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Abstract. This paper proposes a novel method to exploit model similarity in 
model-based 3D object recognition. The scenario consists of a large 3D model 
database of vehicles, and rapid indexing and matching needs to be done without 
sequential model alignment. In this scenario, the competition amongst shape 
features from similar models may pose serious challenge to recognition. To 
solve the problem, we propose to use a metric to quantitatively measure model 
similarities. For each model, we use similarity measures to define a model-
centric class (MCC), which contains a group of similar models and the pose 
transformations between the model and its class members. Similarity informa-
tion embedded in a MCC is used to boost matching hypotheses generation so 
that the correct model gains more opportunities to be hypothesized and identi-
fied. The algorithm is implemented and extensively tested on 1100 real 
LADAR scans of vehicles with a model database containing over 360 models. 

1   Introduction 

1.1   Background 

In a model-based 3D object recognition system, two model-related issues are chal-
lenging for the recognition performance: the number of models in the database and 
the degree of similarity amongst the models. In an indexing based recognition system 
that employs shape features for indexing, as the number of models increases, so does 
the number of the model features. As more features need to be searched, the recogni-
tion process may become inefficient. When a large number of similar models exist in 
a database, features from these models will compete with each other, the matching 
uncertainty may result in missing the correct target model. Numerous methods have 
been proposed to solve the first problem, such as the locality sensitivity hashing 
(LSH) techniques [2], which result in sublinear efficiency in feature search. There are, 
however, far fewer methods proposed to solve the model similarity problem in order 
to improve the recognition performance. 

In this paper, we propose a new approach to tackle the model similarity issue in a 
model-based 3D object indexing system to improve the object indexing performance. 
Our indexing system takes the 3D object data obtained from a LADAR sensor, 
searches through the model database, and outputs a short list of models with high like-
lihood of matching to the scene target.  Our application is vehicle recognition. A large  
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Fig. 1. The model-based 3D object indexing system 

model database is built which contains several hundred commercial and military vehi-
cles, of which about 2/3rd are sedans, pickup trucks, minivans and SUVs.   

In our previous work [14], as shown in middle-row blocks in Figure 1, we have 
developed a method of coarse alignment and hypothesis testing by using linear model 
hashing and batch RANSAC for rapid and accurate model indexing. Facet models are 
converted into point clouds, and a set of shape signatures, the spin images [3], in the 
form of high-dimensional shape vectors is computed for each model and stored in the 
database. During the indexing process, the set of shape signatures is computed from a 
scene object and matched to the models features in the database. Features matched be-
tween the scene and models are used to generate indexing hypotheses. These hypothe-
ses are verified by using the geometrical correspondence between the scene and 
model signatures, and the final matching likelihood is computed for each matched 
model. The indexer outputs a list of matched models with high likelihood value, as 
well as the model pose estimates.  

1.2   Issues 

As discussed above, the matched scene and model features are used to generate 
matching hypotheses.  Based on indexing with shape signatures, for efficiency, the 
method tests for a limited number of pose hypotheses generated through the feature-
pair of spin image matches. The method works well on diversified and mixed models. 
However, shape signatures tend to be alike if they are generated from the same loca-
tion among the similar models. With the constraint of limited number of hypotheses, 
when the number of similar models increases in the model database, the best-matched 
model features may not come from the right model, but from models that are similar 
to the right one. This may result in the target model not being hypothesized and tested 
through the indexing process. The problem gets worse when large model database is 
indexed and many similar models present with quite severe ambiguities. 

To alleviate the similar model indexing problem, in this paper we discuss a new 
approach to (1) measure the model similarity, (2) define the model-centric class  
to make use of model similarity, (3) use the model similarity to bootstrap model  
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hypothesis to increase indexing and matching performance, and (4) use ICP for pose 
refining to improve likelihood computation. The new approach is shown in top-row 
blocks in Figure 1. 

