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Abstract. 3D image data provide several advantages than 2D data for
face recognition and overcome many problems with 2D intensity images
based methods. In this paper, we propose a novel approach to 3D-based
face recognition. First, a novel representation, called intrinsic features,
is presented to encode local 3D shapes. It describes complementary non-
relational features to provide an intrinsic representation of faces. This
representation is extracted after alignment, and is invariant to transla-
tion, rotation and scale. Without reduction, tens of thousands of intrinsic
features can be produced for a face, but not all of them are useful and
equally important. Therefore, in the second part of the work, we intro-
duce a learning method for learning most effective local features and
combining them into a strong classifier using an AdaBoost learning pro-
cedure. Experimental results are performed on a large 3D face database
obtained with complex illumination, pose and expression variations. The
results demonstrate that the proposed approach produces consistently
better results than existing methods.

1 Introduction

Biometric identification has received much attention recent years. Face is among
the most common and most accessible modality. Over the past decades, most
work has been focusing on 2D images [1]. Since 2D-based face recognition suffers
from variations in pose, expression, and illumination, it is still difficult to develop
a robust automatic face recognition system using 2D images.

With the rapid development of 3D acquisition equipment, 3D capture is be-
coming easier and faster, and face recognition based on 3D information is at-
tracting more and more attention. The existing methods mainly focus on three
categories: 3D to 3D, 2D aided by 3D, and 2D combined with 3D. 3D to 3D
means that the gallery and the probe examples are both 3D data, such as range
images, and feature extraction and representation are both in 3D space. 2D aided
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by 3D means that 2D face recognition is done with the assistant of 3D model
[9, 12]. 3D model is explored to overcome the pose, expression and illustration
variations in 2D recognition. 3D combined with 2D means that features are ex-
tracted from both 3D images and 2D color or intensity images [13, 14, 15]. This
paper mainly pays attention to the first category and summarizes the existing
methods as follows.

Regarding feature representation, research has been focused mainly on how to
extract and represent 3D features. Some earlier methods on curvature analysis
[2, 3, 4] have been proposed for face recognition based on high-quality range
data from laser scanners. In addition, recognition schemes based on 3D surface
features have been developed. Chua et al. [5] treat face recognition as a 3D
non-rigid surface matching problem and divide the human face into rigid and
non-rigid regions. The rigid parts are represented by point signatures to identify
an individual. They have obtained a good result in a small database (6 persons).
Beumier et al. [6] propose two methods of surface matching and central/lateral
profiles to compare two instances. Both of them construct some central and
lateral profiles to represent an individual, and obtain the matching value by
minimizing the distance of the profiles. Tanaka et al. [7] treat the face recognition
problem as a 3D shape recognition problem of rigid free-form surfaces. Each face
is represented as an Extended Gaussian Image, constructed by mapping principal
curvatures and their directions. In more recent work, Hesher et al. [8] use a 3D
scanner for generating range images and registering them by aligning salient
facial features. PCA approaches are explored to reduce the dimensionality of
feature vector. Lu et al. [11] use the hybrid ICP algorithm to align the reference
model and the scanned data, and adopt the registration error to distinguish the
different people.

Despite of the efforts mentioned above, a number of problems remain to be
solved for 3D face recognition:

– Only local features have so far been used to represent unary properties of
individual points. These ignore relationships between points in a reasonably
large neighborhood while such relationships may play important roles in
object recognition.

– These local features have been so far considered independent of each other
for different points. However, they are not so in practice.

– Because these features are correlated, sophisticated and even nonlinear.
Methods are needed for constructing good classifiers. The current research
in 3D face recognition has not looked into this challenge.

In this work, we attempt to address the above issues. The main contributions
of this paper are as follows:

– We propose a novel feature, called associative features, based on Gaussian-
Hermite moments [20], to encode relationships between neighboring mesh
nodes. They are combined with complementary non-relational features to
provide an intrinsic representation of faces.

– The resulting intrinsic features are likely to be correlated for nearby nodes,
and an individual face may have non-convex manifold in the features space.
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We introduce a learning mechanism to deal with the problems. AdaBoost
learning [22] is adopted to select most effective features and to combine these
features to construct a strong classifier. This provides a new way to improve
the performance of 3D face recognition.

