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Abstract. We propose a new method to segment 3D structures with
competitive level sets driven by a shape model and fuzzy control. To this
end, several contours evolve simultaneously toward previously defined
targets. The main contribution of this paper is the original introduction
of prior information provided by a shape model, which is used as an
anatomical atlas, into a fuzzy decision system. The shape information is
combined with the intensity distribution of the image and the relative
position of the contours. This combination automatically determines the
directional term of the evolution equation of each level set. This leads
to a local expansion or contraction of the contours, in order to match
the borders of their respective targets. The shape model is produced
with a principal component analysis, and the resulting mean shape and
variations are used to estimate the target location and the fuzzy states
corresponding to the distance between the current contour and the tar-
get. By combining shape analysis and fuzzy control, we take advantage
of both approaches to improve the level set segmentation process with
prior information. Experiments are shown for the 3D segmentation of
deep brain structures from MRI and a quantitative evaluation is per-
formed on a 18 volumes dataset.

1 Introduction

During the last decade, segmentation methods have become more and more
sophisticated, in order to deal with very complex problems, such as texture seg-
mentation, motion detection or medical imaging segmentation. Some approaches
have now proved to be adapted to certain type of applications. In particular, the
level set methods first proposed by Osher and Sethian [I] have become very
common in the computer vision community and are now used in various con-
texts. The reason for such a broad field of applications is their implicit, intrisic,
parameter and topology free formulation. In particular, they provide a very
efficient framework for 3D image segmentation, where many 2D methods are
difficult to apply.
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After the first contour-based algorithms [2,[3], more sophisticated methods
have been proposed, using regional statistics [4] or both contour and region
terms [5] to segment 3D structures, moving objects [0] or textured content
of images [7]. But both contour and region constraints are generally derived
from the grey levels of the image, and do not always provide enough informa-
tion to segment complex structures with variable shapes, particularly if their
borders do not appear clearly in the images, as it often occurs in medical
imagery for example. For this reason, prior information in general and shape
models [8] in particular have been widely associated with level sets for image
segmentation.

For example, Rousson and Paragios propose an elegant introduction of shape
priors in a variational framework to perform a level-set based segmentation of
noisy or occluded data [9]. Tsai et. al. also take advantage of a shape model
obtained by training to drive the evolution of a 3D contour [10], and Yang et. al.
introduce a joint intensity-shape prior in a probalistic segmentation with level
sets [1].

It sometimes happens however that the segmentation targets have very blurred
borders, and that the grey levels inside these structures are not really homoge-
neous and even similar to that of neighboring objects. This phenomenon occurs
for example in the deep grey structures of the brain, which may be difficult to dis-
tinguish from white matter. In this context, even shape information is sometimes
not sufficient to achieve an accurate segmentation. A very useful framework is
however provided by the fuzzy set theory, which is adapted to model non-precise
knowledge, as, for instance, objects with ill-defined borders.

Consequently, the fuzzy sets theory has already been used in image segmen-
tation, especially in medical imaging. Xu et. al use an adaptative fuzzy c-means
algorithm that is combined with an isosurface algorithm and a deformable sur-
face model to reconstruct the brain cortex [12]. Automatic segmentation methods
for brain internal structures are also proposed [13], where the segmentation is
based on a symbolic spatial description of the structures and finally refined with
a deformable model.

In this article, our goal is to present a methodology which takes advantage
of three approaches that have proved to give good results in different contexts:
level set segmentation, shape modeling and fuzzy logic. The objective is to be
able to segment several objects which borders do not appear clearly, and which
can not be distinguished with only image statistics. As this is a very complex
problem, which however occurs very often in medical imagery, the use of a single
segmentation method would lead to a very complex mathematical modeling and
difficult implementation. To avoid this, we combine a basic shape model and a
very simple type of fuzzy decision system to locally drive the evolution of several
level sets, which are simultaneously deformed to reach their respective targets. In
previous work [I4], we presented a preliminary version of this methodology which
did not include any shape model, and applied it to the segmentation of brain
structures. In this paper, we show how the use of a preliminary shape analysis
strongly improves the robustness of the method. The algorithm is applied on
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a real Magnetic Resonance Images (MRI) dataset, in order to segment internal
brain structures, which are of great interest for the quantitative morphological
analysis of neurological pathologies.

