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Abstract. We present a new way of constraining the evolution of a
region-based active contour with respect to a set of reference shapes. The
approach is based on a description of shapes by the Legendre moments
computed from their characteristic function. This provides a region-based
representation that can handle arbitrary shape topologies. Moreover, ex-
ploiting the properties of moments, it is possible to include intrinsic affine
invariance in the descriptor, which solves the issue of shape alignment
without increasing the number of d.o.f. of the initial problem and allows
introducing geometric shape variabilities. Our new shape prior is based
on a distance between the descriptors of the evolving curve and a ref-
erence shape. The proposed model naturally extends to the case where
multiple reference shapes are simultaneously considered. Minimizing the
shape energy, leads to a geometric flow that does not rely on any par-
ticular representation of the contour and can be implemented with any
contour evolution algorithm. We introduce our prior into a two-class
segmentation functional, showing its benefits on segmentation results in
presence of severe occlusions and clutter. Examples illustrate the abil-
ity of the model to deal with large affine deformation and to take into
account a set of reference shapes of different topologies.

1 Introduction

Incorporating global shape constraints into deformable models, which traces back
to pioneering works such as [I1[2], has recently received an increasing attention in
the context of active contours (see e.g. [3], [], [5], [6], [7] and references therein).
The standard approach consists in defining an additional prior term, based on
a similarity measure between the evolving shape and a reference one. A first
important issue that must be dealt with is the question of shape alignment. Pose
transformations (rotation, translation and scaling) are generally taken into ac-
count in an explicit fashion, which increases the number of d.o.f. of the problem,
and leads to systems of coupled partial differential equations (PDE’s). A second
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issue is the question of variability. Variations of the shape away from a reference
template are, in the majority of existing works, handled using statistical models,
even if a framework that accounts for geometric transformations of the reference
shape has recently been proposed in [6].

In this paper, we introduce a novel approach for image segmentation, which
combines a parametric representation of shapes with curve evolution theory to
constrain the geometry of an evolving active contour toward a given reference
shape or a set of reference shapes. More specifically, we consider a parametric
description based on Legendre moments computed from the characteristic func-
tion of a shape. Such a representation is region-based, does not depend on im-
plementation considerations and allows taking into account arbitrary topologies.
Based on this shape description, we define a shape prior as a distance between
the evolving curve and a reference shape. This framework naturally extends to
the multi-reference case, i.e. when multiple reference shapes are simultaneously
considered. Moreover, we exploit the fact that moments convey all geometric
information about shape to define a canonical representation, i.e. a configura-
tion in which two shapes differing by an affine transformation have identical
descriptors. Our shape prior is thus intrinsically affine-invariant. This naturally
avoids the pose estimation problem and allows the model to handle geometrical
variabilities. Finally, a unique evolution equation for the active contour is de-
rived using the formalism of shape derivative and classical differentiation rules
as proposed in [§] by Aubert et al. Thanks to the ability of the model to change
topology during evolution, automatic initialization of the active contour is also
possible, whatever the topology of the final target shape.

The reminder of the paper is structured as follows. In Sec. 2] we introduce our
new multi-reference, affine-invariant moment-based shape prior. The associated
evolution equation is given in Sec. Bl In Sec. [d] we illustrate the benefits of the
new prior on the segmentation of objects with various topologies, undergoing
large affine transformations, in presence of occlusions and clutter.