1.3   Related Work 

Model similarity has been addressed in 2D/3D model retrieval applications, where on 
a given query of a model, the similar models are searched and retrieved from a do-
main specific database or from the Internet [4, 5]. The most common approaches for 
estimating model shape similarity is to establish the correspondence between two 
models and then to define the measure of similarity in terms of the mean-squared dis-
tance between pairs of points in correspondence [6]. 3D pose estimation between two 
3D objects is well studied and a variety of methods were proposed [10, 11, 12, 13]. 

In recent years, instead of direct matching model raw points, a wide range of shape 
descriptors, in form of high-dimensional feature vectors, either global or semi-local, 
such as spin image [3] or shape context [7, 17], were introduced to represent 3D mod-
els. In shape descriptor or signature representations, model similarity measures become 
distance measurement between two sets of shape description vectors [2, 3, 7, 8, 9]. 
Point-based methods measure the local features; it is highly sensitive to precision of 
model alignment and to noise – if in the case the similarity is measured between a 
model and a scene object. Shape descriptors are, in general, more global or semi-local, 
and more immune to noise. The approach is generally invariant to viewing point trans-
formations, which enables the computing the model similarity without using align-
ment. In [15] Sharp et al proposed the combination of shape and point-based methods 
for refining the ICP registration in the ICPIF algorithm. 

Similarity measures between models were employed in [16] to define part based 
classes of 3D models, however the similarity was obtained using shape signatures 
only and the measures obtained were relative to the models used in the database. 
Thus, if several models were added to the database, the similarity between two mod-
els would change. 

One of the approaches in dealing with similar models is to categorize models into 
classes and compose the model prototypes to represent the classes. Recognition proc-
ess starts with matching on class prototypes, and then matching the individual models 
in the selected classes [18]. While the method sounds efficient, there are certain unre-
solved problems with such scheme. One is how to select the class prototypes such that 
they can well represent a model class? Bad prototyping will sure fail the recognition 
in the classification stage. The second is what if the right class prototype misses the 
matching at the first place? The continuing identification process inside classes using 
wrong prototypes will guarantee to generate wrong results.  

Our work does not use class prototypes explicitly. However, the way the LSH 
process organizing the model features implies that the similar model features are 
grouped for scene-model match. Since such grouping is performed in model feature 
space, certain bad feature matches would not have fatal impact to the final recognition 
– because of large number of features used for each model (>1500).  
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1.4   Notation 

In this paper, models are represented by a group of shape descriptor features. Each 
feature, F=(s, x, n, mid), consists of four elements: s – the shape signature, e.g. a spin 
image defined w.r.t. a locally planar coordinate system; x – the 3D coordinate of the 
shape signature origin; n – the local surface normal, and mid – the model ID. Match 
from scene object to model is represented by transformation Φ(R, T), where R is a 
3x3 rotation matrix and T is 3x1 translation vector. We call a model the target model 
if the model is the ground truth for the scene object. The similarity between model i 
and j is represented by Sij, with the value in the range of [0, 1]; 0 means completely 
dissimilar, 1 means identical. Sij also has the property of symmetry, i.e. Sij = Sji. 

The remainder of this paper is organized as follows: In Section 2, we discuss how 
to quantitatively measure the model similarity, which provides the basis for using 
model similarity in 3D object indexing. We then propose a novel concept to define a 
model class for each model by using similarities, which is different from the conven-
tional model-clustering methods. We then propose a new method to use our definition 
of model class to improve the matching hypothesizing process so that the target mod-
els gain more chances to be indexed. In Section 3, we discuss the models and database 
used in the experiments, and present the results from extensive testing on real 
LADAR vehicle data to show the performance improvement. 