For testing the proposed approach, we collect a large 3D face databases. The
proposed approach is shown to yield consistently better results than existing
methods including the benchmarking PCA methods [8, 14], the point signature
based methods [5] and the curvature based method [2, 3, 4].

The rest of this paper is organized as follows. Section 2 describes associa-
tive features and the resulting intrinsic feature representation used in this work.
Section 3 describes the use of AdaBoost learning for feature selection and clas-
sifier construction. Section 4 reports the experimental results and gives some
comparisons with existing methods. Finally, Section 5 summarizes this paper.

2 Intrinsic Feature Representation

A vector of intrinsic features is a concatenation of scattered features and asso-
ciative features. They are extracted after preprocessing.

2.1 Preprocessing

Our preprocessing includes three steps, namely, nose tip detection, alignment
and meshing. We aim to exactly align the range images and approximate the
original range image with a simple and regular mesh, which prepares for the
feature extraction and representation.

In the facial range data, the nose is the most distinct feature. We have pro-
posed a robust method to localize the nose tip, which is described in detail in
[18]. According to the experiments in our database, the correct detection rate
is over 99%. Aided by the detected nose and the classic method of the Iterative
Closest Point (ICP) [21], alignment is done by our previous method [17]. We
select a front 3D image as the fixed model, and all the other 3D images are
rotated and translated to align with it.

The original images usually consist of considerable dense and irregular points
in 3D space. It is very difficult to efficiently extract the corresponding features.
Here a simple and regular mesh approximates the original range images by the
multi-resolution fitting scheme. The meshing procedure is shown in Fig.1. During
meshing, we only regulate the Z coordinate of each mesh node, which not only
speeds up the meshing process but also keeps the correspondences of the gener-
ated meshes. In this paper, we use a mesh with 545 nodes and 1024 triangles to
balance the resolution of the facial mesh and the cost of time and space. This
constructed mesh is of great benefit to feature representation and extraction.

All these meshes have the same pose and corresponding nodes, which have
the same position in an X-Y plane and different values along a Z-axis. Thus a
vector of depth features can then be formed as follows

D = {Z(v1), Z(v2), · · · , Z(vn)} (1)
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(a) (b) (c) (d) (e)(a) (b) (c) (d) (e)(a) (b) (c) (d) (e)

Fig. 1. The fitted meshes of different levels. (a) Basic mesh. (b)-(e) Level one to four.

where Z(vi) is the Z-coordinate of the mesh node vi. They can be directly used
for characterizing faces.

2.2 Cosine Signature Features

Here, we define a new metric, called cosine signature as a descriptor of local
shape of each mesh node, as illustrated in Fig.2. Since a mesh well approximates
the range image, we can obtain the following local information of each mesh
node, pe, that is, its spatial direct neighboring triangles, {T1, T2, · · · , Tn}, its
normal, Npe and neighboring points in the range image within a small sphere.
Due to the regularity of our mesh, the number of neighboring triangles of the
common node (not the edge node) is usually six. The initial radius of the local
sphere to decide the neighboring points is set as half of the length of one mesh
edge in our work.

Further, the neighboring points canbe classified inton categories, {C1, · · · , Cn}.
Which category one point belongs to depends on which triangle the point’s projec-
tion falls in the same direction as the normal, Npe. For each class Ck, we can define
its surface signal as follows:

dek =
1
2

+
1

2m

m�
i=1

cos(qki − pe, Npe) (2)

with
cos(qki − pe, Npe) =

(qki − pe) · Npe

‖ qki − pe ‖ · ‖ Npe ‖ (3)

where qki is the neighboring point belonging to class Ck, m is the number of
points in Ck, and dek ∈ [0, 1].

θθ

Fig. 2. Cosine signature of one mesh node
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Then we can describe the local shape of each mesh node using the following
vector:

se = {de1, de2, · · · , den} (4)

where dek is the surface signal. This vector describes the shape near this node,
and we call it as cosine signature.

