
cycles extracted for each person (8 slow and 8 fast). Both identity and walking speed
recognition were performed over two types of MHI representation.

The comparative results of those experiments are summarized in Table [ Since
PINV-LDA and PCA+LDA mostly emphasize the small components, they are sensi-
tive to noise and yielded lower recognition rates. By adjusting the number of PCA
components, EFLD improved the performance of PCA+LDA and is the best among
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Table 1. Classification results of different LDA-based algorithms. Our proposed BB-LDA ap-
proach outperformed the other traditional LDA methods.

Yale - ID Yale - Glasses ORL - ID CMU - ID (24 sets) CMU - Speed (30 sets)
(11 sets) (36 sets) (10 sets) Type-1  Type-2  Type-1 Type-2

PINV-LDA 827 83.6 88.8 99.7 99.1 92.6 89.5

PCA+LDA 455 85.2 27.3 54.6 62.7 93.6 90.7

EFLD 90.6 89.7 92.3 100.0 99.7 97.0 95.3
(57 PCs) (85 PCs) (95 PCs) (90 PCs) (132 PCs) (318 PCs) (321 PCs)

D-LDA 70.3 72.0 79.8 71.8 76.3 77.4 65.8

BB-LDA 93.9 95.1 95.5 100.0 100.0 97.8 97.1

(a=0.3) (a=0.3) (=02) (=02) (=0.2) (=0.6) (a=04)

all the traditional methods. But this assumes the small components contain no infor-
mation for classification. Lastly, D-LDA imposes a significant performance limitation
by constraining the feature vectors to be in the linear space of S (class means). As
a comparison, our proposed BB-LDA approach gave the best classification rate in all
test cases. Only in CMU-ID (Type-1), EFLD yielded the same classification of 100%,
which is high due the simplicity of the task (MHI images of multiple cycles for one
subject are highly similar).

The performance advantages of BB-LDA come from the employment of a gen-
eral statistical framework of bootstrap bumping in dealing with the SSS problem. This
avoids the explicit assumptions in the traditional methods. By sampling a subset of
training examples to hypothesize a representation and selecting the best model for dis-
crimination over the entire dataset, our approach is capable of improving the estimation
accuracy in the SSS problem. The sampling ratio « provides a balance of examples for
representation and discrimination. In our real experiments, a small « value was used
in most cases, which suggests that only a few prototype examples were needed for
representation, while the rest can be used for discrimination. Both synthetic and real
experiments illustrated the advantages of BB-LDA in dealing with the SSS problem.

5 Conclusion

We presented a novel method of Bootstrap Bumping LDA (BB-LDA) to deal with the
SSS problem in Computer Vision applications. The method hypothesizes candidate rep-
resentations from each subset of examples (bootstrap sample) and tests over the entire
dataset for the best classification. As a general statistical framework, our approach is
capable of improving the estimation accuracy without imposing explicit assumptions.
The method asymptotically converges to the true LDA solution given enough examples
and outperforms the traditional LDA methods in dealing with the SSS problem. Both
synthetic and real experiments on several popular datasets showed the advantages of our
BB-LDA approach. In future work, we plan to address the model limitations of LDA
with more complex representations (e.g., non-linear) and investigate other applications
of BB-LDA (e.g., person detection).
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