2 An Affine-Invariant, Multi-reference Shape Prior

2.1 Encoding Shapes with Moments

Denoting by §2;, the inside region of a shape, the reqular or geometric moments
of its characteristic function (which is binary) are defined as:

My, = // xPyldxdy (1)
Qin

where (p,q) € Z2, and (p + q) is called the order of the moment. Any shape,
discretized on a sufficiently fine grid, may be reconstructed from its infinite set
of moments. Hence, when computed from the characteristic function, moments
naturally provide region-based shape descriptors. However, as is well-known [9],
a more tractable representation for reconstruction purposes is obtained by using
an orthogonal basis, such as Legendre polynomials:
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Ap.q = Cpg // y)dxdy, (2)

for (z,y) € [—1,1]%, where Cpy = (2p+ 1)(2¢ + 1)/4 is a normalizing constant,
and for z € [-1,1]:

Zapkx @y )

2Pp| dxP

Note that there is a linear relationship between Legendre moments and regular

moments: S
Apg = Cpq Z Z Apulgo My v. (4)
u=0v=0

In practice we limit this representation to a finite order N and we define the shape
descriptor as the D-dimensional vector of Legendre moments: A = {), 4, p+¢ <
N}, where D = (N + 1)(N + 2)/2. Note that this compact description can take
into account arbitrary shape topologies.

2.2 Shape Prior Based on Legendre Shape Descriptors

Let us first consider the case where the evolving active contour, I, is constrained
to evolve toward a single reference shape. It is natural to define a shape constraint
as a distance d in terms of shape descriptors. Equivalently, in a probabilistic
framework, we define a shape prior energy as:

Jprior = —log (P(A)), ()

with:
P(A) o< exp (—d(A(2i), X)), (6)

where §2;,, is the inside region of I', and X"¢! is the set of moments of the ref-
erence object. In the simplest case d is a quadratic distance. Of course, more
elaborate expressions can be used to model arbitrarily complex priors. For ex-
ample, when N,.; reference shapes are simultaneously considered, the above
model is extended by defining P(A) as a mixture of pdf’s. When d is quadratic
and all shapes are equiprobable, this leads to a mixture-of-Gaussians:

LI = X2

In this paper, we will consider multiple-reference models involving different fized
shapes. Let us notice that eq. (@) is very close to the classical Parzen density
estimator, thus the model readily extends to the definition of statistical shape
variabilities, in the spirit of [10].
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2.3 Handling Pose and Geometric Variabilities

Dealing with affine transformations allows to solve the alignment problem since
translation, scaling and rotation are included in this group. Moreover, since
transformations such as skewing and reflection are also included, this allows the
introduction of geometrical variabilities in the model. For this purpose, we define
what we call a canonical representation. This is, in fact, a change of variables in
which two original shapes, differing by a certain transformation, are represented
by the same set of moments. Then, using such a representation for both the
reference and the evolving shape straightforwardly makes the model invariant
w.r.t. the transformation in question. The advantage of this approach is that the
change of variable is defined by closed-form expressions involving only geometric
moments, i.e. the data at hand during the optimization stage. No additional
optimization over pose parameters is necessary.

For example, in the case of scaling and translation, the canonical represen-
tation of a shape is obtained by aligning its centroid, (z,y), with the center of
the domain and normalizing its area, |{2;,], to a constant, 1/8. This amounts
to using the normalized central moments n, 4 instead of the M, ,’s in ), as
proposed in [11].

(z —2)P(y —y)?
77P,q // /3|Q (p+q+2)/2 d$dy, (8)
Mo 1
ith o= Yo, d Q2] = M
wi T = Moo’ y Mo . and | | = Moo. 9)

s

In the more general case of affine invariance, our approach is inspired by
the image normalization procedure [I2]. Consider the so-called compaction al-
gorithm, which consists first in aligning the ellipse-of-inertia of the shape with
the axes of the coordinate system, then, in applying a non-isotropic scaling to
make this ellipse circular. It can be shown [I2] that two shapes differing by an
affine transformation yield the same compact shape, up to a rotation. Compen-
sating for this rotation, we obtain a normalized shape, which is identical for
all affinely-related shapes. Hence, image normalization naturally provides our
canonical representation. Image normalization itself amounts to an affine trans-
formation, i.e. a translation followed by a linear transformation which can be

decomposed as:
cosy sinvy i 0 cosf sin@ (10)
—sinycosy | | 0lz2| | —sinf cosf
As already mentioned, the parameters of the canonical representation are given
by closed-form expressions involving geometric moments. Following [9] and [12],

we have: ) )
0= 23,tan2 ( Y11 > (11)

