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Abstract. In order to analyze shapes of continuous curves in R?, we
parameterize them by arc-length and represent them as curves on a unit
two-sphere. We identify the subset denoting the closed curves, and study
its differential geometry. To compute geodesics between any two such
curves, we connect them with an arbitrary path, and then iteratively
straighten this path using the gradient of an energy associated with this
path. The limiting path of this path-straightening approach is a geodesic.
Next, we consider the shape space of these curves by removing shape-
preserving transformations such as rotation and re-parametrization. To
construct a geodesic in this shape space, we construct the shortest
geodesic between the all possible transformations of the two end shapes;
this is accomplished using an iterative procedure. We provide step-by-
step descriptions of all the procedures, and demonstrate them with sim-
ple examples.

1 Introduction

In recent years, there has been an increasing interest in analyzing shapes of
objects. This research is motivated in part by the fact that shapes of objects
form an important feature for characterizing them, with applications in recog-
nition, tracking, and classification. For instance, shapes of boundaries of objects
in images can be used to short-list possible objects present in those images.
Also, shape has been used as a feature in image retrieval [I4,[L[6]. Shape anal-
ysis in image=based applications is often restricted to shapes of planar curves
[19,[T1.18]; these curves can come, for example, from the boundaries of objects
in 2D images. Shapes have also been used for medical diagnosis using non-
invasive imaging techniques. Shapes, or growths of shapes, are often used to
determine normailty /abnormalty of anatomical parts in computational anatomy
[5]. A fundamental tool, central to any differential-geometric analysis of shapes,
is the construction of a geodesic path path between any two given shapes in
a pre-determined shape space. This tool can lead to a full statistical analysis —
computation of means, covariances, tangent-space probability models — on shape
spaces. As an example, the construction of geodesics and their use in statistical
analysis of shapes of 2D curves is demonstrated in [§].

Although analysis of planar curves are useful in certain image understanding
problems, a more general issue is to study and compare shapes of objects in 3D.
Since most objects of interest are 3D objects, and 3D observations of objects
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using laser scans are becoming readily available, an important goal is to analyze
shapes of two-dimensional surfaces in R3. In particular, given surfaces of two
objects, the task is to quantify differences between their shapes. A differential-
geometric analysis of shapes of surfaces, akin to the analysis of planar curves
discussed above, remains a difficult and an unsolved problem. To our knowledge,
there is no explicit method in the literature for computing geodesic between 3D
closed curves. Several approximate methods have been pursued over the last few
years. For example, the papers [I6,[15] use histograms of distances on surfaces
to represent and compare objects. Another approximate approach that has been
suggested in recent years is to represent surfaces with a finite number of level
curves, and then compare shapes of surfaces by comparing shapes of correspond-
ing level curves [I§]. Since these level curves can potentially be 3D curves [2],
this approach requires a technique for comparing shapes of closed curves in R3.
However, past research on geometric treatment of shapes of curves was restricted
mainly to planar curves and a similar differential-geometric approach for com-
paring shapes of closed, continuous curves in R? is not present in the literature,
to the best of our knowledge.

In this paper, we present a differential-geometric technique for constructing
geodesic paths between shapes of arbitrary two closed, continuous curves in R3.
Given two curves pg and p1, our basic approach is to: (i) define a shape space of
all parameterized, closed curves in R, (ii) construct an initial path connecting po
and p; in this space, and (iii) iteratively straighten this path until it becomes a
geodesic path. This iteration is performed to minimize an energy associated with
a path, and flows that minimize that energy are called path-straightening flows
[9,[10], and more recently in [3[I3]. This methodology is quite different from the
approach used in [8] where a shooting method was used to find geodesic paths
between shapes. In a shooting method, one searches for a tangent direction at the
first shape such that a geodesic shot in that direction reaches the target shape
in a unit time. This search is based on adjusting the shooting direction in such
a way that the miss function, defined as an extrinsic distance between the shape
reached and the target shape, goes to zero. Intuitively, a path-straightening
flow is expected to perform better than a shooting method for the following
reasons:

1. While shooting, in principle, one can get stuck in a local minima of the
miss function that is bounded away from zero. In other words, the resulting
geodesic may not reach the target shape. In the path-straightening method,
by construction, the geodesic always reaches the target shape.