This paper is organized as follows: Section 2 summarizes the principle of our
level set segmentation driven with fuzzy control, Section 3 presents the con-
struction of the shape model and experimental results are shown and discussed
in Section 4. Finally, we conclude in Section 5.

2 Level Set Segmentation Driven by Fuzzy Control

In this section we briefly present how a fuzzy decision system tunes the terms
of the evolution equations of several level sets. More details about this method
can be found in [I4].

2.1 General Principle

As we wish to segment simultaneously several structures in the same volume,
we assign one level set (represented by one contour) to each target. As the level
set formalism allows topological changes, a single target may be composed of
several components, and the corresponding contour can split or merge. We use
the level set equation evolution proposed in [I5]:

F = g(Pr)(px — ), (1)

where v is a constant module force, whose sign leads the current contour toward
the desired border; k is the local curvature of the contour; p is the weight on
curvature; g is a decreasing function; and Pr is the probability of transition
between the inside and the outside of the structure to be segmented. Thus the
role of the term g(Pr) is to stop the evolution of the contour at the desired
location.

The v and Pr terms are computed according to a preliminary classification of
tissues before the beginning of the level set evolution. The image intensities are
viewed as samples of a Gaussian Mixture Model (GMM), whose parameters are
estimated according to a Maximum A Posteriori principle, with a SEM algorithm
[16]. The classes that are mainly represented inside the initialisation volume are
automatically detected and determine the reduced GMM corresponding to the
inside of the object to segment. For further details concerning the computation
of these terms, see [I5].

The advantages of the evolution force described in Eq. () is that it is very
simple and directly derived from the original geometric active contour formu-
lation [3]. It assigns a precise role to each term, while preserving the ability to
modify each term according to geometrical constraints corresponding to visual
requirements.

2.2 Non-overlapping Constraint

Each target has a physical meaning, which implies that they should not over-
lap. Consequently, the deformation of the contours needs to respect this non-
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overlapping constraint. This is generally done by using additional terms corre-
sponding to an external force in the equation evolution of the level sets.

Recent approaches [4L[5] generally use energy minimization techniques to de-
fine the additional terms of the force. However, in medical imaging, the structures
of interest are often very small compared to the image resolution and may have
complex shapes. This makes it difficult to define energy constraints that remain
both general and adapted to specific structures and pathologies. Another ap-
proach consists in translating the available information into decision rules that
are directly used to drive the level set evolution. This can be done with the fuzzy
set theory, which is very convenient to express rules in natural language.

We designed our method considering two main objectives: the implementation
should be as simple as possible, and all the information provided by the data
should be exploited. This lead us to use a particular type of fuzzy decision
system: a fuzzy controller, both for its simplicity and ability to deal with precise
measurements. The role of this fuzzy controller is to drive the different contours
to their respective targets, while avoiding overlapping. This is directly related
to Eq. (@), where the v term determines the privileged evolution direction of the
contour. Consequently, the output of the fuzzy controller is v, and is calculated
for each voxel, at each iteration of the evolution.

2.3 Fuzzy Controller

In [I5], the proposed formulation for v is given by:
v = Sign(P(X € A;|x) — P(\ € A.|x)), (2)

where x is the current voxel, A is the class of the current voxel estimated from the
volume histogram, and A; and A, are the reduced GMM representing respectively
the inside and the outside of the structure to be segmented. As this equation doen
not take into account the notion of segmentation target nor any non-overlapping
constraint, the fuzzy controller replaces it by the following constraints:

1. Several contours that evolve in competition must not intersect even if each
of them can split in several components;

2. Each contour must stay in the vicinity of the fuzzy label describing its seg-
mentation target;

3. Eq. @) is valid under Conditions 1 and 2.

Condition 1 is the non-overlapping constraint and may be related to some
other methods, such as multiphase level sets [4]. However this approach is appli-
cable if the regions can be distinguished by their statistics. In the case of regions
presenting similar grey levels, such as the brain grey nuclei, one must use other
features, like labels coming from an atlas, to guarantee that the different con-
tours will not intersect. Another approach consists in using a repulsive evolution
force [I7L[7,[I8]. Our method is similar to these ones, since the v term defines
a locally adaptive force. However, the advantage of the fuzzy controller is that
this force can be defined even if homogeneous regions do not appear clearly in
the image.
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Fig. 1. Left: distance map from the putamens. Right: the five fuzzy states of Dlab: very
negative (VN), negative (N), around zero (Z), positive (P) and very positive (VP).

Table 1. Fuzzy decision rules for the output variable v. The states of Dlab are very
negative (VN), negative (N), around zero (Z), positive (P), and very positive (VP).
The states of the variable Dc are null (N), too close (TC), close (C), rather close (RC)
and far (F). The states of the variables Dp and v are negative (N) and positive (P).

Dlab=VN Dlab=N Dlab=7 Dlab=P Dlab=VP

Dp=N Dp=P Dp=N Dp=P Dp=N Dp=P Dp=N Dp=P Dp =N Dp=P
Dc=N N N N N N N N N N N
Dc=TC N N N N N P N P P P
Dc=C N N N N N P N P P P
Dc=RC N N N N N P N P P P
Dc=F N N N N N P N P P P

In order to take the three conditions listed above into account, we define three
fuzzy variables as inputs of the fuzzy controller:

1. Dc represents the distance from the current contour to the other ones.

2. Dlab represents the signed distance from the current contour to the label
corresponding to its segmentation target. An example of distance map, or
fuzzy label map of the brain putamens is shown on Fig. [Il

3. Dp represents the difference of probability presented in Eq. ().

These variables are then combined to define the fuzzy decision rules deter-
mined by the three conditions. The five states of each input and the rules are
summarized in Table [l They are used to assign a positive or negative state to
v, which respectively mean that the contour will locally expand or contract. We
use only two states to caracterize v, since it has been shown that only its sign
has a real influence on the contour evolution [15].

Condition 2, which is related to the distance maps, is translated by a majority
of P states in the right part of the table and N states in the left part. This means
that if the processed voxel of the contour is far outside its label (Dlab=N or VN),
it needs to contract (v=N). On the contrary, if it is inside the label (Dlab=P or
VP), it needs to expand (v=P).

Condition 3 is mainly visible in the central part of the table (Dlab=Z and
Dc=TC to F). This corresponds to the case where the contour is within the
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vicinity of its label and not too close to another one. Then the state of v depends
on the intensities of the volume only, as explained in Eq. (]).

This fuzzy controller is thus used to determine v for each voxel, at each it-
eration of the segmentation process. Let us note that even if there are several
contours, only one fuzzy controller is needed and used alternatively for each of
them. Moreover, the expression of the propagation conditions in natural lan-
guage avoids the use of weighting parameters in the evolution equation of the
level sets, which is an advantage compared to many variational approaches. More
details about the implementation are available in [I4].

3 Shape Analysis for Level Set Segmentation

This part explains how a shape model is constructed and used to define the fuzzy
variable Dlab, in order to be introduced in the segmentation process with level
sets and fuzzy control.

3.1 Construction of the Shape Model

As many authors do, we use a principal component analysis (PCA) to construct
the shape model. The main reason for this choice is that PCA provides the pa-
rameters of variation modes that are ordered according to their representativity.
We thus take advantage of this property to define the fuzzy states of Dlab.