V2,0 — V0,2
where atan2 is the usual four-quadrant inverse tangent,

(2,0 +10,2) £ \/(Vz,o —12)? +4vi,
11/2 = 2 (]‘2)
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where the v, ,’s are the second-order central moments of the original shape, and

M¢f 5+ MS§ T

v =tan™! <— M;i . MZ?) + (1= sign(Mg s + M 1)), (13)
where the My ,’s are the central moments of the compact shape. Image normal-
1zation, however does not handle reflection. Since reflection only affects the sign
of moments for p odd (reflection w.r.t. y axis) or for ¢ odd (reflection w.r.t.
axis), we choose, without loss of generality, to fix the sign of the third-order mo-
ments. Affine-invariant moments, yielding the desired canonical representation,
are finally defined in the following equations:

Mo = (sign (7)) " - (sign (7s)) " - (14)

where:

wtw
~A (l1.lz) 4

e = ()2 |) (uto+2)/2
x —x)cosf + (y — y)sin0) ((y—y)cosl — (x —x)sinb) . )u
cosy + sin
< /g ( Vi ! Vi !
" < y—y)cosl — (z — x)sin ) ((x — z) cos 0 + (y — y) sin ) sin’y) dedy.

Vi s Vi
(15)

Note that a simpler model, that only handles rigid transformations may readily
be obtained by setting v =0 and I3 =l =1 in (IH]) .

Fig. 1. Reconstruction of shapes from their affine-invariant moments (see text)

Replacing M, , by nﬁq in (@), we obtain an affine-invariant descriptor that

we will denote by A4. Fig. () shows examples of reconstruction of four shapes
from their affine-invariant descriptor up to the 45th order. The four initial letters

! Handling reflection is still necessary in that case, to avoid ambiguity in the determi-
nation of 6.
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F shown on the upper row are similar up to affine transformations. As it can
be seen on the lower row, the four reconstructed shapes are the same. This
corresponds to the canonical representation and illustrates the invariance of the
proposed descriptor.

Using A4 instead of A in (B]), we define a shape prior which benefits from
the affine invariance of the descriptor. This shape constraint, based on the char-
acteristic function, handles complex topologies, does not rely on a particular
implementation and is intrinsically invariant w.r.t. affine transformations: the
prior has a closed-form expression depending only on moments.

3 Active Contour Evolution Equation

The evolution equation for the boundary of 2;, can be derived from the mini-
mization of Jyi0r using the shape derivative framework [§].

3.1 Single-Reference Model

Let us first focus on the case where the shape constraint is a quadratic distance
to as single reference shape, described by A"/ i.e.:

p+q<N

Tprior(Qin(0)) = Y (Apg(Qin(t)) = ApT)?. (16)

p,q

When the descriptor is invariant w.r.t. translation and scaling, A and A"/
are computed from normalized central moments (g, i.e.:

P q
/\qu = Cpq Z Z ApyGguTu,v- (17)

u=0v=0

Applying the strategy described in [§] in order to minimize Jp,;0r leads, in this
particular case, to the following flow (see [13] for details):

u+v<N 2
Z Au'v ( uv x Y, ant) + Z Busz'L (:17, y)) N7 (18)
~ ~ =0 4
VpT’ioT

where A is the inward unit normal vector of I" and:

pP+q<N
A =23 O =5 Contpt (19)
L (e—2)"(y—y)

Huyo(z,y, 2in) = |32 |(utv+2)/2 (20)
UL Nu—1,0 + V.Y Nuw—1  (UW+V+2) 0w

Buwo = ; ’ - L (21)

B2|Qin|? 2[02in |

—UNu—1,v —V.Nu,v—1

Buvl = ) Bu’v2 = ) (22)
B2|Qin|? B2|0inl?