2. Since the shooting is performed using numerical techniques, i.e. using numer-
ical gradient of the miss function, these iterations can become unstable if the
manifold is sharply curved near the target shape. A path-straightening ap-
proach, on the other hand, is numerically more stable as it uses the gradient
of path length.

We will develop a path-straightening approach to computing geodesics in C, the
space of all closed curves in R3. Here we do not take into account the shapes
of these curves, and the fact that many curves have the same shape. In future,
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we will define a shape space, as a quotient space of C, and derive algorithms for
computing geodesics between elements of this shape space.

The rest of this paper is organized as follows. In Section 2, we present a
representation of closed curves, and analyze the geometry of C, the space of
such curves. Section 3 presents a formal discussion on the construction of path-
straightening flows on C, followed by algorithms for computer implementations
in Section 4. Section 5 presents some illustrative examples on computing geodesic
paths in C. The paper ends with a summary in Section 6.

2 Geometry of Shapes and Shape Spaces

In this section we introduce a geometric representation of curves that underlies
our construction of geodesics and the resulting analysis of shapes.

2.1 Representations of Closed Curves

Let p : [0,27) — R3 be a curve of length 27, parameterized by the arc length. In
this paper we will assume p to be piecewise C!. For v(s) = p(s) € R?, we have
lv(s)|| =1 for all s € [0,27), in view of the arc-length parametrization. Here
| - || denotes the Euclidean norm in R3. Note that the restriction to arc-length
parametrization can be relaxed, as is done in [I2], resulting in elastic-string
models, but is not pursued in this paper. The function v is called the direction
function of p and itself can be viewed as a curve on the unit sphere S2, i.e.
v : [0,27) — S%. Shown in Figure [[(a) is an illustration of this idea where a
closed curve p on R? is represented by a curve v in S?. We will use the direction
function v to represent the curve p . Let P be the set of all such direction
functions, P = {v|v : [0,27) — S?}. Since we are interested in closed curves, we
establish that set as follows. Define a map ¢ : P — R3 by ¢(v) = fo% v(s)ds,
and define C = ¢71(0) = {v € Plp(v) =0}  C P. It is easy to see that C is
the set of all closed curves in R3. In the next section we will study the geometry
of C in order to develop tools for shape analysis.

First, we introduce some notation for studying geometry of S?. Recall that
geodesics on S? are great circles, and we have analytical expressions for comput-
ing them. The geodesic on S? starting at a point x € S? in the tangent direction
a € T,(S?) is given by:

sin(t||a
(tlall)
llall

(1)

Xt(w;a) = cos(tl|al)z +
x:¢ will be used frequently in this paper to denote geodesics, or great circles, on
S2?. Another item that we need relates to the rotation of tangent vectors on S2.

Let 21 and x5 be two elements in S?, and let a be a tangent to S? at ;. Then,
a vector defined as:

(0 21, 32) = {a — (2(a-22)/(l21 +z2]?)) (21 + 22) if x1 # —2 @)

—a if T = —X2
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is the rotation of a to z2 so that it is now tangent to S? at . Here, (a-b) denotes
the Euclidean inner product of a,b € R3. (-, x1,22) : Ty, (St) — T, (S) is a
rotation map that takes a tangent vector from z; to zo; in differential geometry
this is also called the parallel transport along the geodesic from x1 to zs.

2.2 Geometry of C

To develop a geometric framework for analyzing elements of C, we would like
understand its tangent bundle and to impose a Riemannian structure on it.
First, we focus on the set P. On any point v € P, what form does a tangent
f to P takes? This tangent f can be derived by constructing a one-parameter
flow passing through v, and by computing its velocity at v. Since v is also a
curve on S?, the tangent f can also be viewed as a field of vectors tangent to S?
on v. This idea is illustrated pictorially in Figure [I(b). We will interchangeably
refer to f as a tangent vector on P and a tangent vector field on points along
v C S2. The space of all such tangent vectors, denoted by T,(P), is given by:
T,(P) = {f|f : [0,27) — R3,(f(s) - v(s)) = 0, Vs}. f(s) and v(s) are vectors in
R3. Let f € T,(P) be a vector field on v such that it is also tangent to C. It can
be shown that f satisfies [ f(s)ds = 0. That is,