2   Our Approach 

2.1   Quantitative Measure for Model Similarities 

We use the distance measures between a pair of models to evaluate their similarity S. 
Two sets of data are used for the measurement: the raw model point clouds and the 
shape signatures extracted from the sampled positions. Prior to the measurement, two 
models are aligned to obtain their relative pose by using the Iterative Closest Point 
(ICP) algorithm [6].  The pose alignment is initiated by feeding one of the models into 
the indexing system, which generates coarse alignment between this model and the 
one in the database. The similarity is calculated by a weighted sum of point-to-point 
distance and shape signature differences, as shown in Eq. 1, in which, x is a 3D point, 
s is the shape signature at point x. The α’s are used to weight the contribution from 
each component. The value of S is normalized between [0, 1]. Figure 2 shows the 
overlap a 1995 Toyota Tercel (white) aligned with a 1995 BMW 318i (black). The 
alignment and match measure show that the difference between the two is very small. 

   

Fig. 2. The overlap of model 1995 Toyota Tercel (white pixels) with 1995 BMW 318i (black 
pixels) shows the small shape difference between the two vehicles 
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2.2   Model-Centric Class 

For each model, we define a class, the model-centric class (MCC), to specify the as-
sociation of a model with its class members. The MCCi for model mi contains a group 
of models which have the highest similarities to model mi. For a given database con-
taining N models, the similarities Sij between mi and rest of N-1 models are calculated. 
Models satisfying the following criterion are defined as a member in MCCi: 

mj ∈ MCCi   iff   Sij ≥ Sthreshold (i≠j) . (2) 

MCCi also includes the pose transformation Φij between model mi and mj, which is ob-
tained in similarity computation process.  

MCC has the following properties: (1) a model can be a class member in multiple 
MCCs, (2) the number of class members can vary in different MCCs, and (3) if model 
mj is a member of MCCi, then model mi must be a member in MCCj. 

Fig. 3. 1995 Toyota Tercel (right) and a group of models with high similarity values: (1) 1996 
Nissan Sentra-GXE s=0.79, (2) 1999 Volkswagon Passat s=0.76, (3) 1999 Toyota Corolla 
s=0.75, and (4) 1996 BMW 318i s=0.75 

For instance, in Figure 3 if Sthreshold set to be 0.7, all four models as shown will be 
the members of MCC for the 1999 Toyota Tercel. By property #3, under the same 
similarity threshold, 1999 Toyota Tercel is also the member of MCCs of these 4 vehi-
cle models. 

Model similarity association within MCC provides a convenient way to bootstrap 
the matching hypothesis from a model to its class members without involving an ex-
pensive correspondence search and pose computation process. 

2.3   Generate Matching Hypotheses 

As mentioned in Introduction section, we use shape signatures, e.g. spin images, 
augmented with 3D positions to represent both models and scene objects. In the fea-
ture search process, Q best-matched model features are obtained for each of the scene 
object’s features.  The Q features can belong to P different models. A data-driven 
method, described in [14], is used to generate the scene-model matching hypotheses.  
In the method, a feature pair (doublet) is randomly generated from the scene data and 
the corresponding model doublet, sampled from the matched model feature list Q, is 
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Fig. 4. Scene-model doublets are used to generate the matching hypothesis. Geometrical con-
straints are applied to ensure the goodness of matching. 

selected. This doublet of features, if passes all the geometrical constraints, is used to 
generate a scene-model matching hypothesis, i.e. the R and T transformation, as 
shown in Figure 4. 

For Q model features matched to each scene feature, the maximum number of dou-
blets to be generated is Q2. In our case, scene data usually contains 2000 features. If 
we match each scene feature to Q=100 model features, then, the potential matches to 
be generated could be C2

2000× 1002 ~ 1010, which is clearly impractical. To make the 
matching process efficient, scene features are checked to make sure they are salient 
before use; matched model features are sorted to make sure the best-matched ones are 
first used. A sequence of geometrical constraints are applied between the matched 
doublets, such as that |d| > dmin, |d-d′| ≤ε, |a-a′|<η, |b-b′|<η, and |c-c′|<η, to ensure 
choosing good hypotheses. After all checks have passed, it is checked if the best-
matched model doublet belongs to the same model. Otherwise, the matching cannot 
be established. 