Lo = 1, L = Z, Lo = Y. (23)
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When taking into account affine invariance in the prior, i.e. using A4, we
obtain (see [13] for details):

or utv<N N N “ v 9
S A (s (7)) (siem (7)) .(H;ﬁngm.Li) N, ()

u,v 1=0

~ ~ i
Vprior
where the expressions of éém are given in [I3] and:
p+g<N
A A Aref
Ay =2 > (g = 2e?).Craapuaa, (25)
p.q
ga ()"
uv (lBQinl)(u+v+2)/2
o (((x —x)cosf+ (y —y)sind cosy + ((y —y)cos@ — (x — x)sin 9) sin’y> . (26)
\/11 \/l2
8 (((y —y)cosd — (x — z)sinf) cosy— ((x —x)cosO+ (y — y)sind) sin’y)
Vi2 Vi
Lo = 17 Ly = T, Ly = Y, (27)
Ls=a* Li=y? Ls =y, (28)
Le = 2% Ly =y*, Ls = 2%y, Lo = xy°. (29)

3.2 Multi-reference Model

Let us now consider the multi-reference case. For the sake of conciseness, we
present the case of translation and scale invariance, the case of affine invariance
being similar. Taking the log in eq. (@) and differentiating leads to an expression
similar to (&), but with a different A, , factor:

a[‘ u+v<N ) 2
ot = Z Aumvulm (Huv (fﬁ, Y, *Qint) + Z Buvi-Li (x, y)) Nv (30)
u,v 1=0

~ ~ -

VpT’ioT

where the expressions of Hy,, By and L; are given by equations (20) to (23)).
The Am}j“’ factor is a weighted average of the individual factors, Ay, com-

puted for each reference shape descriptor )\zg)f from (I9):
NTef ref (|2
Auv M= § A(k)uv exp ( 202 ® . (31)

Nyey _HA_ArefHZ
k=1
2 2 (k>

In other words, the force induced by the minimization of Jp, ;o in the multi-
reference case is a weighted average of the individual forces directed towards each
reference shape. Note that the weights decay exponentially with the distance in
terms of shape descriptors between the evolving curve and the reference shape.
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3.3 Implementation

Both the models and the derivation of the active contour evolution equation
are independent from any implementation consideration. Consequently, (I8)) or
[24) may be implemented using either a parametric approach, such as spline-
snakes [14], or the non-parametric level set formalism [I5]. We use here the latter,
which naturally handles changes of topology.

4 Application to Image Segmentation

We now address the general problem of two-class segmentation. Our purpose
being to illustrate the behavior of the novel prior term, we choose a standard
data functional, which was first introduced by Chan and Vese in [16]:

Jaata(2in, Qout) // (z,y) — pin) dady + // I(z,y) — pout) dady, (32)
Qin Qout

where ft;, (resp. fiout) is the (unknown) average intensity in the inside (resp. out-
side) domain, (2;,, (resp. 2out), and I(z,y) is the intensity value of the pixel. Its
differentiation may be cast in the general framework presented in [8]. Minimizing
the total energy:

J(anv Qout) = Jdatu<9ina Qout) + aJprior(Qin)u (33)
we obtain: ar()
t
ot = (SI - Nin)Q - (I - Nout)i+av;wior)Na (34)
Vdata

where Virior is defined in (I8), @4) or BU) and pin, pour are computed after
each iteration [16].

4.1 Single-Reference Model

We illustrate the behavior of our algorithm on the real image of a partially
occluded rabbit against a cluttered background (Fig. B]). We first evolve the
curve with the region-based energy ([32) and an additional standard curvature
component. The result (Fig. Bb) is clearly sensitive to the presence of clutter
and occlusion. We then refine this result, replacing the curvature term by the
shape prior invariant w.r.t. translation and scaling, i.e. evolving according to
BA) with Vipior given by (I8). We obtain the final result shown in Fig. Bc. The
order of the model, IV, is chosen such that the Normalized Mean Squared Error

(NMSE) between the reference shape, shown in Flg 2 (leftmost image), and the
reconstruction from its descriptor, given by Zp 0 2n—0 ;"fq oPr—q(7)Py(y), is
less than 10%. In the present case, we obtain N = 40.