o

T,(C) = {f|f : [0,2m) — R?, Vs, (f(s) - v(s)) =0, ; f(s)ds =0} . (3)
To see that, let a(t) be a path in C such that a(0) = v. Since a(t) € C, we
have fo% a(t)(s)ds = 0, for all t. Taking the derivative with respect to t and
setting t = 0, we get fOZTr @(0)(s)ds = 0. For every tangent vector f at v there
is a corresponding flow «, such that f = &(0), and therefore, this property is
satisfied by all tangent vectors.

Riemannian Structure: To impose a Riemannian structure on P, we will
assume the following inner product on T,,(P): for f,g € T,(P), (f,9) = 027r (f(s)-

g(s))ds.
Consider the linear mapping d¢, : T,(P) — R? defined by de,(f) = 027T
f(s)ds. Similar to the argument in [I3], it can be shown that d¢, is surjective,

p(s) 4

v(s)
(a) (b)

Fig.1. (a): A closed curve in R? is denoted by a curve on S®. (b): For a curve v on S?,
f is vector field to S® on .
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as long as v([0,27)) is not contained in a one-dimensional subspace of R?, and
therefore C is a co-dimension three submanifold of P. The adjoint of d¢,,, d¢ :
R3 — T,(P) is the unique linear transformation with the property that for all
f€T,(P) and w € R3, (doo(f) - w) = (f, d¢?(w)). Mathematically, this adjoint
is given by d¢f(w) = f such that f(s) = w — (w - v(s))v(s). In other words,
de¢? takes a vector w in R® and forms a tangent vector-field on v by making
w perpendicular to v(s) for all s (or by projecting w onto the tangent space
T,(5)(S?) for each s). This formula makes explicit the role of v in definition
of doF.

With this framework, we develop tools for projecting v € P into C. Also, we
derive a mechanism for projecting f € T, (P) into T,(C). For details we refer to
a larger paper [7].

3 Path-Straightening Flows in C

Now we present our approach for constructing geodesic flows on C. This approach
is based on the use of path-straightening flows. That is, we connect the two given
shapes by an arbitrary path in C, and then iteratively straighten it, or shorten
it, using a gradient approach till we reach a fixed point. The fixed point of this
iterative procedure becomes the desired geodesic path. In this section we present
formal mathematical ideas, followed by computer implementations in the next
section.

For any two closed curves, denoted by vy and vy in C, we are interested
in finding a geodesic path between them in C. Our approach is to start with
any path a(t) connecting vg and v;. That is a : [0,1] — C such that «(0) =
vo and «(l) = v1. Then, we iteratively “straighten” « till it achieves a local
minimum of the energy: E(a) = éfol(‘fﬁ (t).‘fl‘z‘ (t))dt. It can be shown that a
local minimum of E is a geodesic on C. However, it is possible that there are
multiple geodesics between a given pair of curves, and a local minimum of F
may not correspond to the shortest of all geodesics. Therefore, this approach has
the limitation that it finds a geodesic between a given pair but may not reach
the shortest geodesic. One can use certain stochastic techniques to increase the
probability of reaching the shortest geodesic but these are not explored in this
paper.

Let H be the set of all paths in C, parameterized by ¢ € [0, 1], and Hy be the
subset of H of paths that start at vy and end at v;. The tangent spaces of H and
Ho are: To(H) = {w| Vt € [0,1],w(t) € To)(C)}, where Ty 1) (C) is as specified
in Eqn. Bl and T, (Ho) = {w € To(H)|w(0) = w(1) = 0}. To understand this
space, consider a path a € Hy and an element w € T,(Hp). Recall that for
any t, a(t) is also a curve on S?, which in turn corresponds to a closed curve in
R3. Now, w is path of vector fields such that for any ¢ € [0, 1], w(t) is a tangent
vector field restricted to the curve a(t) on S%. That is, w(t)(s) is a vector tangent
to S? at the point a(t)(s). Furthermore, fo% w(t)(s)ds =0 for all ¢t € [0, 1]. Our
study of paths on H requires the use of covariant derivatives and integrals of
vector fields along these paths.
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Definition 1 (Covariant Derivative, [1](pg. 309)). For a given path a« € H
and a vector field w € To(H), one defines the covariant derivative of w along «
to be the vector field obtained by projecting ‘gf (t) onto the tangent space To 1) (C),

- Dw
for all't. It is denoted by )" .