At the end of the hypothesis generating process, we find that it may never guaran-
tee to generate good hypotheses, if any, for the target model, largely due to (1) The 
features of target model never get in the Q list, (2) even though they get in Q list, 
there is a chance that they never get sampled, (3) even though they get sampled and 
used to form the matching doublet hypothesis, the constraint checks as discussed 
above may fail the match.  

2.4   Use MCC to Enhance Matching Hypothesis 

As discussed, we have the problem that when two best-matched model features in a 
doublet do not belong to the same model, no matching hypothesis will be generated. 
In such case, if one of the features belongs to the target model, then the target model 
may be missed in hypothesis generation process. 

To solve this problem, we propose to use information in MCC to boost the hy-
pothesis making process. It is observed that (1) the best set of model features matched 
to the scene largely comes from models that are similar to the scene object, and (2) 
most of these models are similar to the target model. The proposed idea is, if two 
best-matched features belong to two models that are similar to each other, we can use 
Φ in MCC to transform a feature from the location of one model to the corresponding 
location of the other, and then use the transformed features to generate hypothesis. 
This is illustrated in Figure 5. The method is stated as follows: 
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Fig. 5. Two matched features belong to two similar models, as indicated by solid-line patches. 
Features can be mapped to the same location from one model to the other by using MCC, as in-
dicated by dashed-line patches. Thus for each model, a feature doublet, a solid-dashed pair, can 
be constructed. 

For two best matched model features, Fi(si, xi, ni, mi) and Fj(sj, xj, nj, mj) where i≠j, 
if the following conditions are met: 

mj ∈ MCCi and Sij ≥ Sthreshold . 

or   mi ∈ MCCj and Sji ≥ Sthreshold . 
(3) 

    Then, the two new features, one for each model, can be generated: 

F′i(si(Φji (xj)), Φji (xj), n(Φji (xj)), mi) . 
F′j(sj(Φij (xi)), Φij (xi), n(Φij (xi)), mj) . 

(4) 

A hypothesis can be generated for each model by using two original best-matched 
features and two newly generated features: 

For model i:  [Fi(si, xi, ni, mi), F′i(si(Φji (xj)), Φji (xj), Φji (nj), mi)] . 
For model j:  [Fj(sj, xj, nj, mj), F′j(sj(Φij (xi)), Φij (xi), Φij (ni), mj)] . 

These new hypotheses are added to the hypothesis list of the corresponding model 
and evaluated by feature alignment and matching. 

2.5   Use MCC to Bootstrap Poses for Similar Models 

The goal of the indexer is to produce a pruned short list of potential matching models.  
Indexer fails if the target model is not in the output list. To increase the chance of tar-
get model match, we use MCC to bootstrap new pose hypotheses for un-hypothesized 
models, evaluate the newly generated hypotheses, and increase the probability of tar-
get model detection. The idea is again based on two observations: (1) models in the 
indexer’s output list are typically the good matches to the scene object; (2) the target 
model should ideally be in the list or at least be similar to some of the models in the 
list. The method is described as follows. 

We begin by examining the top K (m1, m2, …, mk) highest ranked models from the 
indexer output. For each of these models mi, we look at its MCCi and perform the fol-
lowing operation: for each model mj in MCCi, if Sij ≥ Sthreshold, we generate a new 
matching hypothesis for model mj: 



 Exploiting Model Similarity for Indexing and Matching to a Large Model Database 543 

Φsj (mj)= Φsi • Φij . (5) 

Where Φsi is the pose transformation from scene to model mi, Φij is the relative pose 
transformation from model mi to its class model mj, and Φsj is the new matching hy-
pothesis generated for mj.  This idea is depicted in Figure 6. 

 

Fig. 6. Scene object (leftmost column) matches to model 1998 Chevrolet_S10 (mc) (middle 
column), which has a list of similar models in MCC: right top - 1999 Mazda B2500 (mm) , 
right middle - 1988 Toyota SR5 (mt), and right bottom - 1997 Dodge Dakota (md). Using 
scene-to-model and model-to-model transformations in MCCc, new matching hypotheses are 
generated for the three similar models, indicated by the dashed arrows. The final best-matched 
model is 1988 Toyota SR5 (right middle), which is the true model. 