For each target, the PCA is performed on a population of n shapes that have
previously been registered in the same referential as the processed volume and
segmented. A shape is then represented by a vector x;,7 € {1,...,n}, which com-
ponents are the grey levels of the volume containing the shape. The mean shape
X is given by x = 711 >, ;. The covariance matrix of the shape population is
diagonalized in order to provide n eigenvalues \; > --- > A, and the associated
eigenvectors, which constitute the matrix ®. The variation modes represented
by ® are ordered according to their respective eigenvalues. New samples x cor-
responding to the model can then be generated by using:

where @y, is a submatrix of ® representing m selected variation modes and by,
are the b; weightings corresponding to each mode, i € {1,...,m}.

3.2 Introduction of the Shape Model in the Segmentation Process

Using a shape model to drive a segmentation method has become very com-
mon since the introduction of Active Shape Models [8]. However, these models
strongly depend on the parametrisation of the shapes, which makes it difficult
to use them in 3D. As we would like to avoid this dependance, we use a level set
formalism instead of a parametric deformable model, as in [111[10].

The shape model obtained by PCA is used for two purposes: (1) defining the
segmentation target labels and (2) estimating the fuzzy states of the variable
Dlab, which represents the distance to these labels. These two steps are now
described for a given target.
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Definition of the segmentation target label

A fuzzy label is used to approximately locate the target in the volume. It is
created by applying a distance transformation [I9] on the mean shape obtained
by PCA.

Definition of the fuzzy states of Dlab

We assume that there is a relationship between the variation modes of the shape
obtained by PCA and the area that is actually covered by the real target on
the image. Indeed, let us consider the largest variation allowed by the shape
model, by selecting large values of b; in Eq. [B]). They are likely to correspond
to shapes which are very different from the mean shape, but remain realistic.
Thus, the distance between these generated shapes and the label defined by the
mean shape can be viewed as an indicator of which distance can be considered
as very negative for Dlab.

We proceed as follows. First an appropriate number m of modes is selected
in order to be able to generate shapes that correctly represent the variability of
the structure. This is done by choosing m so that the cumulated variances of the
first m modes are greater than 66% of the total variance. This is possible due to
the ordering of modes provided by PCA.

Then we consider that small shape variations correspond to |b;| < v/A; and
large variations correspond to |b;] < 3v/\;, since P(|b;] < +/A;) = 68% and
P(|b;] <3v/ X)) =99,7%. The corresponding “small variation” and “large varia-
tion” shapes are generated. An example is shown on Fig. 2l

Fig. 2. Areas covered by variations around the mean shape for both putamens. Dark
grey: mean shape, light grey: small var. (|b;| = v/\;), white: large var. (|b;| = 3v/\s).

Finally, the mean distance between the mean shape and the “small variation”
shape defines the point p; on Fig.[Il which distinguishes the negative and around
zero states of Dlab. The mean distance between the mean shape and the “large
variation” shape defines the point p, on Fig. [[l which is located between the
very negative and negative states of Dlab. The points corresponding to the lim-
its between the states around zero, positive and very positive are obtained by
symmetry with respect to zero.

As there are several segmentation targets, this process is repeated for each
of them, and we finally take the average p; and p, values to define Dlab. This
averaging operation may be considered as information loss, since Dlab is not
specific to each target. However, in practice, the structures to be segmented have
approximately the same size, and their p; (respectively p,) values are similar,
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which allows us to average them. The advantage of this approach is that we
define a single fuzzy controller for all the targets, and thus reduce computation
time and memory needs.

The main advantage of this method is that the fuzzy states of Dlab are de-
termined by the statistical analysis, instead of being estimated arbitrarily by
an expert. This is a step forward in reducing the number of manually tuned
parameters of the segmentation algorithm.

4 Application: Internal Brain Structures Segmentation

The method is applied to segment the brain grey nuclei, which are internal
brain structures located in the deep grey matter. We focus on four segmentation
targets: (1) left and right thalamus, (2) left and right caudate nucleus, (3) left
and right pallidum and (4) left and right putamen. Each target is thus made of
two parts, and we use four level sets for the segmentation, one for each target.