Similarly, a vector field u € T, (H) is called the covariant integral of w along «
if the covariant derivative of u is w, i.e. D" = w(?).
To make H a Riemannian manifold, we use the Palais metric [17]: for wy,

ws € Tu(M), {(w1,w5)) = (w1(0), w(0)) + fi (P (£), 2 (1)) dt, where Dw/dt
denotes the vector field along o which is the covariant derivative of w. With
respect to the Palais metric, T, (Ho) is a closed linear subspace of T, (H), and
‘Hy is a closed subspace of H.

Our goal is to find a minimizer of £ in Hy, and we will use a gradient flow to
minimize E. Therefore, we wish to find the gradient of E in T,(Hp). To do this,
we first find the gradient of E in T, (H) and then project it into Ty (Ho).

Theorem 1. The gradient vector of E in To(H) is given by a vector field q such

that gtq = ‘fl‘i‘ and q(0) = 0. In other words, q is the covariant integral of ‘fﬁ

with zero initial value at t = 0.
Proof: Refer to a more detailed paper [7].

Given ”Ellct", the vector field ¢ is obtained using numerical techniques for co-
variant integration, as described in the next section. Next, we want to project
tangent field ¢ € T, (H) to the space Ty (Ho).

Definition 2 (Covariantly Constant). A vector field w along the path « is
called covariantly constant if Dw/dt is zero at all points on c.

Definition 3 (Geodesic). A path is called a geodesic if its velocity vector field
is covariantly constant. That is, o is a geodesic if ﬁ(‘fﬁ) =0 for all t.

Definition 4 (Covariantly Linear). A vector field w along the path « is called
covariantly linear if Dw/dt is a covariantly constant vector field.

Lemma 1. The orthogonal complement of To(Ho) in To(H) is the space of all
covariantly linear vector fields w along a.

Definition 5 (Parallel Translation). A vector field u is called the forward
parallel translation of a tangent vector w € Ty (0)(C), along «, if and only if
u(0) = w and Dsgt) =0 for all t € [0,1].

Similarly, w is called the backward parallel translation of a tangent vector
w € To)(C), along o, when for &(t) = a(l —t), u is the forward parallel
translation of w along &.

It must be noted that parallel translations, forward or backward, lead to vector
fields that are covariantly constant.

According to Lemma 1, to project the gradient g into T, (Ho), we simply need
to subtract off a covariantly linear vector field which agrees with ¢ at t = 0 and
t = 1. Clearly, the correct covariantly linear field is simply ¢g(t), where §(t) is
the covariantly constant field obtained by parallel translating ¢(1) backwards
along «. Hence, we have proved following theorems.
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Theorem 2. Let o : [0,1] — C be a path, a € Hy. Then, with respect to the
Palais metric:

1. The gradient of the energy function E on H is the vector field q along o
satisfying q(0) =0 and gtq = ‘fl‘z‘.

2. The gradient of the energy function E restricted to Hy is w(t) = q(t) —tq(t),
where q is the vector field defined in the previous item, and § is the vector

field obtained by parallel translating q(1) backwards along «.

Theorem 3. For a given pair vy, v1 € C, a critical point of E on Hy is a
geodesic on C connecting vg and v .

4 Computer Implementations

In this section, we provide step-by-step details for different procedures men-
tioned in the last section. In particular, we provide algorithms for: (i) finding
the direction vector representation of a given closed curve p, (ii) given any two
closed curves, vg and vy, initializing a path « connecting them in C, (iii) com-
puting the velocity vector Cfft“ for a given path «, (iv) computing the covariant
derivative ¢ of ”Cllct’Z (v) computing the backward parallel transport ¢ of ¢(1), and
(vi) updating the path « along the gradient direction given by the vector field

w. We explain these procedures one by one next.