The pose bootstrapping process generates a new set of matching hypotheses, which 
are evaluated through the verification process, and added to the previously generated 
pruned model list. The final indexer output is generated by ranking the likelihoods of 
the models in the expanded list.  

2.6   ICP for Scene-Model Pose Refinement 

Point distance between aligned scene and model is used for likelihood computation. It 
is observed that the accuracy of the likelihood computation heavily depends on the 
fine pose alignment between the model and the scene. This is especially critical when 
many similar models exist in the hypothesis list; in such case, a slight misalignment 
may cause the target model to be ranked low in the candidate list. To ensure that the 
target model will prevail in competing with its similar rivals, the pose of scene-model 
alignment is refined by using ICP algorithm on both model and scene point cloud 
data. The final model candidates is sorted on the likelihood values and constrained by 
top K threshold. 

3   Experimental Results 

3.1   Model Database and Similarity Distribution 

We generated a 3D model database containing 366 vehicle models, of which most are 
civilian vehicles, such as sedans, SUVs, pickups trucks etc. Samples of vehicle mod-
els in the model database are shown in Figure 7(a). Similar models are commonly 
seen in database.  
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Fig. 7. (a) Sample models in model database; (b) Model similarity distribution on 366 model 
database (Sthreshold=0.5), and most models in the database are sedans 

Figure 7(b) shows the similar model distribution for 366 models in the database 
with the similarity threshold, Sthreshold set at 0.5. Each model, on average, contains 35 
similar models. There are over 127 models containing more than 50 similar models in 
their MCCs. These models are all sedans. On the other hand, most of construction or 
military vehicles, located between models 211 and 253 in Figure 7(b), have very few 
similar models since their geometrical shapes are unique.  

Facet model data are processed to generate point clouds. Spin images are generated 
on evenly sampled locations around the model point clouds. Model features are built 
by combining the spin image, its 3D location, the local surface normal, and the model 
ID. A 366x366 model similarity matrix is computed. MCC for each model is ex-
tracted from the similarity matrix. Model database consists of nearly 1,000,000 shape 
features and 366 MCCs. 

3.2   Real LADAR Scene Data and Pre-processing 

We used three sets of LADAR data collected from high-lift on ground, airship, and 
helicopter platforms. About 250 real vehicles, both civilian and military, situated in 
the natural settings (urban, suburban) were scanned by Laser Terrain Mapper. Vehi-
cles range from cars, SUVs, minivans, to trucks and construction utilities. More than 
1000 volume of interest (VOIs) containing scene targets were extracted and used for 
testing. Note that typically each VOI contains only partial “views” of an object since 
only 2 or at most 3 sides of vehicles are scanned by the LADAR and that the point 
density is quite non-uniform. Scene data input to indexer are noisy with 5-10 cm stan-
dard deviation, contain ground plane and tree-like clutter, are sparse at times, may 
have articulations (doors, hood, trunk may open), and may be partially occluded.  

Data from multiple views covering approximately 90° of viewing angle (2-3 sides) 
are registered to form the input scene object. Prior to feature computation, ground 
plane is removed through automated pre-processing. The input VOI in Figure 11 
shows that with high degree of noise, fine features from vehicle data are lost. This in-
creases the challenge for indexing process. 