The grey nuclei are very difficult to segment, since their grey levels are not homo-
geneous and their borders with the surrounding white matter do not appear clearly
on MRI. Consequently, even when they are segmented manually by experts, the
results vary a lot according to the level of experience and the attention of the hu-
man observer. From a medical point of view, these structures are strongly involved
in many neurological pathologies, which means that an automated segmentation
method is critical to perform morphomotric analyses on large populations, without
suffering from the variability of manual results. The grey nuclei are also a target
for electro-stimulation in the treatment of Parkinson’s disease. The segmentation
is thus very useful to plan the surgical intervention.

4.1 Data

We test our method on a database provided on the Internet Brain Segmenta-
tion Repository (IBSR), and available at the Center for Morphometric Analysis,
Massachusetts General Hospital (http://www.cma.mgh.harvard.edu/ibsr).

This database contains 18 real T1-weighted MR scans and the corresponding
manual segmentation of 43 structures, performed by a trained expert. We con-
sider this manual segmentation as the ground truth to assess our results. The
MR scans are 256 x 256 x 128 volumes, with slices of thickness 1.5mm, and pixel
dimension going from 0.84mm to 1mm on each slice.

4.2 Experiments

In order to show the improvement brought by shape analysis, we present three
different experiments:

— Exp. 1: segmentation of the grey nuclei without shape analysis,

— Exp. 2: segmentation of the grey nuclei with shape analysis for the propa-
gation of the level sets (with the same initialisation as Exp. 1),

— Exp. 3: segmentation of the grey nuclei with shape analysis for the propa-
gation and the initialisation of the level sets.
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The first two experiments show the role of the shape analysis in the same
conditions, and the third one demonstrates how the results can be improved by
adding more prior information in the segmentation process.

Choice of the atlas and labels

For all experiments, an atlas is needed to define the fuzzy labels corresponding to
the segmentation targets. For Exp. 1 (without shape analysis), one subject of the
dataset is randomly chosen to be the atlas, and the segmentation is performed on
the 17 other subjects. The fuzzy labels of the targets are then obtained from the
manual segmentation associated to the atlas with a linear registration algorithm
(12 parameters that maximise the mutual information are computed). As the
manual results are subject to intra and inter-observer variability, it is likely that
these labels are not accurate enough to drive the propagation of the contours
properly. This motivates the use of a statistical analysis to construct a shape
model which is used as an atlas. Consequently, for Exp. 2 and 3, a leave-one-out
process is applied to construct the shape model of the targets as explained in
Section 3. The statistical analysis is done from the manual segmentation asso-
ciated with every subject but the processed one. To this end, the registration
between the shapes is done with the same registration algorithm with 12 param-
eters. We select 5 modes, since this corresponds to a cumulated variance greater
than 66% of the total variance, but in practice, we observe that the results are
approximately the same for 3 modes or more.

Initialisation and results

For Exp. 1, the contours are initialised by doing a morphological erosion on the
target labels. For Exp. 2, we use exactly the same initialisation to be able to
compare the results with and without shape analysis. We also tried to use boxes
roughly located in the center of the brain as initialisation. This lead to quite
good results, but the computation time was larger and even if the final locations
of the contours was satisfying, there were some inaccuracies along the borders,
where the initialisation was not consistent with the location of the targets.

For Exp. 3, we include more prior information in the segmentation process,
by using a better initialisation. This is done by performing a morphological
erosion on the labels obtained by shape analysis, instead of the labels obtained
by registration from one subject.

Let us stress that for comparison purposes, all the tests are run with the same
set of parameters for all experiments and all subjects.