According to this metric, we can describe the shape of each row in the mesh
with a combination of cosine signature of all nodes in this row respectively.

Si = {si1, si2, · · · , sir} (5)

where Si is the shape vector of the ith row and sij is the cosine signature of the
jth vertex in the ith row. Further, from S1 to Sn, we connect them in turn to
form a long shape vector, S, in the alternate way of head and tail connection.
The vector, S, is used to describe the shape of one face.

2.3 Associative Features

In the above, neither depth features or cosine signature features encode rela-
tionships in neighboring mesh nodes. In the following, we use Gaussian-Hermite
moments (G-H moments) [20] to describe derivative or relational property of a
local shape in a neighborhood, as a richer representation. Because such features
describe the relational property of neighboring mesh nodes, we call it associative
features.

It is well-known that moments have been widely used in pattern recognition
and image processing, especially in various shape-based applications. More re-
cently, the orthogonal moment based method has been an active research topic
in shape analysis. Here, Gaussian-Hermite moments (G-H moments) are used for
feature representation due to their mathematical orthogonality and effectiveness
for characterizing local details of the signal [20]. They provide an effective way
to quantify the signal variation. The nth order G-H moment Mn(x, S(x)) of a
signal S(x) is defined as [20]:

Mn(x) =
� ∞

−∞
Bn(t)S(x + t)dt n = 0, 1, 2, · · · (6)

with

Bn(t) = g(t, σ)Hn(t/σ)

Hn(t) = (−1)nexp(t2)
dnexp(−t2)

dtn

g(t, σ) = (2πσ2)−1/2exp(−x2/2σ2) (7)

where g(t, σ) is a Gaussian function and Hn(t) is a scaled Hermite polynomial
function of order n. G-H moments have many desirable properties such as in-
sensitiveness to noise generated during differential operations.

In fact, the face surface is smooth on the whole, and high order moments
usually describe the intense variation. So it is not necessary to calculate higher
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order moments. In our experiments, we use the 0th-2nd order G-H moment with
σ = 2.0 to represent the associative features.

To the constructed shape vector in the above, S, we calculate its nth order
G-H moments, thus obtaining moment vectors, SMn, which are called nth order
associative features. They describe the relational property of neighboring mesh
nodes.

2.4 Intrinsic Feature Vector

A vector of intrinsic features is a concatenation of scattered features and associa-
tive features. In our work, the scattered features include depth features, D (545
dimensions), and cosine signature, S (2814 dimensions). Associative features
consist of 0th-2th order moments of cosine signature features, i.e., SMn (2814
dimensions, n=0,1,2). The total dimension of intrinsic features is 11,801. These
features represent not only the non-relational features but also the relationships
between the neighboring mesh nodes. They provide a complete information to
reveal the intrinsic property of facial surface. Their complementarity is effective
to improve recognition accuracy, which will be further proved in the following ex-
periments. In addition, since all these features are extracted after fine alignment,
they are invariant to translation, scale and rotation.

3 Feature Selection and Classification

There are a total number of 11,801 such intrinsic features for a face image. They
are likely to be correlated for nearby nodes, and an individual face may have non-
convex manifold in the features space. In this work, AdaBoost learning algorithm
with the cascade structure [22] is used for selecting most effective features and
combining them to construct a strong classification.

The AdaBoost algorithm essentially works for a two-class classification prob-
lem. While face recognition is a multi-class problem, we convert it into one of
two classes using the representation of intra-personal vs. extra-personal classes,
following [23]. The intra-personal examples are obtained by using difference of
images of the same person whereas the extra-personal examples are obtained by
using difference of images of the different persons.

After this preparation, the AdaBoost-based learning procedure in [22] is used
to learn a cascade of strong classifiers with N layers, each of which contains one
or multiple weak classifiers.

During recognition stage, for one given probe sample, the different with each
gallery example forms the vector, x. To each vector, x, the ith layer of the
strong classifier returns the similarity measure, Si. The larger this similarity
value, the more this sample belongs to the intra-personal space. If Si < 0, this
layer rejects the sample. According to the multiple classifiers, we can obtain its
total similarity:

S =
L�

i=1

Si (8)
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where L is the number of layers and Si is the similarity of the ith layer. Thus we
can obtain its similarity with each gallery example. Then the nearest neighbor
scheme is used to decide which class the test sample belongs to.