1. Direction Function Representation of closed curves: The first com-
putational step in our analysis is to find an element of C for a given 3D curve.
Let 2; € R3, i =1,...,m be a given order set of samples on a 3D curve. and
we want to re-sample this curve using n uniform samples as follows:

Subroutine 1 (Uniform Re-sampling of Curve)
set Ty41 = T1
compute p; = ||xiv1 — i, i=1,...,m
while standard-deviation({p;}) > €
$i= 1 pj,i=1...,m
t=([1:n]/n)sm
k; = argmin,(s; > t;), j=1,...,n
Y1 =T
forj=1,...,n—1
Yj+1 = ((tj - xkjfl)mkrﬂ + (‘Tkj - tj)mkj)/(xer - ‘Tkj)

wj = Yjp1 — Yj, and v = .7 p; = [lw;ll,
end j
setm=mn and r =y.
end while

project v into C

Shown in Figure [2 is an example. The given curve with m = 200 is shown
in the left panel; it is re-sampled repeatedly for n = 30 with results shown
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Fig. 2. Resampling the piecewise-linear curve formed by the given set of points using
Subroutine [Il Right: evolution of standard deviation of distances between resampled
points.

in next two panels. To show that points become increasingly uniform, we
show the standard deviation of p;s at every iteration. A standard deviation
of zero implies that the points are uniformly spaced.

2. Initialize the path a: Given vy and v; in C, we want to form a path
a : [0,1] — C such that a(0) = vy and a(1) = v1. There are several ways of
doing this. One is to form 3D coordinates py and p;, respectively, associated
with the two shapes, and connect pg(s) and pi(s) linearly, for all s, using
pe(s) = tp1(s) + (1 — t)po(s). The intermediate curves are neither uniformly
sampled nor closed. We can use Subroutine [Il to re-sample them uniformly
and to close them. The other idea is to use the fact that vo(s),v1(s) € S?,
and construct a path in S? from one point to another, parameterized by t.
We summarize this idea in the following subroutine.

Subroutine 2 (Initialize a path «)
for all s € [0, 2]
define 0(s) = cos™(vo(s) - v1(s))
; define f(s)=wv1(s)=(vo(s)-v1(s))vo(s), and f(s)=0(s)f(s)/f(s)Il-
end s
for all t € ]0,1]
for all s € [0,27)
define a(t)(s) = x1(vo(s); £(s))
end s
project a(t) into C
end t

In case vg(s) and vi(s) are antipodal points on S?, and thus f(s) = 0, one
can arbitrarily choose a path connecting them on the sphere. That is, choose
any f(s) € Tyy(5)(S*) of length f(s). This situation rarely occurs in practical
situations.

3. Vector Field %: In order to compute the gradient of E in T,(H), we
first need to compute the path velocity cfi‘t". For a continuous path Cfﬁ (t)
automatically lies in T4 (C), but in the discrete case one has to ensure
this property using additional steps. This process uses the approximation
2'(t) ~ (z(t) — z(t — €))/e, modified to account for the nonlinearity of C.
Let the interval [0,1] be divided into k uniform bins. The procedure for

computing ccllct" at these discrete times is summarized next.
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Subroutine 3 (Computatlon of ¢ P
formr=1,... k
for all s €10,2m)
(s) = kcos—(a(7)(s) - a( "5 )(s)
! s

¢ along )

fls) = =T )(s) + (a7, 7)(s)
d”fﬁ(l)(S) =0(s)f(s)/If ()l

project 4 (7) into To(7)(C)
end T.

Now we have a vector field ‘fft‘ € T,(H) along a given path o € H.
4. Computation of Vector field ¢q: We seek a vector field g such that ¢(0) =0
and D g = do‘ . In other words, ¢ is the covariant integral of the vector field
da

dt-
Subroutine 4 (Covariance Integration of da to form q)
fort=0,1,2,...,k—1,
for all s
define ) (7)(s) = w(a(})(s): a(P)(s), ol 1) (s))-
(r is defined in Eqn.[3)
set (") (s) = L (1) (s) + g1 (D) (s).
end s
end T

q!(}) is the parallel transport of ¢(}) from Tw(;)(C) to T, (T+1)(C) This
subroutine results in the gradient vector field {¢(}) € To(7)(C)|T =1,..., k}.
5. Covariant Vector Field ¢: Given ¢(1), we need to ﬁnd a Vector ﬁeld q
along the path « in C that is the backward parallel transport of ¢(1). We
have already computed the points «(0), a(1/k), a(2/k),...,a(1). Each a(])

is an element of C, i.e. it is a curve on S?. We will perform the backward
parallel transport iteratively, as follows.