The segmentation takes approximately 15 to 20 minutes on a 3GHz Linux PC
with 1GB memory. The results are good for 15 subjects. The registration does
not perform very well for the 2 remaining subjects, and even if the segmentation
process tempts to counteract this effect, the results are not accurate enough,
which means that even if the global location is good, the borders of the target
are not properly recovered. An example of results is shown on Fig. [3

These results show that without shape analysis (top row), the grey nuclei,
especially the putamens and pallida are over-segmented, while the global shape of
the thalami is not completely realistic. This is corrected by the shape analysis, on
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Caudate nuclei

Exp. 1

Exp. 2

Exp. 3

Fig. 3. Segmentation of the grey nuclei. Top row: without shape analysis, middle row:
with shape analysis for the propagation of the level sets only, bottom row: with shape
analysis for the propagation and the initialisation of the level sets.

the middle and bottom rows. Moreover, the segmentations shown on the middle
and bottom rows look rather the same, which means that even if the initialisation
used in Exp. 3 improves the results, this is an additional improvement that does
not have as much influence as the use of the shape model to drive the propagation
of the contours.

4.3 Quantitative Evaluation

In order to quantitatively assess our results on the IBSR dataset, we compute the
mean distance My between our results and the ground truth provided by the manual
segmentation. We also use the spatial accuracy index S, which is a similarity index
based on the overlapping rate between the result and the truth [20]:
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where R is the segmentation result and T is the ground truth. Our results are
summarized in Table 2l This table also contains the S and My values corre-
sponding to the similarity between the 12-parameter registration result of the
atlas structures and the ground truth.

Table 2. Similarity indice S and mean distance My for the segmentation of the thalami
(Th.), caudate nuclei (CN), pallida (GP) and putamens (Pu.), with or without shape
analysis (S.A.)

Th. NC GP Pu.
S My S Mg S Mg S My
Registration 0.73 1.8 0.60 1.9 0.53 2.1 0.66 1.8
Exp. 1: Without shape analysis  0.77 1.7 0.60 2.1 0.56 2.0 0.62 1.9
Exp. 2: With S.A. for propagation 0.82 1.5 0.64 2.2 0.67 1.7 0.68 1.8
Exp. 3: With S.A. for prop. and init. 0.82 1.5 0.64 2.1 0.62 1.8 0.74 1.5

The table clearly shows that the segmentation results, especially with shape
analysis, are better than the registration ones. The spatial accuracy index is good
for the thalami. For the caudate nuclei, pallida and putamens, the lower values
can be explained by the small size of the corresponding structures. Consequently,
even a small difference between the result and the ground truth leads to a large
variation in the spatial accuracy index. As an example, let us consider the result
of a morphological erosion on the ground truth of one of these structures with a
structuring element of size 1. The mean S value computed between the ground
truth and the erosion result is only 0.77. This is the reason why, in literature,
an S value greater than 0.7 is considered as a very good result [20]. Moreover, it
is well-known that a manual segmentation performed by only one expert is not
enough to be a real gold standard. An offset of one or two voxels with respect
to the ground truth we use is thus acceptable.

Finally, the My values are low for all the grey nuclei, even the small ones
which do not have very good S values. They are also significantly decreased
by the use of the shape analysis for the propagation of the contours, and even
more if the shape analysis is used for initialisation. As the quantitative results
include the 2 cases on which the registration fails, these low My values show that
the segmentation is more effective than registration only, and strongly improved
by shape analysis. This is also demonstrated by the standard deviation of the
mean My values, which is largely lower for segmentation with shape analysis
(less than 0.3 voxels except for caudate nuclei) than for registration (around 0.5
voxels).

Moreover, as the segmentation parameters were the same for all the sub-
jects in the dataset, it is obvious that these results are not optimal for each
subject, but show the robustness of the method when used on several different
volumes.
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5 Conclusion and Future Work

We proposed a level set segmentation method which originally combines a sta-
tistical shape analysis and a fuzzy controller. Shape analysis and fuzzy control
bring prior information in the segmentation process, while keeping the imple-
mentation of the method simple, which allows us to segment several structures
simultaneously. The quantitative assessment of the experimental results show
that the segmentation of small and blurred structures is strongly improved by
shape analysis, and more accurate than registration.

Future work concerns the adaptation and application of the method to other
small objects, using other types of prior information. In particular, the brain
hippocampi and amygdala are particularly interesting to segment for medical
purposes. This is a very difficult task since they are very small and their shape
is highly variable, which makes their automated segmentation a challenge.
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