3.3   Experimental Results 

We used data from all three collections and the 366-models database to test indexing 
system with and without using the new algorithm. For each input VOI query, the  
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indexer outputs a variable length of ranked models (from 1 up to 25) as the best-
matched model candidates. The probability of correct identification (Pid) is computed 
by comparison with the ground truth. We use the precision vs. the recall (ROC) curve 
to present the performance. 
    The first set testing is on 344 vehicles’ VOI from ground high-lift data collection.  
The results are shown in Figure 8, where the triangle curve indicates the indexing per-
formance with using the new algorithm; the diamond curve shows the performance 
without using the new algorithm. It shows that the new method increases the indexing 
performance on Pid by about 15%. 
    The second set testing is on 210 vehicles’ VOI from airship data collection.  The 
results are shown in Figure 9. Again, the triangle curve indicates the indexing per-
formance with using the new algorithm; the diamond curve shows the performance 
without. It shows that the new algorithm increases the indexing performance by up to 
20% on airship data. 

         

Fig. 8. Testing results on 344 highlift vehicles      Fig. 9. Testing results on 210 airship vehicles 

The last set of testing is on 548 vehicles’ VOI from helicopter data collection.  The 
results are shown in Figure 10 (a).  Again, the triangle curve indicates the indexing 
performance by using the new algorithm; the diamond curve shows the performance 
without using the new algorithm. It shows that the new algorithm increases the index-
ing performance by up to 30% on helicopter data collection. 

Overall, the indexing performance improvement with using new algorithm is sig-
nificant on the large model database and large data collection sets. Indexer performs 
better on helicopter data collection is due to better data density in VOI, though the 
noise level (up to 10 cm) in this data set is larger than in other two data collections.  

Together with ranked model output, indexer also outputs the pose alignment for 
each candidate model to the scene. Figure 10 (b) shows indexing results with scene-
model poses; dark pixels are for scene data, light pixels are for matched models.  

In general, for scene targets that have distinctive 3D shape, the target model will 
appear on top of the output list. In the case the 3D shape of input data can match to 
many models, the top K list will automatically expand to have the target model in-
cluded. If the target model does not rank on top of the output list, the models ranked 
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  (a)     (b) 

Fig. 10. (a) Results on 548 helicopter collection data; (b) Examples of scene-model pose align-
ment output from indexing process. In the image, dark pixels are for scene, light pixels are for 
matched models. 

 

Fig. 11. Input query “1987 Honda Accord” and its top 10 best matched models: 1) 1994 Nis-
san_Sentra, 2) 1995 Oldsmobile_Cutlass-Ciera, 3) 1994 Ford_Tempo, 4) 1995 Geo_Prizm, 5) 
1987 Ford_Escort, 6) 1992 Mazda_626, 7) 1984 Ford_Tempo, 8) 1987 Honda_Accord, 9) 1999 
Dodge_Neon, and 10) 1991 Honda_Prelude-SI.  High noise data and model similarity pushed 
the target model to rank 8.  In the image, dark pixels are for scene, light pixels are for models. 

above it are mostly very similar to the target model. Figure 11 shows an example of 
1989 Honda Accord scene data and the top 10 best-matched models. The target model 
is ranked at 8, but the 7 models above it are very similar in shape and all match well 
with the scene.  

To further distinguish among fine differences in indexed similar models needs to 
use model saliency features for fine verification. We discuss the issue in a separate 
paper [19].   

The indexing runs on a PC with a 2.0 GHz CPU and 2 GB memory, on Windows 
and Linux OS.  The entire process takes about 100 seconds on a 366 models database. 

4   Conclusion 

In this paper, we present a new method to solve the model similarity problem encoun-
tered in model-based 3D object recognition. We use a new metric to quantitatively 
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measure model similarities on both shape signatures and 3D points. We use the simi-
larity measures to define a model-centric class, the MCC, for each model. MCC con-
tains a group of similar models and the pose transformation between the model and its 
class members. Similarity information embedded in MCC is used to boost matching 
hypotheses generation so that the target model gains more opportunity to be hypothe-
sized and identified through the indexing process. The algorithm is implemented and 
extensively tested in a 3D object indexing system with a large model database con-
taining 366 vehicle models, among which many similar models exist. Over 1000 real 
LADAR data from vehicle scans with noise up to 10cm standard deviation are used to 
test the new method. Our test results show that the target recognition performance 
improved by 15% to 30% in correct target identification with the new approach. 
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