Subroutine 5 (Backward Parallel Transport)
set (1) = q(1)
let 1 = ((q(1), q(1)))"/*
forr=k—-1k—-2,...,3,2
for all s € [0,27)

T

a(7)(s) = m(@(" ) (s) T () el })(s))

end s

project 4(},) into Ta( (®)

let 1y = ({q(F), a( >1/2

set G(3) = q(}, )l/h,
end T

6. Gradient of E: With the computation of ¢ and ¢ along the path «, the
gradient vector field of F is given by: for any 7 € {0,1,...,k} and s € [0, 27)

w()(s) = (a()(s) = ()3 )(s) € Tugpys)(§) - (4)
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7. Update in Gradient Direction: Now that we have computed the gradient
vector field w on the current path «, we update this path in the direction
given by w: for 7 =1,2,...,k and s € [0, 27),

T T T

a([)(s) = xa(a( ()} )(s)) - %)

Now we summarize the algorithm to compute a geodesic path between any
two given closed curves in R3. We assume that the curves are available in form
of sampled points on these curves.

Algorithm 1 (Find a geodesic between two curves in C)

1. Compute the representations of each curve in C using Subroutine Q. Denote
these elements by vo and v, respectively.

Initialize a path o between vy and v using Subroutine [2.

Compute the velocity vector field ccllct" along the path a using Subroutine [3.

4. Compute the covariant integral o ccllct", denoted by q, using Subroutine [J} If

Zle ‘iﬁ‘ (1), ‘fﬁ (7)) is small, then stop. Else, continue to the next step.

5. Compute the backward parallel transport of the vector q(1) along « using the
Subroutine [A.

6. Compute the full gradient vector field of the energy E along the path «,
denoted by w, using Eqn. [}

7. Update o using Eqn.[d. Return to Step 3.

o o

The desired geodesic path is given by the resulting «, and its length is given
by de(vo,v1) = SF_ ((49(T), 9 (7)))1/2. For a later use, we highlight 9% (0) as
the initial velocity vector in T, )(C) that generates the geodesic at a(0).

5 Experimental Results

In this section we describe some computer experiments for generating geodesic
paths between shapes in C. Let the two curves of interest be: po(t) = (a cos(t),

bsin(t), c\/b2 — a?sin’(t)), and p1 (t) = (a(1 + cos(t)),sin(t), 2sin(t/2)), and we
want to compute a geodesic path between them in C. Shown in Figure [3 are the

TN
o
%%%x
<S <
3 ﬂ

Fig. 3. The two shapes used in computing geodesic path, evolution of the energy FE
during path-straightening, and a view of that geodesic in R®
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Fig. 4. Geodesic Computation: The two curves in C, evolution of E as Algorithm 1
proceeds, and a view of the resulting geodesic path

results. The first two panels show the two curves. The first curve is an example
of a bicylinder and the second one is an example of a Viviani curve. We apply
Algorithm 1 on these two curves to generate a geodesic path between them.
The third panel shows the evolution of the energy E during the iterations in
Algorithm 1. The last panel shows a view of the resulting geodesic path in R3.

Shown in Figure [ is another example, where the two end shapes (left two
panels), evolution of the energy (middle), and a view of the final geodesic path
(right) are displayed.

6 Summary

We have presented a differential geometric approach to studying shapes of closed
curves in R?. The main tool presented in this study is the construction of geodesic
paths between arbitrary two curves on an appropriate space of closed curves.
This construction is based on path-straightening, i.e. we construct an initial path
between those two curves, and iteratively straighten it using the gradient of the
energy F. The limit point of this procedure is a geodesic path. We have presented
step-by-step procedures for computing these geodesics, and have illustrated them
using simple examples.
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