We next consider topologically more complex objects (Fig. 2]) against cluttered
background and with occlusions (Fig.H]). As in the previous experiment, we first

evolve the curve with the region-based energy, then we introduce the shape prior.
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Fig. 2. Reference shapes used with the single reference model, eq. (6])

(b) ©

Fig. 3. Segmentation results on real data (test image: by courtesy of D. Cremers [3]):
(a) initial contour, (b) segmentation result without shape prior (standard curvature
component used), (¢) segmentation result using the single-reference prior (moments up
to the 40th-order)

Fig. 4. Segmentation of topologically non-trivial shapes. First row: initial contours
(note that they are of different kinds). Second row: results without shape constraint;
a curvature term is used for the mug only. Third row: final results, adding the single-
reference prior up to the order 40 for the mug and the stop sign, up to the order 43 for
the triangle sign.
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The reference shapes are presented on Fig.[2land the shape prior used in this case
is invariant w.r.t. translation and scaling, i.e. Vppior is given by (I8). Considering
for example the third column of Fig. @, we can see that our prior improves the
segmentation result, for a complex shape (the stop sign) with important data
missing and in presence of noise. Fig. @ also illustrates the flexibility of our
approach w.r.t. the kind of initial curve that is used. Moreover, using the shape
constraint, it is possible to overcome the absence of regularization term during
the first step of the segmentation.

Fig. 5. Segmentation of objects with affine deformations. First row: initial contours.
Second row: results without shape constraint (standard curvature component used).
Third row: final results, adding the single-reference prior up to the order 40. (a) and
(b): the prior is invariant w.r.t. translation, rotation, scaling and reflection. (c) and
(d): the full affine model is used.

AIBICIDIEFIGH|IIJIKILIM
N|OIPIQRISITIUIVIWIXIYIZ

Fig. 6. Set of reference shapes used with the multi-reference model, eq. (@)
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Finally, results presented Fig. Bl show the ability of our constraint to deal with
large affine deformations of the shape. We use here the flow (24) to regularize
the segmentation result. The reference shape is the same as in the experiment
presented Fig.

4.2 Multi-reference Model

We now illustrate how the model can take into account several reference shapes
in a segmentation application. We consider five images (Fig. [ first row), each
one representing a partially occluded letter. The five segmentation results on
the fourth row are obtained with the same curve evolution equation for the
contour (B34), with Vi,ior given by eq. [B0). The constraint is invariant w.r.t.
translation and scale. The set of reference shapes, shown Fig. [ consists of 26
letters. The parameter o is computed from the set {)\?;)f } in order to bound the

Fig. 7. Segmentation of five images of letters featuring large occlusions. First row: orig-
inal images. Second row: initialization. Third row: results without shape constraint (no
standard curvature component). Fourth row: final results, adding the multi-reference
prior up to the order 40. The same set of parameters is used for the whole experiments.
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classification error probability, P., between the two closest reference shapes in

terms of descriptors, where:
\/HAref refHQ
P, = erfc | min @ (35)

k#l 20v/2

In practice, o is chosen so that P, < 3%.

5 Conclusion

In this paper, we have considered Legendre moments to define affine-invariant
shape descriptors. Experimental results show that the obtained evolution equa-
tion is able to constrain an active contour to evolve toward a reference shape, and
provides robustness to clutter and occlusions in image segmentation. The pro-
posed approach also naturally handles pose variations, affine deformations and
complex changes of topology. Moreover, it naturally extends to the multiple-
reference case, which paves the way for further extensions to the modeling of
statistical shape variabilities.
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