In our training set, there are 23 persons and 33 images each person, and
thus we obtain 12,144 positive examples and 275,517 negative examples. Every
face image is represented as a vector of 11,801-dimensional intrinsic features, as
explained above. Using the above learning procedure, we obtain a cascade of 20
classifiers with a total of 193 features.

4 Experiments

In this section, we demonstrate the excellent performance of our proposed scheme
by comparing experiments in the terms of different features, different schemes
and different combinations.

4.1 Databases

A large 3D face database has been collected to test the proposed algorithm. It
was collected indoors during August and September 2004 using a non-contact
3D digitizer, Minolta VIVID 910, working on Fast Mode. This database contains
123 subjects, with each subject having 37 (without glasses) or 38 (with glasses)
images. During the data collection, we consider not only separate variation of
expressions, poses and illumination, but also combined variations of expressions
under different lighting and poses under different expressions.

For the following experiments, images with large facial pose (80-90 degrees)
and with glasses are excluded. The reasons are the following: (1) Our focus here is
to compare different algorithms with images of approximate front faces whereas
side view face recognition is too challenging for any methods. (2) The range scan
quality was bad at glasses areas. Therefore, the actual database contains a total
of 4059 images.

The database of 4059 images is divided into three subsets, that is, the training
set, the gallery set and the probe set. The last 23 of the 123 subjects are used as
the training set. The first images of the other 100 subjects (under the condition
of front view, office lighting, and neutral expression) are used as the gallery set.
The other images of the 100 subjects are used as the probe set.

There are 3200 images in the probe set. They are further divided into seven
subsets:

– IV (400 images): illumination variations.
– EV (500 images): expression variations, including smile, laugh, anger, sur-

prise and eye closed.
– EVI (500 images): expression variations under right lighting.
– PVS (700 images): small pose variations, views of front, left/right 20-30

degrees, up/down 20-30 degrees and tilt left/right 20-30 degrees.
– PVL (200 images): large pose variations, views of left/right 50-60 degrees.
– PVSS (700 images): small pose variations under smile.
– PVSL (200 images): large pose variations under smile.
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4.2 Experiments with Different Features

In this experiment, we test the recognition performance using the different fea-
tures. The considered features include surface curvature (SC) [2, 3, 4], point sig-
nature (PS) [5], COSMOS shape index (CO) [10, 11] and three kinds of features
used in this paper, that is, depth features (DEP), cosine signature (COS) and
associative features (ASS).

In our experiment, after the regular mesh is constructed following the schemes
in Section 2.1, the different features are extracted for each node to characterize
an individual. Then, we use one simple classifier to test the recognition perfor-
mance, that is, PCA for reducing dimension and Euclidian distance for similarity
measure. Table 1 shows the rank-one recognition accuracy (CCR, Correct Classi-
fication Rate) in different probe sets. In this table, the best recognition accuracy
is emphasized. Fig.3 shows CMS (Cumulative Match Score) curves in the EV
probe set.

From these result, we can obtain the following conclusion. (1) On the whole,
the three features that we used have better performance than the other three;
(2) In the probe sets related to expression and illumination variations, the

Table 1. CCR(%) using different features in the different probe sets (100 persons)

Probe sets SC PS Co DEP COS ASS
IV 97.6 87.0 89.0 98.5 99.0 99.0
EV 71.9 66.0 53.3 85.0 81.4 85.2
EVI 74.6 65.9 56.6 85.0 86.4 87.0
PVS 79.1 61.2 67.1 85.1 83.0 84.7
PVL 51.6 38.2 41.1 70.0 51.0 51.5
PVSS 63.7 53.3 44.5 81.9 75.4 76.9
PVSL 47.2 34.6 26.8 65.0 43.0 46.5

Fig. 3. CMS curves using different features in the EV probe set
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proposed associative feature are more robust than depth information. This may
be reasonably explained by the following reason. Depth information using the
absolute range value is prone to shape variation, such as expression, whereas
associative features use the relative information between reference nodes. These
results also encourage us to improve the recognition performance by combining
these complementary information.

4.3 Experiments with Different Schemes

In this section, we will test the different performances when using different clas-
sification methods, i.e., fusion scheme and AdaBoost learning.

Scattered features and associative features are of the different properties. Fu-
sion rules [16] and AdaBoost learning [22] are two kinds of method to combine
them. We test their performance by experiments. Using depth features, cosine
signature and associative features, we construct the three single classifiers, re-
spectively. After obtaining the matching score from each single classifier, the
weighted sum rule [14] is used to combine them. The first row in Table 2 shows
the rank-one recognition accuracy. In other way, from the intrinsic features con-
sisting of scattered features and associative features, one cascade classifier is
built following the scheme in Section 3. The CCR is shown in the second row in
Table 2.

Table 2. CCR(%) of the different test sets in our face database (100 persons)

Probe sets IV EV EVI PVS PVL PVSS PVSL
Fusion 99.5 88.0 90.2 96.1 73.5 88.3 67.5
AdaBoost 99.5 90.8 90.6 96.7 76.5 87.9 70.0

Comparing this result with Table 1, we can see that the recognition accu-
racy is better when combining the different features using the fusion scheme or
AdaBoost learning. This verifies the conclusion in the last section.

From this result of Table 2, we also see that AdaBoost learning outperforms
the fusion rule in all probe sets except the PVSS set. Further, we test the verifi-
cation performance when using these two methods. Compared with single clas-
sifiers, the classifier by AdaBoost learning largely decreases the EER (Equal
Error Rate) in all the probe sets. However, the classifier using the fusion scheme
decreases the EER weakly. Fig.4 shows the ROC curves using single classifiers,
fusion rule and AdaBoost learning in the EV probe set. On the whole, AdaBoost
learning distinctly outperforms the fusion scheme.

4.4 Experiments with Different Combination

In [14], they evaluate the recognition performances of different combination of 2D
and 3D images and draw the conclusion that multi-modal 2D+3D has the best
performance. Their conclusion is very limited since they only explore the depth
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Fig. 4. ROC curves using single classifiers, fusion scheme and AdaBoost learning in
the EV Probe set

Table 3. Rank-one recognition accuracy (%) with different combination (100 persons)

Probe sets IV EV EVI PVS PVL PVSS PVSL
Depth+ intensity 97.0 84.6 89.0 85.6 86.0 82.9 73.5
Intrinsic features 99.5 90.8 90.6 96.7 76.5 87.9 70.0

information of 3D images. Here, we compare the recognition performance using
the different combination, that is, depth+intensity vs. scattered+associative.

After registration of different 3D images, depth and intensity images are gen-
erated. Using AdaBoost learning [22], a strong classifier is constructed based on
depth and intensity images. The rank-one recognition accuracy is showed in the
first row of Table 3. Another classifier is constructed using intrinsic features by
AdaBoost learning (see Section 3). The CCR is showed in the bottom row of
Table 3.

From this result, we can see that combination of intrinsic features outperform
the combination of depth and intensity in five probe sets. This result suggests
that it is a promising way to extract 3D shape information for improving recogni-
tion information. Some effective 3D shape features even have better performance
than multi-modal 2D+3D. In addition, it is noted that the latter is more robust
than the former in large pose variations.

5 Conclusions

Personal identification based on 3D information has recently been gaining more
and more interest. We have proposed a novel representation, called associative
features, based on Gaussian-Hermite moments, to encode relationships between
neighboring mesh nodes. It is integrated by complementary non-relational fea-
tures to provide an intrinsic representation of faces. Then, a powerful learning
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algorithm, i.e., AdaBoost, is used for feature selection and classification. One
large 3D face database with complex illumination, expression and pose variations
has been collected to test the proposed algorithm. The experimental results and
the comparisons with some existing methods have demonstrated the excellent
performance of the proposed method for 3D face recognition.
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